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Abstract 1 

Cardiovascular diseases are the leading cause of premature death and disability worldwide, with both 2 

genetic and environmental determinants. While genome-wide association studies have identified 3 

multiple genetic loci associated with cardiovascular diseases, exact genes driving these associations 4 

remain mostly uncovered. Due to Finland’s population history, many deleterious and high-impact 5 

variants are enriched in the Finnish population giving a possibility to find genetic associations for 6 

protein-truncating variants that likely tie the association to a gene and that would not be detected 7 

elsewhere.  8 

 9 

In FinnGen, a large Finnish biobank study, we identified an inframe insertion rs534125149 in MFGE8 10 

to have protective effect against coronary atherosclerosis (OR = 0.75, p = 2.63×10-16) and related 11 

endpoints. This variant is highly enriched in Finland (70-fold compared to Non-Finnish Europeans) 12 

with allele frequency of 3% in Finland. The protective association was replicated in meta-analysis of 13 

biobanks of Japan and Estonian (OR = 0.75, p = 5.41×10-7).  14 

 15 

Additionally, we identified a splice acceptor variant rs201988637 in MFGE8, independent of the 16 

rs534125149 and similarly protective in relation to coronary atherosclerosis (OR = 0.72, p = 7.94×10-17 

06) and related endpoints, with no significant risk-increasing associations. The protein-truncating 18 

variant was also associated with lower pulse pressure, pointing towards a function of MFGE8 in 19 

arterial stiffness and aging also in humans in addition to previous evidence in mice. In conclusion, 20 

our results show that inhibiting the production of lactadherin could lower the risk for coronary heart 21 

disease substantially. 22 

 23 

Keywords: coronary atherosclerosis, myocardial infarction, loss-of-function, MFGE8  24 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.23.21259381doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259381


 3 

Introduction 25 

Cardiovascular disease (CVD) is the leading cause of premature death and disability worldwide, with 26 

both genetic and environmental determinants1, 2. The most common cardiovascular disease is 27 

coronary heart disease (CHD), including coronary atherosclerosis and myocardial infarction, among 28 

others. While genome-wide association studies (GWAS) have identified multiple genetic loci 29 

associated with cardiovascular diseases, exact genes driving these associations remain mostly 30 

uncovered3.  31 

 32 

Due to Finland’s population history, many deleterious and high-impact variants are enriched in the 33 

Finnish population giving a possibility to find genetic associations that would not be detected 34 

elsewhere4. Many studies have reported high-impact loss-of-function (LoF) variants associated   with 35 

risk factors for CVD, such as blood lipid levels, thus impacting on the CVD risk remarkably. For 36 

example, high-impact LoF variants in genes LPA4, PCSK95, APOC36 and ANGPTL4 7 have been 37 

shown to be associated with Lipoprotein(a), LDL-cholesterol (LDL-C) or triglyceride levels and 38 

lowering the CVD risk.  39 

 40 

Besides blood lipids, other risk factors for CVD include hypertension, smoking and the metabolic 41 

syndrome cluster components. The mechanism that links these risk factors to atherogenesis, however, 42 

remains incompletely elucidated. Many, if not all, of these risk factors, however, also participate in 43 

the activation of inflammatory pathways, and inflammation in turn can alter the function of artery 44 

wall cells in a manner that drives atherosclerosis8. 45 

 46 

Using data from a sizeable Finnish biobank study FinnGen (n = 260 405), we identified an inframe 47 

insertion rs534125149 in MFGE8 to protect against coronary atherosclerosis and related endpoints, 48 

such as myocardial infarction (MI). This variant is highly enriched in Finland, 70- fold compared to 49 
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Non-Finnish Europeans (NFE) in the gnomAD genome reference database9 with AF of 3% in Finland. 50 

This association was also replicated in BioBank Japan (BBJ) and Estonian Biobank (EstBB). We also 51 

identified a splice acceptor variant rs201988637 in the same gene, which is also protective against 52 

coronary atherosclerosis-related endpoints, indicating that rs534125149 act as a loss-of-function 53 

variant in MFGE8. Associations of functional variants in MFGE8 were specific to coronary 54 

atherosclerosis-related endpoints, and they did not significantly (p < 1.75×10-5) increase risk for any 55 

other disease, highlighting MFGE8 as a potential drug target candidate.  56 

 57 

Material and methods 58 

Study cohort and data 59 

We studied total of 2 861 disease endpoints in Finnish biobank study FinnGen (n = 260 405) (Table 60 

1). FinnGen (https://www.finngen.fi/en) is a large biobank study that aims to genotype 500 000 Finns 61 

and combine this data with longitudinal registry data, including national hospital discharge, death, 62 

and medication reimbursement registries, using unique national personal identification numbers. 63 

FinnGen includes prospective epidemiological and disease-based cohorts as well as hospital biobank 64 

samples. 65 

 66 

Definition of disease endpoints 67 

All the 2 861 disease-endpoint analysed in FinnGen have been defined based on registry linkage to 68 

national hospital discharge, death, and medication reimbursement registries. Diagnoses are based on 69 

International Classification of Diseases (ICD) codes and have been harmonized over ICD codes 8, 9 70 

and 10. More detailed lists of the ICD codes used for the disease-endpoints myocardial infarction and 71 

coronary atherosclerosis, which are discussed more in this study, are in Supplementary Material. A 72 
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complete list of endpoints analysed, and their definitions is available at 73 

https://www.finngen.fi/en/researchers/clinical-endpoints. 74 

 75 

Table 1: Basic characteristics of the study cohort. 76 

 All Females Males 

N (%) 260 405 147 061 (56.47 %) 113 344 (43.53 %) 

Age (mean (sd)) 53.15 (17.55) 51.84 (17.71) 54.85 (17.19) 

BMI (mean (sd)) a 27.29 (5.36) 27.21 (5.83) 27.38 (4.76) 

Statin use (N (%)) 86 466 (33.2 %) 40 422 (27.48 %) 46 044 (40.62 %) 

Hypertension (N (%)) 68 005 (26.11 %) 33 420 (22.72 %) 34 585 (30.51 %) 

Smoking (N (%)) b 1 733 (1.07 %) 901 (0.96 %) 832 (1.22 %) 

Coronary atherosclerosis 28 598 (11.38 %) 9 252 (6.87 %) 19 346 (17.86 %) 

Myocardial infarction 14 305 (6.04 %) 3 958 (2.87 %) 10 347 (10.42 %) 

 77 
a BMI is available only from 178 966 individuals 78 
b Smoking information is available only from 98 654 individuals 79 
 80 

Genotyping and imputation 81 

FinnGen samples were genotyped with multiple Illumina and Affymetrix arrays (Thermo Fisher 82 

Scientific, Santa Clara, CA, USA). Genotype calls were made with GenCall and zCall algorithms for 83 

Illumina and AxiomGT1 algorithm for Affymetrix chip genotyping data batchwise. Genotyping data 84 

produced with previous chip platforms were lifted over to build version 38 (GRCh38/hg38) following 85 

the protocol described here: dx.doi.org/10.17504/protocols.io.nqtddwn. Samples with sex 86 

discrepancies, high genotype missingness (> 5%), excess heterozygosity (±4SD) and non-Finnish 87 

ancestry were removed. Variants with high missingness (> 2%), deviation from Hardy–Weinberg 88 

equilibrium (P < 1×10-6) and low minor allele count (MAC < 3) were removed. 89 
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 90 

Pre-phasing of genotyped data was performed with Eagle 2.3.5 91 

(https://data.broadinstitute.org/alkesgroup/Eagle/) with the default parameters, except the number of 92 

conditioning haplotypes was set to 20,000. Imputation of the genotypes was carried out by using the 93 

population-specific Sequencing Initiative Suomi (SISu) v3 imputation reference panel with Beagle 94 

4.1 (version 08Jun17.d8b, https://faculty.washington.edu/browning/beagle/b4_1.html) as described 95 

in the following protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. SISu v3 imputation reference 96 

panel was developed using the high-coverage (25–30x) whole-genome sequencing data generated at 97 

the Broad Institute of MIT and Harvard and at the McDonnell Genome Institute at Washington 98 

University, USA; and jointly processed at the Broad Institute. Variant callset was produced with 99 

Genomic Analysis Toolkit (GATK) HaplotypeCaller algorithm by following GATK best practices 100 

for variant calling. Genotype-, sample- and variant-wise quality control was applied in an iterative 101 

manner by using the Hail framework v0.2. The resulting high-quality WGS data for 3 775 individuals 102 

were phased with Eagle 2.3.5 as described above. As a post-imputation quality control, variants with 103 

INFO score < 0.7 were excluded. 104 

 105 

Association testing 106 

A total of 260 405 samples from FinnGen Data Freeze 6 with 2 861 disease endpoints were analyzed 107 

using Scalable and Accurate Implementation of Generalized mixed model (SAIGE), which uses 108 

saddlepoint approximation (SPA) to calibrate unbalanced case-control ratios10. Models were adjusted 109 

for age, sex, genotyping batch and first ten principal components. All variants reaching genome-wide 110 

significance p-value threshold of 5×10-8 are considered as genome-wide significant (GWS), and all 111 

disease- endpoints reaching multiple testing corrected (for the number of endpoints tested = 2 861) 112 

p-value threshold of 0.05/2 861 = 1.75×10-5 were considered as phenome-wide significant (PWS).  113 

 114 
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Independent GWS loci for atherosclerosis were determined as adding ±0.5Mb around each variant 115 

that reach the genome-wide significance threshold, overlapping regions were merged. The NHGRI-116 

EBI GWAS Catalog11 was used for assessing the novelty of the independent loci with any CVD- 117 

related endpoint or traditional risk factor for CVD, such as blood lipids, BMI and blood pressure. All 118 

novel loci for CVD were fine-mapped using FINEMAP12 to determine the credible sets in each signal. 119 

 120 

In Corogene13 (n = 5 300), a sub-cohort of FinnGen where participants have been collected as patients 121 

with coronary artery disease CAD) and other related heart diseases, we tested the association of 122 

rs534125149 with sub-types of coronary heart disease (acute coronary syndrome, stable coronary 123 

heart disease (CHD) and other heart attacks). The acute coronary syndrome was further divided into 124 

unstable Angina pectoris, non-ST segment elevation myocardial infarction (NSTEMI) and ST- 125 

segment elevation myocardial infarction (STEMI). Associations were tested by calculating risk ratios 126 

(RR) for carriers vs. non-carriers of rs534125149 using non-CHD group always as controls and 127 

excluding the other tested groups from the analysis. P-values were calculated using c2- test, and p-128 

values < 0.05 were considered significant. 129 

 130 

Survival analysis 131 
 132 
 133 
Survival analysis for coronary atherosclerosis and myocardial was performed using GATE14, which 134 

accounts for both population structure and sample relatedness and controls type I error rates even for 135 

phenotypes with extremely heavy censoring. GATE transforms the likelihood of a multivariate 136 

Gaussian frailty model to a modified Poisson generalized linear mixed model (GLMM15, 16), and to 137 

obtain well-calibrated p-values for heavily censored phenotypes, GATE uses the SPA to estimate the 138 

null distribution of the score statistic. For coronary atherosclerosis and myocardial infarction, survival 139 

time from birth to first diagnose was analyzed for both rs534125149 and rs201988637. Models were 140 
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 8 

adjusted for age, sex, genotyping batch and first ten principal components, similarly to original 141 

GWAS analyses. 142 

 143 

Replication and biomarker analyses 144 
 145 
We tested the association of the two MFGE8 variants (rs534125149 and rs201988637) with 146 

quantitative measurements of cardiometabolic relevance or known risk factors for CVD in two sub-147 

cohorts of FinnGen, the population-based national FINRISK study17 (n = 26 717) and GeneRISK18 (n 148 

= 7 239). The associations were tested across 66 quantitative measurements of cardiometabolic 149 

relevance in FINRISK, and for 158 sub-lipid species in GeneRISK. In Young Finns Study (YFS)19 150 

cohort (n = 1 934), we tested the association of the two variants with three measurements of arterial 151 

relevance (carotid artery distensibility, pulse wave velocity and pulse pressure).  152 

 153 

In addition to Finnish cohorts described above, we tested the association of the two variants in 154 

Estonian Biobank data (EstBB)20, 21, BioBank Japan (BBJ) 22, 23 and UK Biobank (UKBB)24. In EstBB 155 

(n = 51 388-137 722) we tested the associations of both variants with body mass index (BMI), systolic 156 

and diastolic blood pressure (SBP and DBP) and pulse pressure (PP), in BBJ in we tested the 157 

association of rs534125149 with 17 known quantitative risk factors for CVD and lastly, in the UKBB 158 

we tested the association of rs201988637 with 79 measurements of cardiometabolic relevance. In all 159 

of these biomarker analyses, a linear regression model adjusted for age and sex was used and for all 160 

quantitative risk factors rank-based inverse normal transformation was applied prior to analysis. 161 

Bonferroni corrected p-value threshold for the number of phenotypes tested was used to assess the 162 

significance of resulting associations in each cohort.  163 

 164 

For biomarkers that showed significant association in any of the cohorts, we performed a meta-165 

analysis across all cohorts the measurement was available. Meta-analysis was performed using 166 
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inverse-variance weighted fixed-effects meta-analysis method25, 26.  Bonferroni corrected p-value for 167 

number of traits tested (n = 2) was used to assess the significance of resulting associations in meta-168 

analysis. 169 

 170 

Identifying causal variants 171 

We used FINEMAP12 on the GWAS summary statistics to identify causal variants underlying the 172 

associations for MI (strict definition, i.e., only primary diagnoses accepted) and coronary 173 

atherosclerosis. FINEMAP analyses were restricted to a ±1.5Mb region around the rs534125149. We 174 

assessed variants in the top 95% credible sets, i.e., the sets of variants encompassing at least 95% of 175 

the probability of being causal (causal probability) within each causal signal in the genomic region. 176 

Credible sets were filtered if minimum linkage disequilibrium (LD, r2) between the variants in the 177 

credible set was < 0.1, i.e., not clearly representing one signal.  178 

 179 

Results 180 

GWAS results for Coronary Atherosclerosis 181 

We identified a total of 2 302 variants associated (GWS, p < 5×10-8) with coronary atherosclerosis 182 

(detailed description of the definition of the endpoint is in Supplementary Material). These variants 183 

were located in 38 distinct genetic loci (a minimum of 0.5 Mb distance from each other; Figure 1). 184 

Out of the 38 GWS loci, four (within or near genes MFGE8, TMEM200A, PRG3 and FHL1) were 185 

novel for any CVD-related endpoints or risk factor for CVD compared to the GWAS Catalog11 186 

[https://www.ebi.ac.uk/gwas/] (Supplementary Table 1). Lead variants in these novel loci and their 187 

characteristics are listed in Table 2 and locus zoom plots for each of the loci are in Supplementary 188 

Figure 1.  189 

 190 
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Among the three novel loci for coronary atherosclerosis, the locus near MFGE8 had the strongest 191 

association (p-value = 2.63×10-16 for top variant rs534125149). The lead variant is an inframe 192 

insertion located in the sixth exon in the MFGE8 gene (Supplementary Figure 2) and it is highly 193 

enriched in the Finnish population compared to NFSEEs (Non-Finnish, Estonian or Swedish 194 

Europeans). Interestingly, MFGE8 is mainly expressed in coronary and tibial arteries according to 195 

data from GTEx v8 (Supplementary Figure 3). 196 

 197 

 198 
Figure 1: GWAS results for coronary atherosclerosis in FinnGen. Total number of independent 199 

genome-wide significant associations (GWS; p < 5×10-8) is 38, the lead variant in each marked with 200 

diamonds. Four novel associations for CVD- related phenotypes are highlighted with ±750 Mb 201 

around the lead variant in the region as red and the lead variant marked with red diamond. 202 

 203 

In addition to MFGE8, we identified three additional novel loci to be associated with coronary 204 

atherosclerosis, TMT200A, PRG3 and FHL1 being the nearest genes of the lead variants. TMT200A 205 

and PRG3 loci had one non-coding low-frequency variant reaching the genome-wide significance 206 

threshold, and FHL1 had 11. All variants in the credible sets of all these associations were either 207 
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 11 

intergenic or intronic variants and had no reported significant GWAS associations with any trait in 208 

the GWAS Catalog or significant eQTL associations in GTEx. The one variant (rs118042209) in the 209 

credible set of TMEM200A locus was associated with multiple coronary atherosclerosis related 210 

endpoints in FinnGen, including coronary atherosclerosis, ischemic heart disease and angina pectoris, 211 

whereas the lead variant in the PRG3 locus was associated with several cardiomyopathy related 212 

endpoints. All variants in the credible set of FHL1 were associated with multiple coronary 213 

atherosclerosis and related endpoints in FinnGen, including angina pectoris and ischemic heart 214 

disease. TMEM200A have been reported to be associated with ten traits (including height and trauma 215 

exposure) and PRG3 with two traits (eosinophil count and eosinophil percentage of white cells) in 216 

the GWAS Catalog. FHL1 gene had no reported associations in GWAS Catalog.  217 

 218 

Table 2: Lead variants in novel loci associated with coronary atherosclerosis.  219 

Lead variant 
chrom:pos:ref_alt 

(rsid) 

Most severe 
consequence 

Nearest 
gene 

FIN 
enrichment 

(NFE) 
AF OR (P-value) Info 

# cs 
(Post-

pr) 

# coding 
in cs(s) 

chr15:88901702:C_CTGT 
(rs534125149) 

Inframe 
insertion MFGE8 70.59 0.029 0.75 (2.60×10-16) 0.99 2 

(0.705) 1 

chr6:130483492:A_G 
(rs118042209) 

Intergenic 
variant TMEM200A 0.87 0.010 0.7 (1.90×10-9) 0.91 1 

(0.904) 0 

chr11:57380633:A:G 
(rs764568652) Intron variant PRG3 - a 0.0003 7.72 (4.10×10-8) 0.89 1 

(0.583) 0 

chrX:136194941:C_G 
(rs5974585) Intron variant FHL1 1.25 0.49 0.95 (2.55×10-08) 0.99 1 

(0.692) 0 

 220 

a Variant not present in NFE in gnomAD  221 

 222 

In the PRG3 locus the lead variant is 40.9 kb away from a variant (chr11:57340143:G:A 223 

(rs11603691),  the p-value for coronary atherosclerosis risk = 0.0269) which has previously been 224 

reported to be associated with HDL- cholesterol (HDL-C). However, our association is independent 225 
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of the previously reported variant rs11603691 (p-value for rs764568652 in a conditional analysis = 226 

4.36×10-08) 227 

 228 
Replication and phenome-wide association results for rs534125149 229 

We observed a highly protective association for the Finnish enriched inframe insertion rs534125149 230 

in the MFGE8 gene and coronary atherosclerosis related endpoints, including coronary 231 

atherosclerosis (OR = 0.72 [0.63-0.83], p = 7.94×10-06) and myocardial infarction (MI) (OR = 0.69 232 

[0.58-0.83], p = 9.62×10-05) (Figure 2). In total, this variant had PWS significant protective effect 233 

on 14 disease endpoints, all related to coronary atherosclerosis. The majority of these disease 234 

endpoints are highly overlapping and representing major coronary heart disease (CHD) event. For 235 

this variant, we did not detect other phenome-wide significant associations among the 2 861 236 

endpoints in our data. Risk-lowering effect of rs534125149 on CHD was replicated in Biobank 237 

Japan 22, 23 (BBJ) and the Estonian Biobank (EstBB) 21  (35 644 cases and 328 461 controls total: OR 238 

= 0.754 [0.67-0.84], p = 5.41×10-7). Association results for rs534125149 with CHD and MI across 239 

different cohorts are shown in Supplementary Figure 4. 240 

 241 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.23.21259381doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259381


 13 

 242 
 243 

Figure 2: Phenome-wide association study (PheWAS) results for rs534125149. Total number of 244 

tested endpoints is 2 861 (A complete list of endpoints analyzed and their definitions is available at 245 

https://www.finngen.fi/en/researchers/clinical-endpoints). The dashed line represents the phenome-246 

wide significance threshold, multiple testing corrected by the number of endpoints = 0.05/ 2 861 = 247 

1.75×10-5. All endpoints reaching that threshold are labelled in the figure. 248 

 249 
Splice acceptor variant rs201988637 in MFGE8 250 

In addition to inframe insertion rs53412514, we also identified a splice acceptor variant 251 

(rs201988637) in MFGE8 to have a protective effect on coronary atherosclerosis (OR = 0.72 [0.63-252 

0.83], p = 7.94×10-06) and related endpoints. The splice acceptor variant had very similar PheWAS 253 

profile as the indel (Supplementary Figure 5) and furthermore the two variants had very similar 254 

protective effect sizes for the endpoints (Figure 3 and Supplementary Table 1). Similar to 255 

rs534125149, this variant is also highly enriched in Finland (37- fold compared to NFE), allele 256 
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certain disorders involving the immune mechanism

Interstitial lung disease endpoints

IV Endocrine, nutritional and metabolic diseases

IX Diseases of the circulatory system

Miscellaneous, not yet classified endpoints

Neurological endpoints

Operation endpoints

Other, not yet classified endpoints (same as #MISC)

Psychiatric endpoints

Rheuma endpoints

V Mental and behavioural disorders

VI Diseases of the nervous system

VII Diseases of the eye and adnexa

VIII Diseases of the ear and mastoid process

X Diseases of the respiratory system

XI Diseases of the digestive system

XII Diseases of the skin and subcutaneous tissue

XIII Diseases of the musculoskeletal system
and connective tissue

XIV Diseases of the genitourinary system

XIX Injury, poisoning and certain other
consequences of external causes

XV Pregnancy, childbirth and the puerperium

XVI Certain conditions originating in
the perinatal period

XVII Congenital malformations, deformations
and chromosomal abnormalities

XVIII Symptoms, signs and abnormal clinical and
laboratory findings,not elsewhere classified

XX External causes of morbidity and mortality

XXI Factors influencing health status
and contact with health services

PheWAS results for rs534125149

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.23.21259381doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259381


 14 

frequency in Finland being 0.6 %. Moreover, both the splice acceptor and the inframe insertion 257 

variants were enriched to Eastern Finland (Supplementary Figure 6).   258 

 259 
 260 
Figure 3: Comparison of the effects (OR) of rs534125149 and rs201988637 for 14 endpoints with 261 

p-value < 1.75×10-5 (PWS) for rs534125149. 95% confidence intervals represented as grey lines. 262 

 263 
These two variants (rs534125149 and rs201988637) are in low linkage disequilibrium (LD, r2 = 264 

0.00015) and did not have any effect on the other variant’s associations with coronary 265 

atherosclerosis or MI (Table 3 and Supplementary Figure 7). This indicates that they both have 266 

their own, independent protective effect against these endpoints. 267 

 268 
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Table 3: Results of the conditional analysis on MI and coronary atherosclerosis. 270 

Phenotype 

SNPID 

[chr:position:ref:alt] 

(rsid) 

Most severe 

consequence 

Original GWAS results Conditional results 

OR [CI] P-value OR [CI] P-value 

Coronary 

atherosclerosis 

chr15:88901702:C:CTGT 

(rs534125149) 

Inframe 

insertion 
0.75 [0.71-0.81] 2.63×10-16 0.75 [0.70-0.80] a 7.68×10-15 a 

chr15:88899813:T:G 

(rs201988637) 

Splice acceptor 

variant 
0.72 [0.63-0.83] 7.94×10-6 0.73 [0.64-0.85] b 1.99×10-5 b 

Myocardial 

infarction, 

strict 

chr15:88901702:C:CTGT 

(rs534125149) 

Inframe 

insertion 
0.74 [0.68-0.81] 1.95×10-11 0.79 [0.73-0.85] a 1.92×10-10 a 

chr15:88899813:T:G 

(rs201988637) 

Splice acceptor 

variant 
0.69 [0.58-0.83] 9.62×10-5 0.71 [0.59-0.85] b 4.03×10-4 b 

 271 
This table present the conditional analysis results for coronary atherosclerosis and MI (strict definition, only 272 
primary diagnoses accepted) where the association has been conditioned on rs534125149 and rs201988637 273 
separately  274 
 275 
a Conditional on rs201988637 276 
b Conditional on rs534125149 277 
 278 

Survival analysis 279 
 280 
 281 
In addition to protection against coronary atherosclerosis and myocardial infarction, both the infame 282 

insertion rs534125149 and splice acceptor variant rs201988637 showed also significant association 283 

in survival analysis when analyzing survival time from birth to first diagnose of coronary 284 

atherosclerosis (HR = 0.78 [0.74-0.93]), p = 1.67×10-17 and HR = 0.77 [0.69-0.88], p = 5.08×10-05, 285 

respectively) and myocardial infarction (HR = 0.86 [0.80-0.93], p = 2.63×10-10 and HR = 0.72 286 

[0.61-0.85], p = 8.16×10-05). In addition, when combining the heterozygous and homozygous 287 

carriers of both rs534125149 and rs201988637 together, carriers get the first diagnose significantly 288 

later than non-carriers (HR = 0.81 [0.77-0.85], p = 6.4×10-16 for coronary atherosclerosis and HR = 289 

0.78 [0.72-0.85], p = 1.16×10-11 for MI) (Figure 4). 290 
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 291 

 292 

Figure 4: Cumulative incidence plots for myocardial infarction. Red line represents carriers (homo- 293 

or heterozygous) for either rs534125149 or rs201988637, and blue line represent non-carriers. 294 

Dashed lines represent 95%- confidence intervals.  295 

 296 
Associations with risk factors for CVD and coronary heart disease sub-types 297 

We then tested for possible associations between the MFGE8 variants and risk factors for CVD. 298 

The splice acceptor variant rs201988637 was associated with pulse pressure in analyses across four 299 

cohorts with pulse pressure measurements and variant rs201988637 available, with the risk 300 

lowering allele associated with lower pulse pressure (p = 1.08×10-03, β = -1.52 [-2.43- -0.61]) 301 

mmHg (Figure 5). In addition, rs534125149 was significantly associated with height, but further 302 

analysis pointed this signal to be reflecting the association of a known association of ACAN with 303 

HR = 0.78
p = 1.16×10-11 
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height, located near MFGE8 (Supplementary material, Supplementary Figure 8). No associations 304 

with other risk factors were observed.  305 

 306 

In the Corogene cohort (n = 4 896), rs534125149 significantly (p < 0.05) lowers the risk for acute 307 

coronary syndrome and stable coronary heart disease (RR = 0.87 and 0.83, respectively) compared 308 

to healthy controls, but not against other types of heart attack, further pointing to a specific risk-309 

lowering effect of MFGE8 on ischemic heart diseases (Supplementary Figure 9).  310 

 311 

Previously reported common variants near MFGE8 312 

Previously, common intergenic variant (rs8042271) near MFGE8 has been reported to associate with 313 

coronary heart disease (CHD) risk3, 27. We replicate this association (OR = 0.90, p = 3.69×10-10 for 314 

coronary atherosclerosis) in FinnGen. LD between the common variant rs8042271 and the inframe 315 

insertion rs534125149 is 0.154.  The LD characteristics for all 3 variants in MFGE8 (rs534125149, 316 

rs201988637 and rs8042271) in FinnGen are in Supplementary Table 2. Common variant 317 

rs8042271 was in the 95% credible set for MI with the causal probability of 0.003 but was not 318 

included in the 95% credible sets for coronary atherosclerosis (Supplementary Table 3 and 319 

Supplementary Table 4). The conditional analyses of all three MFGE8 variants showed that the 320 

association of the previously reported common variant rs8042271 can be explained by the inframe 321 

insertion variant rs534125149, but not vice versa, and that the association of the splice acceptor 322 

variant rs201988637 is independent of both rs534125149 and rs8042271 (Supplementary Table 5).  323 

 324 
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 325 
 326 

Figure 5:  Results for pulse pressure association across all cohorts with splice acceptor variant 327 

rs201988637 present. 328 

 329 

Fine-mapping of the MFGE8 locus 330 

In our fine-mapping analyses, MI had most probably one credible set (set of causal variants) of 32 331 

variants with the highest posterior probability (posterior probability = 0.62), and coronary 332 

atherosclerosis had two credible sets of 6 and 45 variants, respectively, with the highest posterior 333 

probability (posterior probability = 0.74). For both MI and coronary atherosclerosis, rs534125149 334 

had the highest probability of being causal (probability of being causal = 0.250 and 0.318, 335 

respectively) and was included in the first credible set (Supplementary Table 3, Supplementary 336 

Table 4 and Supplementary Figure 10). Splice acceptor variant rs201988637 was not included in 337 

the credible sets for either MI or coronary atherosclerosis, whereas previously reported common 338 
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variant rs8042271 was included in the credible set for MI with the probability of being causal = 0.003 339 

(Supplementary Table 3).  340 

 341 

Discussion 342 

Here we show that a loss of function for MFGE8 leads to 28% lower risk of myocardial infarction 343 

and reduces risk for other coronary atherosclerosis-related diseases. The effects are specific to 344 

coronary heart disease events and no significant association was observed to other diseases in a 345 

phenome-wide search, even if this can be due to lower statistical power in rare disease endpoints. 346 

Loss-of-function of MFGE8 was also associated with lower pulse pressure, but not with blood lipids, 347 

blood pressure or other known coronary heart disease risk factors. In addition to MFGE8, we report 348 

three other novel loci associated with coronary atherosclerosis risk, and to our knowledge we report 349 

the first CHD associated locus, FHL1, in chromosome X.  350 

 351 

Our findings allow us to draw several conclusions.  First, MFGE8 is a potential intervention target 352 

with specific effects on coronary heart disease. Specific protective effect with the LoF in MFGE8 353 

shows potential for efficacy of a treatment targeting MFGE8 protein or downstream products. 354 

Second, the lack of risk elevation in other diseases provide evidence on the potential safety of the 355 

intervention. Previously, the protective effect of loss-of-function variants have been reported for 356 

example for PCSK95 and APOC36, and in phase I, II and III trials, inhibition of PCSK9 have led to 357 

significantly decreased LDL-C levels, and in short-term trials, PCSK9 inhibitors have been well-358 

tolerated and have had a low incidence of adverse effects.28 Based on the phenome-wide association 359 

profile for the loss-of-function variant,  we hypothesize that inhibiting MFGE8 could lower the CHD 360 

risk. 361 

 362 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.23.21259381doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259381


 20 

An association of loss-of-function of MFGE8 with lower pulse pressure, a potential biomarker for 363 

arterial stiffness 29, are very much in line with previous studies on MFGE8 and the inflammatory 364 

ageing process of the arteries, highlighting the possible role of MFGE8 in arterial ageing and 365 

stiffness. The MFGE8 gene encodes Milk-fat globule-EGF 8 (MFGE8), or lactadherin, which is an 366 

integrin-binding glycoprotein implicated in vascular smooth muscle cell (VSMC) proliferation and 367 

invasion, and the secretion of pro-inflammatory molecules 30, 31.  Lactadherin is known to play 368 

important roles in several other biological processes, including apoptotic cell clearance and adaptive 369 

immunity 32, which are known to contribute to the pathogenesis of ischemic stroke.  Initially 370 

lactadherin was identified as a bridging molecule between apoptotic cells and phagocytic 371 

macrophages 33-35, but a growing evidence has indicated that it is a secreted inflammatory mediator 372 

that orchestrates diverse cellular interactions involved in the pathogenesis of various diseases, 373 

including vascular metabolic disorders and some tumors 36-40 and cancers, such as breast  38, 41, 374 

bladder42, esophageal43 and colorectal cancer 44. Recently, not only has MFG-E8 expression 375 

emerged as a molecular hallmark of adverse cardiovascular remodeling with age 45-48, but MFG-E8 376 

signaling has also been found to mediate the vascular outcomes of cellular and matrix responses to 377 

the hostile stresses associated with hypertension, diabetes, and atherosclerosis 49-53.  378 

 379 

Arterial inflammation and remodeling are linked to the pathogenesis of age-associated arterial 380 

diseases, such as atherosclerosis. Recently, lactadherin has been identified as a novel local 381 

biomarker for ageing arterial walls by high-throughput proteomic screening, and it has been shown 382 

to also be an element of the arterial inflammatory signaling network 54. The transcription, 383 

translation, and signaling levels of MFG-E8 are increased in aged, atherosclerotic, hypertensive, 384 

and diabetic arterial walls in vivo, as well as activated VSMCs and a subset of macrophages in 385 

vitro.  During aging, both MFG-E8 transcription and translation increase within the arterial walls 386 

and hearts of various species, including rats, humans, and monkeys48, 55-57, and MFG-E8 is markedly 387 
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up-regulated in rat aortic walls with ageing48. High levels of MFG-E8 have also been detected 388 

within endothelial cells, SMC, and macrophages of atherosclerotic aortae in both mice and 389 

humans53, 58. Furthermore, in the advanced atherosclerotic plaques found in murine models, 390 

decreased macrophage MFG-E8 levels are associated with an inhibition of apoptotic cell 391 

engulfment, leading to the accumulation of cellular debris during the pathogenesis of 392 

atherosclerosis. Lastly, lactadherin has shown tissue protection in various models of organ injury, 393 

including suppression of inflammation and apoptosis in intestinal ischemia in mice 59, as well as 394 

inducing recovery from ischemia by facilitating angiogenesis 60.  395 

 396 

Our study does, however, have a few limitations. First, our primary association results come from 397 

Finnish population with considerable elevation in allele frequency in MFGE8 variants among Finns. 398 

Therefore, the replication of the association in other populations has reduced statistical power. 399 

However, there were enough carriers combined in Japanese, Estonian and UK samples to replicate 400 

robustly both the protective association with coronary artery disease and for pulse pressure. Secondly, 401 

although our data shows association with pulse pressure which has previously been linked to arterial 402 

stiffness, the direct effect of the genetic variants on arterial stiffness and arterial aging needs further 403 

evidence. 404 

 405 

In conclusion, our results show that inhibiting production of lactadherin could reduce the risk for 406 

coronary atherosclerosis substantially and thus present MFGE8 as a potential therapeutical target for 407 

atherosclerotic cardiovascular disease. Our study also highlights the potential of FinnGen, as a large-408 

scale biobank study in isolated population to identify high-impact variants either very rare or absent 409 

in other populations.  410 

 411 
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National Supervisory Authority for Welfare and Health. Recruitment protocols followed the biobank 1176 

protocols approved by Fimea. The Coordinating Ethics Committee of the Hospital District of Helsinki 1177 

and Uusimaa (HUS) approved the FinnGen study protocol Nr HUS/990/2017. 1178 

 1179 

The FinnGen study is approved by Finnish Institute for Health and Welfare (permit numbers: 1180 

THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/2018, 1181 

THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019, 1182 

THL/1524/5.05.00/2020, and THL/2364/14.02/2020), Digital and population data service agency 1183 

(permit numbers: VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social Insurance 1184 

Institution (permit numbers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 1185 

98/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA 16/522/2020 and Statistics Finland 1186 

(permit numbers: TK-53-1041-17 and TK-53-90-20).  1187 

 1188 

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze 6 1189 

include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, 1190 

BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, Finnish Red Cross Blood Service 1191 

Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, Auria Biobank AB17-5154, Biobank Borealis 1192 

of Northern Finland_2017_1013,  Biobank of Eastern Finland 1186/2018, Finnish Clinical Biobank 1193 

Tampere MH0004, Central Finland Biobank 1-2017, and Terveystalo Biobank STB 2018001.  1194 
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The FINRISK data used for the study were obtained from THL Biobank with application number 1196 

BB2015_55.1 and UKBB data using the UK Biobank Resource with application number 22627. 1197 

The study was approved by the Estonian Committee on Bioethics and Human Research (approval 1198 

number 1.1-12/624). 1199 

Figures and tables 1200 

Figure 1: GWAS results for coronary atherosclerosis in FinnGen. Total number of independent 1201 

genome-wide significant associations (GWS; p < 5×10-8) is 38, the lead variant in each marked with 1202 

diamonds. Four novel associations for CVD- related phenotypes are highlighted with ±750 Mb 1203 

around the lead variant in the region as red and the lead variant marked with red diamond. ............ 10 1204 

Figure 2: Phenome-wide association study (PheWAS) results for rs534125149. Total number of 1205 

tested endpoints is 2 861 (A complete list of endpoints analyzed and their definitions is available at 1206 

https://www.finngen.fi/en/researchers/clinical-endpoints). The dashed line represents the phenome-1207 

wide significance threshold, multiple testing corrected by the number of endpoints = 0.05/ 2 861 = 1208 

1.75×10-5. All endpoints reaching that threshold are labelled in the figure. ...................................... 13 1209 

Figure 3: Comparison of the effects (OR) of rs534125149 and rs201988637 for 14 endpoints with 1210 

p-value < 1.75×10-5 (PWS) for rs534125149. 95% confidence intervals represented as grey lines. 14 1211 

Figure 4: Cumulative incidence plots for myocardial infarction. Red line represents carriers (homo- 1212 

or heterozygous) for either rs534125149 or rs201988637, and blue line represent non-carriers. 1213 

Dashed lines represent 95%- confidence intervals. ........................................................................... 16 1214 

Figure 5:  Results for pulse pressure association across all cohorts with splice acceptor variant 1215 

rs201988637 present. ......................................................................................................................... 18 1216 
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