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By lack of functional evidence, genome-based diagnostic rates cap at approximately 50% 

across diverse Mendelian diseases. Here, we demonstrate the effectiveness of combining 

genomics, transcriptomics, and, for the first time, proteomics and phenotypic descriptors, 

in a systematic diagnostic approach to discover the genetic cause of mitochondrial 

diseases. On fibroblast cell lines from 145 individuals, tandem mass tag labelled 

proteomics detected approximately 8,000 proteins per sample and covered over 50% of 

all Mendelian disease-associated genes. Aberrant protein expression analysis allowed the 

validation of candidate protein-destabilising variants, in addition to providing 

independent complementary functional evidence to variants leading to aberrant RNA 

expression. Overall, our integrative computational workflow led to genetic resolution for 

22% of 121 genetically unsolved whole exome or whole genome negative cases and to the 

discovery of two novel disease genes. With increasing democratization of high-

throughput omics assays, our approach and code provide a blueprint for implementing 

multi-omics based Mendelian disease diagnostics in routine clinical practice. 

 

Whole exome sequencing (WES) and whole genome sequencing (WGS) resolve the molecular 

cause of suspected genetic disease in approximately 30-50% of cases (Clark et al., 2018). The 

overarching challenge of the analysis is the interpretation of the vast number of variants of 

uncertain significance (VUS). The current ACMG recommendation for interpretation of 

genetic variants (Richards et al., 2015) attaches high importance to functional validation in 

designation of a variant as pathogenic (P) or likely pathogenic (LP). For this reason, systematic 

application of RNA sequencing (RNA-seq) has proven valuable in reducing the diagnostic 

shortfall of WES/WGS by providing a functional readout of variant consequence on RNA 

abundance and form, through the detection of aberrant expression, aberrant splicing, and/or 

monoallelic expression of heterozygous pathogenic variants. In this way, RNA-seq allows the 
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pathogenic designation of synonymous and non-coding VUS. The approach provides a 

molecular diagnosis to approximately 10% of unsolved WES/WGS cases with a suspected 

mitochondrial disease (Kremer et al., 2017) and up to 35% in other disease cohorts (Cummings 

et al., 2017, Gonorazky et al., 2019, Fresard et al., 2019). Proteomics has the added potential 

to capture the consequence of protein-destabilising missense variants, a variant class eluding 

detection by RNA-seq. Missense variants are one of the most frequently reported functional 

classes of P/LP variants in Mendelian disease according to the ClinVar database (Simple 

ClinVar, see online Resources), accounting for just over 25%. While proteomics has been used 

to elucidate underlying disease mechanism (Lake et al., 2017, Borna et al., 2019, Stojanovski 

et al., 2020), to provide cumulative functional evidence to RNA-seq candidates (Kremer et al., 

2017), and to resolve a small number of cases with suspected monogenic disease by guiding 

targeted genetic testing (Grabowski et al., 2019), the utility of the systematic application and 

integration of quantitative proteomics with WES/WGS data into a diagnostic pipeline in  a 

large cohort of unsolved cases has yet to be explored. Here, we establish an integrative multi-

omic workflow for the parallel analysis of WES/WGS, Human Phenotype Ontology (HPO) 

descriptors, RNA-seq, and quantitative proteomic data to provide comprehensive capture of 

variant consequence on the gene product(s) with the objective to genetically resolve 

WES/WGS unsolved mitochondrial disease cases. 

 

Initiated by the GENOMIT project (see online Resources), we have analysed over 2,000 

clinically suspected mitochondrial disease cases by WES/WGS and gathered corresponding 

HPO terms for automated phenotype integration (Stenton et al., 2021). Mitochondrial diseases 

are a prime example of the diagnostic challenge faced in human genetics given their vast 

clinical and genetic heterogeneity. In-keeping with previous studies (reviewed by Stenton and 

Prokisch 2020), we reached a diagnosis by WES/WGS analysis for approximately 50% of the 
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cases. Here, selecting 143 of these mitochondrial disease cases (121 unsolved and 22 solved 

positive controls) plus two healthy controls with available fibroblast cell lines, we performed 

RNA-seq and quantitative tandem mass tag (TMT) labelled proteomics in order to take an 

integrative multi-omic approach to diagnosis (Fig. 1a, Supplementary Fig. 1a-c) (see online 

Methods). 

 

With the detection of approximately 12,000 transcripts and 8,000 proteins per sample 

(Supplementary Fig. 1d), a median of 91% (n=353) and 80% (n=310) of mitochondrial 

disease gene products, and 59% (n=2,535) and 51% (n=2,159) of all Mendelian disease gene 

products were quantified per sample in RNA-seq and proteomics, respectively. These figures 

deem fibroblasts an easily accessible tissue with high disease gene coverage and an excellent 

resource for the study of mitochondrial diseases (Supplementary Fig. 1e). 

 

To validate our quantitative proteomic approach on fibroblast cell lines, we first asked whether 

we were able to detect protein underexpression in 18 positive controls with pathogenic nuclear-

encoded variants and and four positive controls with pathogenic mtDNA-encoded variants 

known to lead to protein destabilisation (i.e., cases with previous immunoblotting 

demonstrating reduced protein level). Our proteomic approach validated 14 cases (14/22, 64%) 

by nominally significant protein underexpression (Fig. 1c). Of the cases unable to be validated 

(8/22), in three the protein was not detected and in five there was no significant change in 

protein expression, this included all four mtDNA-encoded variants (Supplementary Table 1). 

 

Next, in our cohort of 121 unsolved cases we investigated 21 where clinical analysis of the 

WES data had resulted in a diagnostic report of a rare VUS in a known OMIM disease gene, 

according to the ACMG criteria (Supplementary Table 2, for case summaries see 
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Supplementary Information). These 21 cases carried a total of 26 unique VUS, the majority 

of which (20/26, 78%) were missense in nature. Variant pathogenicity was validated in 14 of 

the 21 cases by nominally significant protein underexpression (Fig. 1d) and in one case by 

aberrant RNA splicing (total, 15 cases, 71%). In total, 4/14 of the diagnoses validated by 

proteomics were also validated by reduced RNA expression levels (Supplementary Fig. 1f 

and Supplementary Table 2). 

 

We were unable to provide functional evidence of pathogenicity in six of the 21 cases. The 

reasons for this are manifold. First, the variant may be pathogenic but exert pathogenicity by a 

defect in protein function and not in protein stability, a consequence which cannot be captured 

by protein underexpression. Second, the variant may indeed not be pathogenic, exemplified in 

individual OM00762, where proteomics was valuable in rejecting the prioritised variant in the 

mitochondrial targeting sequence of MRPL53 due to normal expression of both MRPL53 and 

the large mitoribosomal subunit (Supplementary Fig. 1g) and in individual OM36526, where 

the prioritised homozygous variant in VPS11 could be rejected and an alternative genetic 

diagnosis in MRPS25 discovered. Third, the protein may not be detected in the respective 

proteomics batch, as exemplified by C19ORF70 in individual OM66072 (Supplementary 

Table 2). 

 

To identify genes with aberrant RNA expression, we performed three outlier analyses, i) 

aberrant expression levels, ii) aberrant splicing, and iii) monoallelic expression of rare variants 

via the DROP pipeline (Yépez et al., 2021). To identify aberrant protein expression, we 

developed the algorithm PROTRIDER which estimates deviations from expected protein 

intensities while controlling for known and unknown sources of proteome-wide variation (see 

online Methods). We compared PROTRIDER to z-scores calculated after regressing out 
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covariates (instrument, sample preparation batch, TMT batch, and gender) as well as an 

approach based on testing for differential expression of each sample against all others. As 

outlier calls from PROTRIDER were more enriched for rare stop, frameshift, splice, and 

missense variants and PROTRIDER achieved a better fit of the data, we decided to adopt 

PROTRIDER for aberrant protein expression detection (see online Methods). 

 

Our matched genome, transcriptome, and proteome datasets together with protein expression 

outlier calls allowed us to investigate how aberrant RNA and protein expression relate to one 

another in the context of rare genetic variation, to our knowledge for the first time. After 

multiple-testing correction, we identified a median of two aberrantly expressed transcripts and 

six aberrantly expressed proteins per sample (Supplementary Fig. 2a). The majority of RNA 

outliers resulted in protein outliers (77%) (Fig. 2a). Those not resulting in a protein outlier may 

be explained by buffering mechanisms on the protein level (Ishikawa et al., 2017, Battle et al., 

2015, Vogel et al., 2012), artefact, or lack of power. 

 

The expression outliers were stratified into three classes: RNA-only, protein-only, and RNA-

and-protein outliers. Though overexpression can provide evidence for impaired function (Ross 

and Poirier, 2004), we chose to focus on the two thirds of outliers that are underexpressed, as 

a clear functional consequence of pathogenic variants in Mendelian disease. All three classes 

of underexpression outliers were significantly enriched for rare variants in their encoding gene 

(Supplementary Fig. 2b-d). Stratifying for variant function, the enriched variants were splice, 

stop, and frameshift in nature. These findings are in line with other RNA outlier studies (Li et 

al., 2017, Ferraro et al., 2020). In addition, protein-only outliers captured the functional 

consequence of missense variants and in-frame indels, thereby demonstrating significant 

enrichment for coding variants. Overall, substantially more RNA-and-protein outliers (15%) 
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could be explained by potentially biallelic rare variants, as compared to RNA-only and protein-

only outliers (approximately 5%, respectively) (Supplementary Fig. 2c). An additional 25% 

of RNA-and-protein outliers were associated with rare heterozygous variants. Protein outliers 

without rare variants in the encoding gene may be explained indirectly as a consequence of 

protein complex instability due to a defect in one of the interaction partners, such as in RCCI 

(Kremer et al., 2017) or the mitoribosomal complex (Lake et al., 2017, Borna et al., 2019), and 

by downstream consequences, for example, reduced protein biogenesis secondary to a 

mitoribosomal protein defect (Lake et al., 2017, Borna et al., 2019). Collectively, these 

genome-wide observations emphasize the complementarity of proteomics to RNA-seq in 

capturing the functional impact of rare genetic variation. Moreover it shows the sensitivity of 

the approach not only to biallelic variation, a hallmark of a recessive inheritance mode, but also 

to mono-allelic variation, i.e., those responsible for dominant diseases. If these biallelic or 

single variants are in-keeping with the inheritance mode and phenotype of the known disease 

gene, the detection of an outlier may lead to diagnosis of the patient. 

 

Aiming to pinpoint pathogenic variants for the remaining unsolved cases (n=106), we next 

combined the aberrant expression analysis with patient HPO annotations (Fig. 2a, 

Supplementary Fig. 2d-e). Focussing on multiple-testing corrected significant RNA and/or 

protein underexpression outliers (median four per sample), a median of one outlier matched 

with the patient phenotype as described by HPO annotations (n=155 outliers in total) or carried 

rare variant(s) in the corresponding gene (n=177 outliers in total) (see online Methods).  

 

Manual inspection and interpretation of outliers resulted in the diagnosis of 12 cases (11%) 

either in accordance with the ACMG criteria or by functional validation of two novel disease 

genes, upon identification of the causative variants (Supplementary Table 3, Fig. 2b-e, for 
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case summaries see Supplementary Information). Of these 12 solved cases, eight were solved 

by the detection of an RNA-and-protein outlier and four were solved by the detection of a 

protein-only outlier (Fig. 2b). 

 

First considering the eight cases solved by RNA-and-protein outlier detection, one case 

(OM21111) had a one exon deletion in NFU1 identified by follow-up WGS in compound 

heterozygosity with a missense variant resulting in 21% residual protein (z-score -7.8). One 

case (OM27390) has a heterozygous missense variant in MORC2 resulting in 69% residual 

protein (z-score -4.5) (Fig. 2c). Four cases demonstrated aberrant splicing resulting in protein 

outliers, included a homozygous near splice variant in MRPL44 (z-score -5.5) (OM03592), 

deep intronic variants in TIMMDC1 (z-score -6.2) (OM38813) and MRPS25 (z-score -4.8) 

(OM36526), and in one case of a direct splice variant on one allele and a unique combination 

of two frequent intronic variants on the second allele (allele frequency 7.2% and 21.8%, 

respectively) causing exon skipping in DARS2 (z-score -6.3) (OM75740) (Fig. 2d). The 

MRPS25 case (OM36526) exemplifies the added value of proteomics in detecting the 

consequence of a defect on the protein complex given underexpression of five subunits of the 

small mitoribosomal subunit (Fig. 2e). In the final two RNA-and-protein outlier cases, our 

integrated omics approach led to the identification of novel mitochondrial disease genes, 

MRPL38 and LIG3. 

 

The MRPL38 outlier (RNA z-score -6.05, protein z-score -5.04) (Fig. 3a) illuminated a 

pathogenic 5’UTR deletion (Fig. 3b). The functional relevance was confirmed by reduced 

abundance of the large mitoribosomal subunit (Fig. 3c) resulting in a severe reduction in 

mitochondrial translation rate rescued by the re-expression of wild-type MRPL38 (Fig. 3d). 

The LIG3 outlier (RNA z-score -3.26, protein z-score -4.50) (Fig. 3e) reprioritised a 
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heterozygous nonsense variant within the mitochondrial targeting sequence (Fig. 3f) affecting 

only the mitochondrial isoform in trans with a deep intronic variant causing aberrant splicing. 

As a dual localized nuclear and mitochondrial DNA ligase, a defect in LIG3 was expected to 

impact mitochondrial DNA replication, supported by mtDNA depletion and a combined 

OXPHOS defect in the muscle biopsy (Fig. 3g), significantly decreased protein levels of 

mtDNA encoded gene products (Fig. 3h), and impaired mtDNA repopulation (Fig. 3i). The 

downstream functional consequence of the LIG3 variants was reflected by 63 additional protein 

outliers. 

 

Next, looking at the four cases solved by protein-only outliers, in all cases at least one of the 

responsible variants was missense or inframe indel in nature, variant classes with pathogenic 

consequence eluding detection by RNA-seq (Supplementary Table 3). Amongst these, was a 

hemizygous X-linked NDUFB11 missense variant resulting in aberrant protein 

underexpression (z-score -4.52) and pathologically low abundance of respiratory chain 

complex (RCC) I (63%) with no rare variants within any other RCCI subunit. The reduction in 

RCCI was most pronounced in the ND4-module to which NDUFB11 belongs (44% remaining, 

lowest in dataset), in-keeping with a second confirmed NDUFB11 case (55% remaining, 

second lowest in dataset). The detection of this variant in the unaffected grandfather indicated 

incomplete penetrance. Attributing pathogenicity to variants of incomplete penetrance, even in 

the presence of a phenotypic match, is an outstanding challenge in human genetics. However, 

in cases where reduced activity is causative of disease, proteomics has the power to classify 

variants affecting protein complex abundance. This was also demonstrated for the homozygous 

variant in DNAJC30 in two cases, by providing evidence for the loss-of-function character of 

an incompletely penetrant missense variant (Supplementary Table 2), as recently reported in 

a cohort of 27 families (Stenton et al., 2021). 
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To summarise, leveraging on advanced proteomics we quantified a substantial fraction of 

expressed proteins, determined their normal physiological range in fibroblasts, and called 

protein outliers in a robust manner. By developing an integrated multi-omic analysis pipeline, 

we establish a clinical decision support tool for the diagnosis of Mendelian disorders. The 

power of our multi-omic approach is demonstrated by validation and detection of the molecular 

diagnosis in 27 of 121 (22%) unsolved WES/WGS cases (Fig. 4a). Specifically, proteomics 

had high value in providing functional evidence for protein destabilising missense variants, the 

most frequent form of P/LP variant in mitochondrial disease and both VUS and P/LP variant 

reported in ClinVar (Fig. 4b), which cannot be interpreted by RNA-seq analysis. Proteomics 

was thereby essential to the diagnosis of 14 of 27 successfully diagnosed cases (52%). 

Moreover, in 19 of a total of 49 diagnosed cases in the cohort (38%) we detect downstream 

functional evidence of variant pathogenicity on the complex level (Fig. 4a). Our code is freely 

available (https://prokischlab.github.io/omicsDiagnostics/) and an interactive web interface 

allows the user to browse all results and could serve as a basis for developing future integrative 

multi-omics diagnostic interfaces. We used TMT-labelling, a proteomics technique quantifying 

the very same peptides for all samples of a batch. This greatly facilitates detection of 

underexpression outliers compared to conventional untargeted mass-spectrometry which 

suffers from widespread missing values in low intensity ranges. Though RNA-seq did not allow 

interpretation of missense variants, it provided independent cumulative evidence and guided 

the identification of causative splice variants in half of the solved cases. Moreover, RNA-seq 

has a deeper coverage of expressed genes in comparison to proteomics, capturing 50% more 

genes. It therefore remains useful for lowly expressed proteins. To identify novel diagnoses we 

applied stringent significance filtering (FDR<0.1) and focussed on underexpression outliers 

with a phenotype match or carrying rare variants in the corresponding gene, leading to one 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2021. ; https://doi.org/10.1101/2021.03.09.21253187doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.09.21253187
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

protein outlier per sample in median. However, with the integration of multiple levels of omics 

information and phenotype descriptors, relaxed significance thresholds may in future be 

considered. Our approach depends on available tissue, encouraging clinicians to be proactive 

and opportunistic in biosampling (e.g, a minimally invasive skin punch biopsy to establish a 

fibroblast cell line), specifically when follow-up visits are unlikely. Given the increasing 

democratization of proteomics we envisage its implementation in clinical practice to advance 

diagnostics by routine integration of functional data. 

 

online Methods 

 

Study cohort 

All individuals included in the study or their legal guardians provided written informed consent 

before evaluation, in agreement with the Declaration of Helsinki and approved by the ethical 

committees of the centres participating in this study, where biological samples were obtained. 

This study was completed according to the ethical committee of the Technical University of 

Munich. 

 

Cell culture 

Primary fibroblast cell lines were cultured as per Kremer et al., 2017. Depending on a material 

transfer agreement with the referring institution, patient-derived cell lines used in this study 

can be made available. 
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Whole exome sequencing (WES) 

Whole exome sequencing was performed as per Kremer et al., 2017 and Zech et al., 2020. 

SAMtools v.0.1.19 and GATK v.4.0 and called on the targeted exons and regions from the 

enrichment kit with a +/- 50bp extension. 

 

Variant annotation and handling 

Variant Effect Predictor (McLaren et al., 2016) from Ensembl (Zerbino et al., 2018) was used 

to annotate genetic variants with minor allele frequencies from the 1000 Genomes Project 

(1000 Genome Consortium, 2015), gnomAD (Karczewski et al., 2020), and the UK Biobank 

(Bycroft et al., 2018), location, deleteriousness scores and predicted consequence with the 

highest impact among all possible transcripts. Variants with minor allele frequency (MAF) less 

than 1% across all cohorts were considered as rare. Genes harbouring one rare allele were 

classified as rare, with two or more rare alleles - potentially biallelic. ACMG guidelines for 

variant classification were implemented for variants in known OMIM disease genes with the 

InterVar software (Li and Wang, 2015). 

 

Gene-phenotypic matching 

Phenotype similarity was calculated as a symmetric semantic similarity score with the 

R::PCAN package (Godard and Page, 2016). We considered genes to match phenotypically if 

the symmetric semantic similarity between the gene and the case HPO annotations was ≥2 

(Köhler et al., 2009; Frésard et al., 2019) (Supplementary Fig. 2d). Affected organ systems 

were visualized with R::gganatogram (Maag 2018), based on the patients’ HPO phenotypes 

corresponding to the third level of HPO ontology (Köhler et al., 2019).  
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RNA sequencing 

Non-strand specific RNA-seq was performed as per Kremer et al., 2017. Strand-specific RNA-

seq was performed according to the TruSeq Stranded mRNA Sample Prep LS Protocol 

(Illumina, San Diego, CA, USA). Processing of RNA sequencing files was performed as per 

Kremer et al., 2017.   

 

Detection of aberrant RNA expression, aberrant splicing, and mono-allelic expression  

RNA-seq analysis was performed using DROP (Yepez et al., 2021), an integrative workflow 

that integrates quality controls, expression outlier calling with OUTRIDER (Brechtmann et al., 

2018), splicing outlier calling with FRASER (Mertes et al., 2020), and mono-allelic expression 

(MAE) with a negative binomial test (Kremer et al., 2017). We used as reference genome the 

GRCh37 primary assembly, release 29, of the GENCODE project (Frankish et al., 2019) which 

contains 60,829 genes. RNA expression outliers were defined as those with a false-discovery 

rate ≤ 0.1. Splicing outliers were defined as those with a gene-level false-discovery rate ≤ 0.1 

and a deviation of the observed percent-spliced-in or splicing efficiency from their expected 

value larger than 0.3. MAE was assessed only for heterozygous single nucleotide variants 

reported by WES analysis. We retained MAE calls at a false discovery rate ≤ 0.05. Aberrant 

events of all three types were further inspected using the Integrative Genome Viewer (Robinson 

et al., 2011). 

 

Mass spectrometric sample preparation 

Proteomics was performed at the BayBioMS core facility at the Technical University Munich, 

Freising, Germany. Fibroblast cell pellets containing 0.5 million cells were lysed under 

denaturing conditions in urea containing buffer and quantified using BCA Protein Assay Kit 

(Thermo Scientific). 15 µg of protein extract were further reduced, alkylated and the tryptic 
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digest was performed using Trypsin Gold (Promega). Digests were acidified, desalted and 

TMT-labeling was performed according to (Zecha et al., 2019) using TMT 10-plex labelling 

reagent (Thermo Fisher Scientific). Each TMT-batch consisted of 8 patient samples and 2 

reference samples common to all batches to allow for data normalization between batches. 

Each TMT 10-plex peptide mix was fractionated using trimodal mixed-mode chromatography 

as described (Yu et al., 2017). LC-MS measurements were conducted on a Fusion Lumos 

Tribrid mass spectrometer (Thermo Fisher Scientific) which was operated in data-dependent 

acquisition mode and multi-notch MS3 mode. Peptide identification was performed using 

MaxQuant version 1.6.3.4 (Tyanova et al., 2016) and protein groups obtained. Missing values 

were imputed with the minimal value across the dataset. 

 

Transcriptome-proteome matching 

In order to determine the correct assignment of proteome and transcriptome assay from the 

same sample, we correlated the gene counts with the protein intensities (Supplementary Fig. 

3). The spearman ranked correlation test was applied to all transcriptome-proteome 

combinations, using the cor.test function from R. The distribution of the correlation values are 

plotted and in the case of mismatch two distinctive populations will appear. Correlations >0.2 

correspond to matching samples. Only protein intensities >10,000 and genes with ≥50 counts 

were considered. Protein intensities were log-transformed and centered. RNA counts were 

normalized by sequencing depth using size factors (Love et al., 2014), log-transformed and 

centered. The 2,000 genes with the highest dispersion (as computed by OUTRIDER) were 

selected. 
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Detection of aberrant protein expression with PROTRIDER 

To detect protein expression outliers while controlling for known and unknown sources of 

proteome-wide variations, we employed a denoising autoencoder based method, analogous to 

methods for calling RNA expression outliers (Brechtmann et al., 2018) and splicing outliers 

(Mertes et al., 2020). Specifically, sizefactor normalized and log2-transformed protein 

intensities were centred protein-wise and used as input to a denoising autoencoder model with 

three layers (encoder, hidden space, and decoder). All input values were slightly corrupted by 

adding a small noise term drawn from a Gaussian with mean zero and standard deviation equal 

to half the standard deviation for each protein. As protein intensities varied strongly between 

batches, we included the batch as a covariate in the input of the encoder and in the input of the 

decoder (Supplementary Fig. 4a-b). For a given encoding dimension q, we fit the encoder and 

decoder weights by  minimizing the mean absolute error loss to the uncorrupted values over all 

available non-missing data. The optimal encoding dimension of the autoencoder was 

determined by artificially injecting outliers and selecting the encoding dimension that yielded 

the best area under the precision-recall curve (AUPRC) of recovering these injected outliers. 

For this dimension fitting procedure, artificial outliers were generated with a frequency of 1 

per 1000. An outlier log-transformed intensity xoi,j for a sample i and a protein j was generated 

by shifting the observed log-transformed intensity xi,j by zi,j times the standard deviation σj of 

xi,j , with the absolute value of zi,j being drawn from a log-normal distribution with the mean 

of the logarithm equal to 3 and the standard deviation of the logarithm equal to 1.6, and with 

the sign of zi,j  either up or down, drawn uniformly: 

 

xi,jo = xi,j + zi,j ⋅ σj. 

 

An encoding dimension of 25 was found to be optimal according to this procedure. 
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After the autoencoder model was fit to the data, statistical testing of the observed log2-

transformed intensities xi,j with respect to the expected log2-transformed intensities μi,j 

modelled by the autoencoder was performed, using two-sided Gaussian p-values pi,j for sample 

i and protein j defined as 

 

pi,j=2⋅min{N(xi,j|µi,j, σresj), 1 - N(xi,j|µi,j, σresj) }, 

 

where σresj  is the protein-wise standard deviation of the autoencoder residuals xi,j - µi,j. Finally, 

p-values were corrected for multiple testing per sample with the method of Benjamini and 

Yekutieli (Benjamini and Yekutieli, 2001). During the entire process of fitting the autoencoder 

model as well as the statistical tests, missing data was masked as unavailable and ignored. We 

refer to this method as PROTRIDER in the following. 

 

Benchmark of PROTRIDER against alternative approaches  

As no method for outlier detection in proteomics data was established yet, we benchmarked 

our method against an approach that is based on limma (Smyth 2005), which was developed 

for differential expression analyses on microarray data and assesses statistical significance with 

a moderated t-statistic. We used recalibrated protein data which has been adjusted with respect 

to the two identical control samples in each MS-run as the input for limma and included the 

sex, batch and instrument annotation to adjust for confounding factors. To be able to use limma 

for outlier detection, we tested each sample against all other samples. Additionally, we 

compared PROTRIDER to regression of covariates (instrument, sample preparation batch, 

TMT batch, and gender) followed by z-score calculation on the residuals. We evaluated the 

performance of all methods based on the proportion of called underexpression outliers that 
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contain a rare stop, frameshift, splice, or missense variant in the gene body of the outlier gene 

(Supplementary Fig. 4c) and overall quality of fit (Supplementary Fig. 4d-f). In addition, 

we compared the ability to recall aberrant protein expression in 28 samples with confirmed 

pathogenic variants (14 positive controls with pathogenic nuclear-encoded variants and the 14 

cases with a validated rare VUS) (Supplementary Fig. 4c-f). As PROTRIDER performed 

favorably in these benchmarks and outlier calls were more enriched for rare variants, we 

decided to adopt PROTRIDER for the detection of aberrant protein expression. 

 

Enrichment of genetic variants in outlier genes 

We focused our analysis only on the genes where both RNA-and-protein levels were quantified 

sample-wise and limited it to the genes that were detected as outliers at least once in our cohort. 

Variants were stratified into six classes according to their impact on the protein sequence, 

defined by a combination of Ensembl VEP (McLaren et al., 2016) annotations as follows: Stop 

(stop_lost, stop_gained), splice (splice_region_variant, splice_acceptor_variant, 

splice_donor_variant), frameshift (frameshift_variant), coding (missense_variant, 

protein_altering_variant, inframe_insertion, inframe_deletion), synonymous 

(synonymous_variant, stop_retained_variant), and non-coding (3_prime_UTR_variant, 

5_prime_UTR_variant, downstream_gene_variant, upstream_gene_variant, intron_variant, 

non_coding_transcript_exon_variant, mature_miRNA_variant, intron_variant, 

intergenic_variant, regulatory_region_variant). Enrichment analysis was performed similarly 

to described by Li et al 2017, by modelling with logistic regression of each outlier category 

(RNA only, protein only, and RNA-and-protein over- or underexpresssion) as a function of 

standardized variant class. For each gene, detected as an outlier of a particular category, the 

remaining set of individuals served as controls. Proportions of outlier genes were calculated by 
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assignment of one variant class (out of six) with the highest significant enrichment in the 

corresponding outlier category.  

 

Detection of aberrantly expressed protein complexes 

Detection of aberrantly expressed protein complexes was performed similar to the differential 

protein complex expression method described by Zhou et al., 2019. Specifically, the quantified 

proteins were mapped to the protein complex database CORUM (v3.0) (Giurgiu et al., 2019) 

or to the mitochondria-related subset of HGNC gene groups by gene names. We considered the 

protein complexes of four subunits or more and with at least 50% of the subunits quantified. 

For each sample i and protein complex k, we computed yi,k, the mean deviation of observed 

versus expected protein intensities across all detected subunits (expressed in log2 fold-change 

and as estimated by PROTRIDER or LIMMA). For each protein complex k, we fitted by 

maximum likelihood a Gaussian on all yi,k  with mean µk, and standard deviation k using the 

fitdistr function from the R package MASS (Venables and Ripley 2002). The two-sided 

Gaussian p-values for sample i and protein complex j was then computed as: 

 

pi,j=2*min{N(yi,k|µi,k,  k), 1 - N(yi,k|µi,k,  k) }, 

 

To correct the p-values for multiple testing, the method of Benjamini and Yekutieli (Benjamini 

and Yekutieli, 2001) was applied per every sample. 

 

Mitochondrial translation assays 

Metabolic labelling of mitochondrial proteins was performed essentially as described 

previously (Ruzzenente et al., 2018). In brief, patient-derived fibroblasts were incubated in 

methionine- and cysteine-free DMEM medium supplemented with 10% dialyzed FBS, 
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GlutaMAX, sodium pyruvate (ThermoFisher Scientific, Montigny-le-Bretonneux, France), 

100 mg/ml emetine dihydrochloride to block cytosolic protein synthesis and 400 𝜇Ci EasyTag 

EXPRESS35S Protein Labelling Mix (PerkinElmer, Villebon-sur-Yvette, France). Labelling 

was performed for 30 min followed by a further incubation for 10 min in standard growth 

medium. Equal amounts of total cell lysates were fractionated by SDS-PAGE and newly 

synthesized proteins were quantified by autoradiography. 

 

Data and code availability  

The proteomic raw data and MaxQuant search files have been deposited to the 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE 

partner repository and can be accessed using the dataset identifier PXD022803. Code to 

reproduce the analysis is available via GitHub at github.com/prokischlab/omicsDiagnostics/. 

All data needed to reproduce the analysis including RNA count and split-read tables as well as 

the protein intensity matrix are available via Zenodo (Smirnov et al., 2021). The raw 

sequencing data are not publicly available and no further data is available upon request. 

 

online Resources 

Code to reproduce the figures: https://github.com/prokischlab/omicsDiagnostics/tree/master 

PROTRIDER: https://github.com/gagneurlab/OUTRIDER/tree/outrider2 

Web interfaces: https://prokischlab.github.io/omicsDiagnostics/#readme.html 

Zenodo: https://zenodo.org/record/4501904 

PRIDE: https://www.ebi.ac.uk/pride/archive/projects/PXD022803 

DROP: https://github.com/gagneurlab/drop 

GTEx Portal: https://www.gtexportal.org/home/ 

OMIM database: www.omim.org 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2021. ; https://doi.org/10.1101/2021.03.09.21253187doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.09.21253187
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

CORUM: https://mips.helmholtz-muenchen.de/corum/ 

HGNC: https://www.genenames.org 

Simple ClinVar: http://simple-clinvar.broadinstitute.org 

GENOMIT: https://genomit.eu 

GENOMITexplorer: https://prokischlab.github.io/GENOMITexplorer/#readme.html 
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Figure Legends 

 

Fig. 1: Genetic diagnosis by simultaneous genomic (WES/WGS), phenomic, 

transcriptomic (RNA-seq), and proteomic investigation followed by integrated analysis. 

a, Multi-omic approach based on the integration of genomics (WES/WGS), transcriptomics 

(RNA-seq), proteomics, and phenotypic descriptors (HPO). We obtained DNA for WES/WGS 

from blood and RNA-seq and proteomics from fibroblasts (acquired by minimally invasive 

skin biopsy). Functional evidence from each omic was integrated in search of a genetic 

diagnosis. The resultant diagnoses were thereby supported by multiple lines of robust clinical 

and functional evidence. Simultaneously, heterozygous and potentially biallelic genetic 

variants were prioritized according to their effect on the corresponding transcript(s) and protein 

by the identification of aberrant expression in RNA-seq and proteomic data, in addition to 

aberrant splicing and monoallelic expression (MAE) of a deleterious heterozygous variants in 

RNA-seq data. Phenotype data complemented the analysis by gene-level prioritization based 

upon semantic similarity scoring. Together, omics integration allowed comprehensive gene-

variant prioritization by providing insight into the effect of rare variation on expression of gene 

products. An overview of our multiplexed, time-efficient, RNA-seq and proteomic sample 

workflow is depicted in Supplementary Fig. 1a-c. b, Proportion of protein-coding genes 

detected by RNA-seq (blue) and proteomics (red), genome-wide and among mitochondrial 

disease genes (Schlieben and Prokisch 2020),  Neuromuscular and Neurology genes (Frésard 

et al., 2019), and OMIM disease genes (https://omim.org), in addition to proteins predicted to 
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localise to the mitochondrial organelle according to MitoCarta 3.0 (Rath et al., 2020). c, Protein 

z-score distribution for disease-causing genes in WES/WGS solved cases (positive controls). 

d, Protein z-score distribution for disease-causing genes with prioritized variants in WES/WGS 

unsolved cases. In panels c and d, the points appear in red for validated cases and in green for 

novel cases diagnosed in our downstream systematic discovery approach. 

 

Fig. 2: Application of an integrative multi-omic approach to detect the pathogenic 

consequence of genetic variants. a, RNA z-scores (x-axis) vs. protein z-scores (y-axis) 

detected by RNA-seq and proteomics across all samples. The shape indicates rare variants 

(minor allele frequency <1%) in the encoding gene. The size indicates semantic similarity with 

the established disease-gene associated phenotype. The colour represents outlier class. All 

detected splice defects and MAE events resulted in aberrant expression, allowing this to be 

used as an indicator of variant pathogenicity. All splice, stop, and frameshift variants in RNA-

only expression outliers (n=37), were observed in heterozygous state. b, Individual OM06865 

presented in childhood with predominantly neurological and muscular involvement. A 

homozygous missense variant in the autosomal recessive disease gene EPG5 was prioritised as 

a protein-only outlier. c, Individual OM27390 presented in infancy with failure to thrive, global 

developmental delay, seizures, encephalopathy, nystagmus, hypotonia, and abnormality of the 

basal ganglia on MRI. A heterozygous missense variant in the autosomal dominant disease 

gene MORC2 was prioritized by an RNA-and-protein outlier. c, Individual OM75740 presented 

in infancy with muscular hypotonia, cardiomyopathy, and abnormalities in the cerebral white 

matter on MRI. DARS2 was detected as an RNA-and-protein underexpression outlier explained 

by a combination of splice and intronic variants. d, Individual OM36526 presented in 

childhood with global developmental delay, elevated lactate, and an isolated respiratory chain 

complex (RCC) IV defect. The MRPS25 RNA-and-protein outlier is explained by a 
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homozygous intronic variant demonstrating aberrant splicing. In addition, three other proteins 

from the small mitoribosomal subunit were underexpressed as a downstream consequence of 

the primary defect. 

 

Fig. 3: Multi-omic prioritization and functional characterization of two novel 

mitochondrial disease genes MRPL38 and LIG3. a, Individual OM57837 presented in 

infancy with global developmental delay, intellectual disability, seizures, hypotonia, 

symmetrical basal ganglia and brainstem abnormalities on brain MRI, and respiratory chain 

complex (RCC) I and IV defects. The RNA and the protein products of MRPL38 

(Mitochondrial Large Ribosomal Subunit Protein L38) were detected as underexpression 

outliers. b, A missense variant, c.[770C>G], p.[Pro257Arg], present in 78% of RNA reads 

indicated reduced expression of a compound heterozygous 127 bp deletion in the 5’UTR of 

MRPL38. c, Underexpression of MRPL38 resulted in reduction of the large mitoribosomal 

subunit (n=46 detected subunits). Meanwhile, the small mitoribosomal subunit remained 

unchanged (n=28 detected subunits). Data are displayed as a gene-wise protein expression 

volcano plot of nominal (-log10) p-values against protein intensity log2 fold change. d, 

Measurement of mitochondrial translation in cultured patient-derived fibroblasts by metabolic 

labelling with [35S]-containing amino acids. The MRPL38 mutant (P) showed a significantly 

reduced mitochondrial translation rate compared to control fibroblasts (C). e, Individual 

OM91786 presented with neonatal-onset severe encephalopathy, seizures, hypotonia, and 

increased serum lactate with early demise in the first weeks of life. LIG3 was identified as an 

RNA-and-protein outlier. f, Whole-genome sequencing identified compound heterozygous 

variants in LIG3. A nonsense variant within the mitochondrial targeting sequence affecting 

only the mitochondrial isoform of the protein in compound heterozygosity with a deep intronic 

variant leading to aberrant splicing and partial degradation of the transcript from this allele, 
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indicated by allelic imbalance. g, A combined OXPHOS defect sparing nuclear encoded RCCII 

was present on the muscle biopsy. The black bars represent the reference range. The red point 

represents the patient measurement.  h, Normal transcript level but reduced protein level of 

nuclear-encoded RCC subunits and ribosomal subunits (n=133) indicated complex instability. 

RNA-and-protein levels of the 13 mtDNA encoded RNAs (11 mRNAs and 2 rRNAs) and 13 

mtDNA encoded proteins were reduced. Expression is depicted as a mean-fold change 

compared to the mean of all other fibroblast samples. i, mtDNA copy number in cultured 

fibroblasts was investigated by qPCR during ethidium bromide induced depletion and 

repopulation. Impaired mtDNA repopulation was more severe than in the RNASEH1 mutant 

cell line which serves as a control for a repopulation defect (Reyes et al. 2015). 

 

Fig. 4: The power of an integrative multi-omic approach to detect the pathogenic 

consequence of genetic variants. a, A summary of the functional evidence for pathogenicity 

provided by multi-omics in the study cohort. In the proof of principle approach in WES/WGS 

solved cases (n=22), functional evidence of pathogenicity was provided by protein 

underexpression in 14/22 patients (64%). In the validation approach, VUS were confirmed to 

be P/LP in 15/21 unsolved cases (71%). In the discovery approach, 12 novel diagnoses were 

made in 12/106 unsolved cases (11%). Together, this resulted in an overall diagnostic rate of 

22% when applying a multi-omics pipeline to unsolved WES/WGS cases in diagnostics. 

Overall, of the total of 49 molecularly diagnosed cases in the cohort, proteomics revealed 

downstream functional evidence of pathogenicity on the complex level in 39% (19/49), 

accounting for 140/397 underexpression outliers detected amongst these diagnosed cases. b, A 

summary of the variants accounting the patients’ molecular diagnoses in this study with the 

corresponding functional evidence on the RNA and/or protein level (left) and variants 

represented within Simple ClinVar, GENOMITexplorer (see online Resources) (Stenton et al., 
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2021), and this study (right), stratified by variant function. Notably, the vast majority of 

disease-causative variants in our cohort were missense and required proteomics to provide 

functional evidence of pathogenicity. Given that most ClinVar VUS, ClinVar P/LP, and 

suspected mitochondrial disease P/LP variants are missense, the importance of proteomics in 

providing functional evidence of pathogenicity is underlined. *mtDNA variants were missense 

(n=3) and non-coding (n=1). 
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