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Supplementary Methods 
 

1. Choice of fixed parameter values 
Total target cell numbers in the absence of infection (𝑇!) 
It has been estimated that there are 4×108 epithelial cells in the upper respiratory tract (URT) (1). 
Hou et al. recently estimated that the fraction of cells that express angiotensin-converting enzyme 
2 (ACE2), i.e. the receptor for SARS-CoV-2 entry, on cell surface is approximately 20% in the 
URT (2). There is a much higher fraction of cells expressing the type II transmembrane serine 
protease TMPRSS2, a co-receptor for SARS-CoV-2 entry (2). Therefore, in our model, we assume 
the initial number of target cells in the URT, 𝑇",! =8×107 cells, i.e., 20% of the total epithelial 
cells. Note that for a standard viral dynamics model (as well as in our immunity model described 
below), the number of initial target cells and the virus production rate are unidentifiable and only 
their product is identifiable (3). Thus, an increase (decrease) in the initial number of target cells 
will lead to corresponding decrease (increase) in the estimate of the virus production rate but not 
in the estimate of other parameters such as d or R0 (see Eqs. [4] and [5]).  
 
Initial number of infected cells (in an eclipse phase), 𝐸! 
Evidence strongly suggests that the URT is the initial site of infection (2, 4). Thus, we assume that 
one cell in the URT is infected at the start of infection, 𝐼! = 1 cell, rather than setting an initial 
viral load, which avoids the complication of predicting whether one or more infectious virions 
would be present for any chosen V0. This approach is similar to that in Ref. (5), which showed that 
this assumption does not change the dynamics of the model significantly as any initial viral 
particles that succeed in initiating infection must infect one or more cells (rapidly) before being 
cleared. In a sensitivity analysis, we test 𝐼! = 10 cells. 
 
Virus clearance rate, c 
We set c=10/day, because in vivo viral clearance is usually fast in many infections, including for 
respiratory infections such as influenza (1, 5, 6). We and others have used this value of c in 
previous models of infection by SARS-CoV-2 (7, 8). In sensitivity analyses, we set c= 5 or 20/day. 
 
Eclipse period, 1/𝑘  
We set 𝑘 = 4 /day (corresponding to "

$
=6 hours) according to cell culture experiments suggesting 

infected cells start to produce virus between 4-8 hours post infection (9). In sensitivity analyses, 
we set "

$
=4 or 8 hours, with the 4 hour choice motivated by the experiments in Hou et al. (2) that 

showed viral titers of 104 PFU/ml in vitro at 6 hour post infection, the earliest time point sampled.  
 

2. The target cell limited (TCL) model  
We first construct a within-host model based on the target cell limited model. The model keeps 
track of the total numbers of target cells (T), cells in the eclipse phase of infection (E), i.e., infected 
cells not yet producing virus, productively infected cells (I) and total viruses (𝑉%&'). To compare 
the model with data, we keep track of sampled viruses, i.e., virus levels measured in nasal 
pharyngeal swabs, 𝑉, and assume that these levels are proportional to the actual number of viruses 
in the URT, 𝑉%&'. The ordinary differential equations (ODEs) describing the model are  
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𝑑𝑇
𝑑𝑡 = −𝛽%&'𝑉%&'𝑇 

𝑑𝐸
𝑑𝑡 = 𝛽%&'𝑉%&'𝑇 − 𝑘𝐸 

𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 𝛿𝐼 

𝑑𝑉%&'
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉%&' 

 
𝑉 = 𝑓𝑉%&' 	  

 

[S1] 

where 𝑓 is the proportion of virus sampled from the URT in either a single swab for the German 
data or in 1 mL of fluid that the swab was placed in for the NBA data. 
 
Model simplification. 
From Eqn. S1, we have: 

𝑑𝑉
𝑑𝑡 = 𝑓

𝑑𝑉%&'
𝑑𝑡 = 𝑓𝑝𝐼 − 𝑐𝑉  

 
Let 𝜋 = 𝑓𝑝, and 𝛽 = 𝛽%&'/𝑓, we get we get the following ODEs shown as Eqn. [2] in the main 
text: 

𝑑𝑇
𝑑𝑡 = −𝛽𝑉𝑇 

𝑑𝐸
𝑑𝑡 = 𝛽𝑉𝑇 − 𝑘𝐸 
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 𝛿𝐼 
𝑑𝑉
𝑑𝑡 = 𝜋𝐼 − 𝑐𝑉 

 
 
 

[S2] 

 
 

3. Innate immunity models 
We constructed three versions of the innate immune model. The first version of the model is used 
in the analyses in the main text, and is termed the innate immune model throughout the main text. 
 

a. Innate immune model - refractory cells 
In the first version of the innate immune model, we keep track of type I interferon (F) and cells 
refractory to infection (R), in addition to the compartments in the TCL model. We assume that 
binding of interferons to receptors on target cells stimulates genes that make target cells refractory 
to infection  
 
The full ODEs for target cells, refractory cells and interferon are  

𝑑𝑇
𝑑𝑡 = −𝛽𝑉𝑇 − 𝜙𝐹𝑇 + 𝜌𝑅	 

𝑑𝑅
𝑑𝑡 = 𝜙𝐹𝑇 − 𝜌𝑅 

[S3] 
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𝑑𝐸
𝑑𝑡 = 𝛽𝑉𝑇 − 𝑘𝐸 
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 𝛿𝐼 
𝑑𝑉
𝑑𝑡 = 𝜋𝐼 − 𝑐𝑉 
𝑑𝐹
𝑑𝑡 = 𝑠𝐼 − 𝜇𝐹 

 
In this model, the impact of the innate immune response is to convert target cells into refractory 
cells at rate 𝜙𝐹𝑇, where 𝜙 is a rate constant. Refractory cells can become target cells again at rate 
𝜌. Interferon is produced and cleared at rates 𝑠 and 𝜇, respectively.  
 
To minimize the number of unknown parameters, we simplify the model by making the quasi-
steady-state assumption that the interferon dynamics are much faster than the dynamics of infected 
cells and assume that ()

(*
= 0. Thus 𝑠𝐼 = 𝜇𝐹 or 𝐹 = +

,
𝐼.  

 
Let Φ = 𝜙 +

,
 , so that the ODEs for the innate immunity model become 

𝑑𝑇
𝑑𝑡 = −𝛽𝑉𝑇 − Φ𝐼𝑇 + 𝜌𝑅	 

𝑑𝑅
𝑑𝑡 = Φ𝐼𝑇 − 𝜌𝑅 
𝑑𝐸
𝑑𝑡 = 𝛽𝑉𝑇 − 𝑘𝐸 
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 𝛿𝐼 
𝑑𝑉
𝑑𝑡 = 𝜋𝐼 − 𝑐𝑉 

 

[S4] 

 
b. Innate immune model – reducing infectivity 

The second version of the model considers that interferons may reduce infectivity, i.e., make cells 
less susceptible to infection. Again, we make the quasi-steady-state assumption that the interferon 
dynamics are much faster than the dynamics of infected cells and assume that 𝐹 is proportional to 
I. The ODEs for the model are 

𝑑𝑇
𝑑𝑡 = −

𝛽
1 + 𝛾𝐼 𝑉𝑇 

𝑑𝐸
𝑑𝑡 =

𝛽
1 + 𝛾𝐼 𝑉𝑇 − 𝑘𝐸 

𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 𝛿𝐼 
𝑑𝑉
𝑑𝑡 = 𝜋𝐼 − 𝑐𝑉 

 

[S5] 
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where 𝛾 is a constant representing the effect of innate response mediators such as type I 
interferon. 
 

c. Innate immune model – reducing virus production 
The third version of the model considers the potential impact of the innate response on reducing 
virus production from infected cells. For example, in the hepatitis C virus infection administration 
of type I interferon reduces viral RNA replication and viral production (10, 11). As above, we 
make the quasi-steady-state assumption that the interferon dynamics are much faster than the 
dynamics of infected cells and assume that 𝐹 is proportional to I. The ODEs for the model are 

𝑑𝑇
𝑑𝑡 = −𝛽𝑉𝑇 

𝑑𝐸
𝑑𝑡 = 𝛽𝑉𝑇 − 𝑘𝐸 
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − 𝛿𝐼 

𝑑𝑉
𝑑𝑡 =

𝜋
1 + 𝛾𝐼 𝐼 − 𝑐𝑉 

 

[S6] 

where 𝛾 is a constant representing the effect of innate response mediators such as interferon. 
 

4. Model fitting and parameter estimation  
Estimating time of infection 
To estimate the times of infection of individuals in the NBA dataset, we fit both the TCL model 
and the innate immune model to viral load measurements from each individual by minimizing the 
least-squared residual error between viral load measurements and the model predicted viral load 
on a logarithm scale. The best-estimates of the times of infection are reported in Table S1. 
 
Parameter estimation from all datasets 
We used a population approach, based on non-linear mixed effect modeling, to fit the data from 
all patients simultaneously, with each of the models. We fixed infection dates as estimated using 
that model (Table S1) for the NBA dataset and to the known infection dates of the German dataset. 
We allowed random effects on the fitted parameters.  
 
We analyzed the source of the dataset, i.e., the NBA data or the German data, as a categorical 
covariate for fitted parameters. We first tested the model by assuming all of the parameters covary 
with the covariate. We then exclude the parameter that has the lowest p-value by the Pearson's 
correlation test, which tests whether covariates should be removed from the model by Monolix. 
All estimations were performed using Monolix (Monolix Suite 2019R1, Antony, France: Lixoft 
SAS, 2019. lixoft.com/products/monolix/). 
 

5. Inferring the relationship between the number of infectious viruses and viral load  
To understand how the level of infectious viruses relates to viral load, we constructed and fit 
mathematical models to the three datasets. In the first dataset, ‘the Jaafar dataset’, Jaafar et al. 
measured the cycle threshold (Ct) values using RT-PCR and infectious virus positivity using cell 
culture assay from a total of 3790 RT-PCR positive samples (12). In the second dataset, ‘the 
Kohmer dataset’, Kohmer et al. reported Ct values and their corresponding viral loads and 
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infectious virus positivity for a total of 75 RT-PCR positive samples (13). In the third dataset, ‘the 
Jones dataset’, Jones et al. analyzed 631 RT-PCR positive samples by cell culture. Below, we first 
show the calculation of viral loads from the Ct values reported in Jaafar et al., and then show the 
derivation and model fits to the three datasets. 
 
Relationship between viral load and Ct values reported in Jaafar et al. (12) 
First, the viral load, V, measured as RNA copies in a sample is related to cycle threshold values, 
C, as: 

𝑉 = 𝑎 exp(−𝑏𝐶)	  [S7] 
 

where the constants a and b are determined by the RT-PCR assay used. Jaafar et al. measured the 
Ct values using the LightCycler 480 instrument (Roche Diagnostics) (12). According to a recent 
report (14), 𝑎 = 1.441 × 10"- and 𝑏 = 0.685, for this instrument. Thus, 
 

𝑉 = 1.441 × 10"-𝑒.!.0123     [S8] 
 

Note that the exponential term, 𝑒.!.0123 , can be written as 1.98.3 , where the base of this power 
term is 1.98, i.e., very close to 2, the factor one would expect viral RNA to increase by during each 
PCR cycle if the PCR amplification is perfect. 
 
Relationship between viral load and infectious viruses 
We assume the number of infectious viruses that was in the sample for cell culture experiment to 
be a random variable, Y, that follows a Poisson distribution. We consider three alternative models 
describing how the mean number of infectious viruses in a sample, 𝑉456 = 𝐸(𝑌), is related to viral 
load measured by qPCR: the ‘linear’ model, the ‘power-law’ model and the ‘saturation’ model: 
 

1. The linear model 
We first assume that the mean of the infectious virus in a sample, 𝑉456, is proportional to the viral 
load, V, in the sample, i.e., 

𝑉456 = 𝐸(𝑌) = 𝐴𝑉   [S9] 
 

This is the simplest model describing the relationship between infectious viruses and viral load. 
However, as we will show below, the model does not fit the three datasets. Therefore, we 
developed two additional models to describe this relationship. 
 

2. The power-law model 
In this model, we assume that the mean of the infectious virus in a sample, 𝑉456, is related to the 
viral load, V, by a power-law function 
 

𝑉456 = 𝐸(𝑌) = 𝐵𝑉7   [S10] 
where B and h are constants. 
 

3. The saturation model 
In this model, we assume that the mean of the infectious virus in a sample, 𝑉456, is related to the 
viral load, V, by a Hill function 
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𝑉456 = 𝐸(𝑌) = 𝑉8
9!

9!:;"!
  [S11] 

 
where 𝑉8 and 𝐾8 are constants. 
 
Probability of cell culture positivity 
We now calculate the probability of cell culture positivity for the three models in Eqs. [S9]-[S11]. 
We assume the number of infectious viruses in the sample, Y, is a random variable that follows a 
Poisson distribution with mean E[Y]. If each infectious virus has a probability 𝜚  to establish 
infection such that the cell culture becomes positive, then the number of viruses that successfully 
establish an infection in cell culture is Poisson with parameter 𝜆 = 𝐸(𝑌)𝜚 = 𝑉456𝜚. Thus, the 
probability of one or more viruses successfully infecting the culture so that it tests positive is 
 

𝑝<=+4*4>? = 1 − exp	(−𝜆)=1 − exp	(−𝑉456𝜚)  [S12] 
 

Using the subscript i to denotes the model for 𝑉456 , for the linear model, we substitute the 
expression for 𝑉456 in Eq. [S9] into Eq. [S12], and get 
 

𝑝<=+4*4>?,"(𝑉) = 1 − exp(−𝐴𝑉)  [S13] 
where 𝐷 = 𝐴𝜚. 
 
For the power-law model, we substitute the expression in Eq. [S10] into Eq. [S12], and get 
 

𝑝<=+4*4>?,@(𝑉) = 1 − exp(−𝐺𝑉7)   [S14] 
where 𝐺 = 𝐵𝜚.  
 
For the saturation model, we substitute Eq. [S11] into Eq. [S12], and get 
 

𝑝<=+4*4>?,A(𝑉) = 1 − exp V−𝐽 9!

9!:;"!
X  [S15] 

where 𝐽 = 𝑉8BC𝜚.  
 
Model fitting 
Jaafar et al. reported the total number of samples and the number of samples that were positive in 
cell culture for each Ct value (ranging between 11 and 37) (12). We can calculate the likelihood 
of observing these numbers given the probabilities of cell culture positivity as defined in Eqs.  
[S13]-[S15]. Then the probability of observing the 𝑚D positive cell cultures in a total of 𝑛D cultures 
where j denotes the jth Ct value of the sample put into culture, j= 11, 12…,37, is  
 

𝑝4,D = V
𝑛D
𝑚D
X 𝑝<=+4*4>?,4(𝑉D)8#[1 − 𝑝<=+4*4>?,4(𝑉D)\

5#.8# [S16] 
 

where 𝑉D is the viral load corresponding to the jth Ct value. 
 
The negative log-likelihood (NLL) of the ith model given all the data in Jaafar et al. is then given 
by 



 
 

8 

𝑁𝐿𝐿4 = −∑ log 𝑝4,DD ,				𝑖 = 1,2,3 [S17] 
 
In the Kohmer dataset and the Jones dataset, for each sample, the viral load and the cell culture 
positivity were reported. We calculate the likelihood of the kth observation being positive or 
negative as 

𝑝4,$ = f
𝑝<=+4*4>?,4(𝑉$),

1 − 𝑝<=+4*4>?,4(𝑉$),
𝑖𝑓	𝑡ℎ𝑒	𝑘𝑡ℎ	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒		
𝑖𝑓	𝑡ℎ𝑒	𝑘𝑡ℎ	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  [S18] 

 
where 𝑉$ is the viral load of the kth observation. 
 
The negative log-likelihood (NLL) of the ith model given the Kohmer dataset is then given by 

𝑁𝐿𝐿4 = −∑ log 𝑝4,$$ ,				𝑖 = 1,2,3 [S19] 
 
Model comparison  
To compare models, we compute the AIC scores as 

𝐴𝐼𝐶4 = 2𝑘4 + 2𝑁𝐿𝐿4 ,				𝑖 = 1,2,3  [S20] 
 

where 𝑘4 is the number of estimated parameters of the ith model, i.e., 𝑘" = 1 (parameter A), 𝑘@ =
2 (parameters D and h) and 𝑘A = 3 (parameters G, h and Km). 
 
Results 
We fitted the three models to the three datasets by minimizing the NLLs described in Eqs. [S17] 
and [S19]. According to the AIC scores, with the lower the score the better the model, the 
saturation model is the best model to describe the Jaafar dataset (Table S5). The power-law model 
is the best model to describe both the Jones dataset and the Kohmer dataset (Table S5). The 
saturation model only had slightly higher AIC scores and thus also has considerable support (15). 
 
Interestingly, the estimated parameter values using the saturation model are very similar across the 
two datasets (Table S6), emphasizing the reliability of these estimates. For the saturation model 
iin the main text, we use ℎ = 0.51, 𝐾" = 8.8 × 10# RNA copies/ml as estimated from the Jaafar 
dataset. For the power-law model in the main text, we use ℎ = 0.53 as estimated from the Jones 
dataset. 
  



 
 

9 

SI References: 
1. P. Baccam, C. Beauchemin, C. A. Macken, F. G. Hayden, A. S. Perelson, Kinetics of 

influenza A virus infection in humans. J Virol 80, 7590-7599 (2006). 
2. Y. J. Hou et al., SARS-CoV-2 reverse genetics reveals a variable infection gradient in the 

respiratory tract. Cell 182, 429-446 e414 (2020). 
3. H. Miao, X. Xia, A. S. Perelson, H. Wu, On identifiability of nonlinear ODE models and 

applications in viral dynamics. SIAM Rev Soc Ind Appl Math 53, 3-39 (2011). 
4. R. Wolfel et al., Virological assessment of hospitalized patients with COVID-2019. 

Nature 581, 465-469 (2020). 
5. A. P. Smith, D. J. Moquin, V. Bernhauerova, A. M. Smith, Influenza Virus Infection 

Model With Density Dependence Supports Biphasic Viral Decay. Front Microbiol 9, 
1554 (2018). 

6. K. A. Pawelek et al., Modeling within-host dynamics of influenza virus infection 
including immune responses. PLoS Comput Biol 8, e1002588 (2012). 

7. A. Gonçalves et al., Timing of antiviral treatment initiation is critical to reduce SARS-
CoV-2 viral load. CPT: Pharmacometrics & Systems Pharmacology 
10.1101/2020.04.04.20047886, DOI: 10.1101/2020.1104.1104.20047886 (2020). 

8. N. Neant et al., Modeling SARS-CoV-2 viral kinetics and association with mortality in 
hospitalized patients from the French COVID cohort. Proc Natl Acad Sci U S A 118, 
e2017962118 (2021). 

9. N. S. Ogando et al., SARS-coronavirus-2 replication in Vero E6 cells: replication 
kinetics, rapid adaptation and cytopathology. J Gen Virol 10.1099/jgv.0.001453, 
2020.2004.2020.049924 (2020). 

10. H. Dahari, B. Sainz, Jr., A. S. Perelson, S. L. Uprichard, Modeling subgenomic hepatitis 
C virus RNA kinetics during treatment with alpha interferon. J Virol 83, 6383-6390 
(2009). 

11. A. U. Neumann et al., Hepatitis C viral dynamics in vivo and the antiviral efficacy of 
interferon-alpha therapy. Science 282, 103-107 (1998). 

12. R. Jaafar et al., Correlation Between 3790 Quantitative Polymerase Chain Reaction-
Positives Samples and Positive Cell Cultures, Including 1941 Severe Acute Respiratory 
Syndrome Coronavirus 2 Isolates. Clin Infect Dis 72, e921 (2021). 

13. N. Kohmer et al., The Comparative Clinical Performance of Four SARS-CoV-2 Rapid 
Antigen Tests and Their Correlation to Infectivity In Vitro. J Clin Med 10 (2021). 

14. T. C. Jones et al., An analysis of SARS-CoV-2 viral load by patient age. medRxiv 
10.1101/2020.06.08.20125484, 2020.2006.2008.20125484 (2020). 

15. K. P. Burnham, D. R. Anderson, Model Selection and Multimodel Inference: A Practical 
Information-Theoretic Approach (Springer, ed. 2nd Edition, 2002), pp. 514. 

16. M. M. Bohmer et al., Investigation of a COVID-19 outbreak in Germany resulting from a 
single travel-associated primary case: a case series. Lancet Infect Dis 20, 920-928 (2020). 

17. S. M. Kissler et al., SARS-CoV-2 viral dynamics in acute infections. medRxiv 
10.1101/2020.10.21.20217042 (2021). 

18. T. C. Jones et al., Estimating infectiousness throughout SARS-CoV-2 infection course. 
Science 10.1126/science.abi5273 (2021). 

 
  



 
 

10 

Supplementary Figures 
 

 
Figure S1. The individual infectiousness profile (blue lines) predicted by the saturation 
model for individuals in the Germany study (A) and the NBA study (B). Parameters used are 
the same as in Fig. 2D. In panel A, the expected serial interval (SI), the fraction of presymptomatic 
transmission and the infectious period are reported. In panel B, only the expected serial interval 
(SI) and the infectious period are reported., because the symptom onset dates for these individuals 
are unknown. Horizontal dashed lines denote the threshold we defined (i.e. 0.02) above which a 
person becomes infectious. Vertical lines in panel A denote the time of symptom onset as reported 
in Ref. (16). 
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Figure S2. The individual infectiousness profile (blue lines) predicted by the power-law 
model for individuals in the Germany study (A) and the NBA study (B). Parameters used are 
the same as in Fig. 2E. Other notations are the same as Fig. S1. 
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Figure S3. Predictions of the cumulative infectiousness of individuals (dots) using the 
saturation model (Eqn. 1 of the main text) and the power-law model (Eqn. 2 of the main text). 
The black line denotes the line of y=x. 
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Figure S4. The infectiousness profile (A) predicted by the infectious model assuming a linear 
function, and the relationship between the duration of the incubation period (x-axis) and the 
presymptomatic area under the infectiousness curve estimated assuming a linear function 
(B).  
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Figure S5. Consistency between the area under the logarithm of the viral load curve, i.e. 
AUClog, and the area under the infectiousness curve (AUC infectiousness). (A) Regression of 
and correlations between the area under the curve of infectiousness from the probability model, 
p(t), and AUClog for all the 17 individuals studied. (B) Regression of and correlations between 
the percentage of presymptomatic transmission predicted by AUClog calculated from the model 
fit and by the AUC of the infectiousness curve for the 8 individuals in the German study.  
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Figure S6. Probability of infection detection for the RT-PCR test and the antigen test versus 
time since infection. (A) Viral load evolution for a representative individual (patient 4 in the 
German dataset). (B) Probability of detection with a RT PCR test and (C) with an antigen 
test. These probabilities are calculated from the viral load versus time (e.g., in (A)), but the 
probabilities are plotted as time since infection for visualization. 
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Supplementary Tables 

 
 
Table S1. Estimated the time of infection for the individuals in the NBA dataset. We fitted 
both the TCL and the innate immune model to the viral load data. The maximum likelihoods (as -
2*log-likelihood, i.e. -2*LL) are reported.  

Model -2*LL 
Estimated time of infection (days)  

prior to the measured peak viral load 
737 755 942 1273 1740 2349 2463 3485 3491 

TCL 227.4 6.9 6.2 5.6 6.0 6.2 9.6 6.5 9.7 7.1 
Innate 

Immune 221.3 6.7 5.8 5.1 5.4 5.8 9.2 6.0 9.2 6.7 

 
 
Table S2. Model comparison using AIC scores. The models considered are the target cell limited 
(TCL) model and three versions of the innate immunity model. The best model, i.e. the model with 
the lowest AIC score is the model assuming that assuming interferon signaling turns target cells 
into refractory cells, i.e the innate immunity – refractory cell model. For this model, we further 
tested if the source of dataset covaries with fitted parameters of the model. We fitted the model 
first assuming that all parameters covary with the covariate. We then exclude the parameter that 
has the lowest p-value by the Pearson's correlation test, which tests whether covariates should be 
removed from the model by Monolix. The models with the covariate are not significantly better 
than the model without the covariate, and thus there is no significant statistical evidence that the 
two datasets differ in their parameter values. 

Model  
Parameters that covary with 

the source of data  
-2 log-likelihood AIC 

TCL none 479.1 495.1 
Innate Immunity – 
reducing infectivity 

none 
479.1 499.1 

Innate Immunity – 
reducing virus 

production 

none 

478.1 498.1 

Innate Immunity – 
refractory cells 

none 447.1 472.0 
𝛽, 𝛿, 𝜋,Φ, 𝜌 442 480.0 
𝛽, 𝛿, 𝜋,Φ 442.2 478.2 
𝛽, 𝛿, 𝜋 442.8 476.8 
	𝛽, 𝛿 442.9 472.9 
	𝛽 443.2 472.2 
		𝛿 444.6 472.6 
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Table S3. Estimated individual parameter values. The means and standard deviations (SD) are 
calculated in Monolix assuming that individual parameters follow log-normal distributions. 

ID* 
𝜷** 

(10-8 mL/day) 
𝜹 

(/day) 
𝝅 

(/day) 
𝚽** 

(10-6 mL/day) 
𝝆 

(/day) 
R0,within 

737 1.58 1.8 37.5 0.7 0.004 2.6 
755 4.26 1.4 50.9 0.2 0.004 12.7 
942 5.37 1.8 50.9 2.4 0.004 12 
1273 2.92 1.8 44.5 0.4 0.004 5.7 
1740 1.83 2 36.7 15.6 0.004 2.7 
2349 5.12 1.4 51.4 1.8 0.004 14.9 
2463 2.94 1.8 45.8 0.3 0.004 5.9 
3485 2.1 1.3 43 0.4 0.005 5.4 
3491 1.83 1.7 40.3 0.4 0.004 3.5 

1 5.29 1.8 50.2 5.9 0.005 12 
2 3.59 2.1 45.9 0.6 0.004 6.2 
3 5.16 1.8 48.9 20.2 0.004 11 
4 3.94 2.2 47 1 0.004 6.7 
7 3.08 2 44.5 0.4 0.004 5.5 
8 3.74 1.6 46.9 1.5 0.005 9 
10 1.97 1.3 40.5 1.5 0.005 4.7 
14 2.76 1.8 42.3 5.1 0.004 5.1 

Mean 3.38 1.7 45.1 3.4 0.004 7.4 
SD 1.31 0.26 4.61 5.74 0.0001 3.79 

* The first 9 IDs are according to the IDs reported in Ref. (17) and the rest of IDs are according to the IDs 
reported in Ref. (16). 
** The unit for 𝛽 and Φ are mL/day for the NBA dataset and swab/day for the German dataset. 
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Table S4. Sensitivity of estimated parameter values against variations in the values of fixed 
parameters in the innate immune model.  

Model 
assumption* 

𝜷**  
(10-8 mL 

/day) 

𝜹 
(/day) 

𝝅  
(/day) 

𝚽**  
(10-6 mL /day) 

𝝆 
(/day) 

R0,within*** AIC 
mean std 

Baseline 
Model 3.2 1.7 45.3 1.3 0.004 7.4 3.8 472.1 
𝑬𝟎 = 𝟓 cells 5.3 1.8 25 0.4 0.007 6.1 2.7 471.4 
𝑬𝟎 = 𝟏𝟎 
cells 4.5 1.9 27.7 0.4 0.007 5.8 2.4 472.3 
𝒄 = 𝟓/day 2.6 1.8 34.8 1.8 0.004 8.9 5 472.3 
𝒄 = 𝟐𝟎/day 8.9 1.5 31.4 0.3 0.003 8.3 3.8 470.9 
𝒌 = 𝟑/day 5.2 1.9 35.2 0.7 0.004 8.7 4.4 471.5 
𝒌 = 𝟔/day 4 1.6 31.7 0.7 0.003 7 3.2 471.8 

* In each model, the fixed parameter values are set to the same values as in the baseline model except for 
the parameters stated. 
** The unit for 𝛽 and Φ are mL/day for the NBA dataset and swab/day for the German dataset. 
** The mean and standard deviation (std) of R0,within are calculated from the estimated values of R0,within 
from estimated individual parameters from each individual.  
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Table S5. AIC scores of three models to the datasets from Jaafar et al. (12), Jones et al. (18)  
and Kohmer et al. (13)). 
Model AIC  

Jaafar et al. Jones et al. Kohmer et al. 
Linear 8171.1 371.8 76.2 
Power law 282.0 298.6 58.8 
Saturation 137.0 298.7 60.8 

 
 
Table S6. Best-fit parameter values of the three models, i.e. the linear model, the power-law 
model and the saturation model, describing data from Jaafar et al. (12), Jones et al. (18)  and 
Kohmer et al. (13)). 
Model Parameter Best-fit parameter values and AIC  

Jaafar et al. Jones et al. Kohmer et al. 
Linear D 3.8×10-9  2.4×10-9 2.6×10-6 

 

Power-law  G 0.018 2.3×10-5 0.003 
h 0.24 0.53 0.45 

 

 
Saturation 

J 2.3 2.1 3.7 
h 0.51 0.69 0.62 
Km 8.9×106 copies/ml 6.6×108 copies 1.0×106 copies/ml 

 
 


