SARS-CoV-2 lineage B.1.1.7 is associated with greater disease severity among hospitalised women but not men

*†Full list of consortium member’s names and affiliations can be found in the appendix.‡Contributed equally.

Affiliations

1 Institute for Global Health, University College London, London, UK
2 Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
3 Department of Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
4 Centre for Clinical Infection and Diagnostics Research, School of Immunology and Microbial Sciences, King’s College London, London
5 Infection Sciences, Viapath, London
6 Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK, PO1 2DT
7 School of Biological Sciences, University of Portsmouth, Portsmouth, UK, PO1 2DT
8 MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
9 Portsmouth Hospitals University NHS Trust, Queen Alexandra Hospital, Portsmouth, UK, PO6 3LY
10 Division of Infection, The Royal London Hospital, Barts Health
11 Institute for Infection and Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE
12 Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
13 Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
14 Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield, UK
15 Southampton Specialist Virology Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
16 Department of Infection and Immunity, North West London Pathology, London, UK
17 Department of Microbiology, South West London Pathology, Jenner Wing, St. George’s Hospital, Blackshaw Road, London, SW17 0QT
18 Department of Virology, Royal Free London NHS Foundation Trust, London, United Kingdom
19 Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield
20 The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
21 https://www.cogconsortium.uk
22 Institute for Clinical Trials and Methodology, University College London, London, UK
23 Institute of Epidemiology and Health Care, University College London, London, UK
24 Department of Infectious Disease, Faculty of Medicine, Imperial College London, UK
25 Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
26 Department of Infectious Diseases, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London
27 Infection Care Group, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT
28 Imperial College Healthcare NHS Trust, London, UK
29 School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK, PO1 2DT
30 Microbiology Innovation and Research Unit (MIRU), Department of Microbiology, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, UK
31 Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, Tremona Road, Southampton, UK
32 Department of Microbiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.
Correspondence: Dr Oliver Stirrup, Institute for Global Health, University College London, Mortimer Market Centre, off Capper Street, London WC1E 6JB, UK. Tel: 020 7679 7622; e-mail: oliver.stirrup@ucl.ac.uk
Abstract

Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented.

Methods
We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16/11/2020 - 10/01/2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity.

Results
Sequences were obtained from 2341 inpatients (HOCI cases = 786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The hazard ratio (HR) for mortality of B.1.1.7 compared to other lineages was 1.01 (95% CI 0.79-1.28, P=0.94) and for ITU admission was 1.01 (95% CI 0.75-1.37, P=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95-1.78) and ITU admission (HR 1.82, 95% CI 1.15-2.90) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61-1.10; ITU HR 0.74, 95% CI 0.52-1.04).

Conclusions
In common with smaller studies of patients hospitalised with SARS-CoV-2 we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared to other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.

Key words: COVID-19; disease severity; intensive care; lineage B.1.1.7; SARS-CoV-2; Variant of concern; VOC-202012/01.
Introduction

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.1.7 in South East England has been found to be associated with an estimated 70% increased rate of community transmission compared with previously circulating variants \(^1\text{-}^3\). Lineage B.1.1.7 is now the dominant lineage in the UK. It has also been detected in over 120 countries outside the UK\(^4\).

Lineage B.1.1.7 has acquired an unusually large number of mutations and deletions in a short period of time \(^1\text{-}^3\); specifically 14 non-synonymous single nucleotide polymorphisms (SNPs) and 3 amino acid deletions, with 8 of these 17 amino acid changes occurring in the spike protein, responsible for receptor binding and a major immunogenic target. At least three of the spike protein changes are associated with \textit{in vitro} biological changes. A tyrosine substitution at position 501 in the spike protein receptor binding domain has been shown to increase binding to the ACE2 receptor, while deletion of spike protein amino acids 69/70 reduces antibody neutralisation by convalescent sera \(^5\text{-}^6\). The potential that so many mutations might change B.1.1.7 virulence has been examined epidemiologically using data largely from community-collected samples \(^7\). However, there are few data on the impact of B.1.1.7 infection as compared with other variants on disease outcomes in hospitalized patients.

We investigated the potential associations between the B.1.1.7 variant and the outcomes of mortality and intensive therapy unit (ITU) admission both in patients admitted with COVID-19 and hospital onset COVID-19 infections (HOCIs) in the COG-UK-HOCI study. The main objective was to estimate the overall effect of the variant on each of these outcomes, and we also evaluated whether the impact of the variant differed according to patient characteristics.
Methods

Sequence and patient meta-data

Data were collected from five NHS hospitals within London and three outside. The first SARS-CoV-2 positive sample from all inpatients tested through hospital laboratories between 16th November 2020 and 10th January 2021 was sequenced. In addition metadata were collected on patient age, sex (as binary M/F), co-morbidities as identified by the COVID-19 Greenbook (including obesity with BMI ≥35 kg/m²), care home residence, pregnancy, ethnicity, date of hospital admission, ward location and first SARS-CoV-2 positive test for all samples plus dates of admission to the ITU and all-cause death where these events occurred. Ethical approval for the HOCl study is provided by REC 20/EE/0118.

Inpatients were classified as those admitted with SARS-CoV-2 plus cases which were identified after admission, with the latter termed HOCl cases and subdivided into indeterminate healthcare-associated infections (HCAIs) diagnosed 3-7 days after admission and probable/definite HCAIs diagnosed ≥8 days post-admission. The primary outcomes for analysis were the events of death and of ITU admission. Events were included in the analysis within 28 days of hospital admission for those admitted with COVID-19 and within 28 days of diagnosis for HOCl cases.

SARS-CoV-2 sequencing

Samples were sequenced by Nanopore or Illumina methods as part of the COG-UK consortium. To maximise success 4/8 labs sequenced only those
samples with qPCR cycle thresholds (ct) values of ≤32 or equivalent. Sequences were assigned to lineages using COG-UK Pangolin10.

Statistical analysis

Only patients with admission to hospital and HOCl\textsubscript{1}s were included in the statistical analysis of the clinical outcomes of mortality and ITU admission. Mortality and ITU admission were modelled as time-to-event outcomes, from time of hospital admission for those admitted with COVID-19 and from time of diagnosis for HOCl cases, censored at 28 days. Analyses of ITU admission were also censored at patient death. Both outcomes were censored at date of data collection for these variables for each site (between 15th January and 22nd February 2021). Mixed effects Cox models were used with adjustment for sex, patient age (using 5-knot restricted cubic spline), number of comorbidities (none, one, two, ≥three), care home residence, pregnancy, ethnicity (White, Black, Asian, mixed or other) and sample week with separate parameters for London sites and for other sites grouped using the R package coxme v2.2-1611. A 5-knot restricted cubic spline12 was used for patient age in all analyses to allow flexibility in modelling the relationship with each outcome whilst maintaining a consistent model structure. Random intercept terms were included to reflect clustering of outcomes within hospitals and weekly periods nested within hospitals. Cox models were stratified by HOCl status (allowing for different baseline hazard functions in patients admitted with COVID-19 vs HOCl groups).

Outcomes were analysed on a complete case basis with regards to patient characteristics. This decision was based on the availability of complete data for >90% of patients and the fact that Cox regression gives asymptotically
unbiased estimates of an association of interest as long as the missingness is not dependent on both outcome (i.e. death or ITU admission) and exposure (B.1.1.7 status) \(^{13,14}\). The variable of obesity was analysed as ‘morbid obesity’ vs ‘no record of morbid obesity’ on examination of case notes, and was included in statistical models within the ordinal comorbidities variable.

The primary aim of the analysis was to estimate the overall association between the B.1.1.7 vs non-B.1.1.7 strain and the risk of each of the outcomes considered. Exploratory secondary analyses also evaluated interactions between B.1.1.7 status and patient characteristics in estimating the effect on each outcome. Analyses were conducted in R version 4.0.2, using tidyverse collection of packages with all plots generated using ggplot2 and survminer \(^{15–18}\).

Results

Study dataset

Between November 16\(^{th}\) 2020 and January 10\(^{th}\) 2021 SARS-CoV-2 RNA positive upper respiratory tract samples from 2341 inpatients were sequenced from the 8 participating sites (Table 1 and Supplementary Figure 1). Analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The prevalence of lineage B.1.1.7 was highest in London and Hampshire (South of England), but substantially increased at all sites over the study period (Figure S2).

Mortality outcome
Death within 28 days was reported in 527 (22.5%) of the 2341 patients. Death was recorded as having occurred following discharge with date of death missing in 5, and these patients have been excluded from analyses. Death within 28 days was recorded in 494/2147 of the patients with all data available, with full 28 days of follow-up in 939/1653 of the other patients. On mixed effects multivariable Cox regression, the overall HR for mortality of lineage B.1.1.7 was 1.01 (95% CI 0.79-1.28, P=0.94) (Table 2). Male sex was found to be a substantial risk factor for mortality (hazard ratio (HR) 1.46 vs female, 1.22-1.75; P<0.001) and age was also strongly associated with the risk of death (Figure 1). The risk of death was higher in care home residents (HR 1.39, 95% CI 1.02 to 1.90, P=0.04) and those with one or more significant comorbidities (HR 1.78 (1.26-2.52) for one comorbidity, 2.03 (1.43-2.88) for two and 2.89 (2.04-4.08) for ≥three vs none; P<0.001). Those with ethnicity other than White were estimated to be at higher risk of death, but ethnicity was not a statistically significant predictor when evaluated over all categories (P=0.36). No pregnant women died and so this variable was dropped from the model as a perfect predictor.

The addition of an interaction term between B.1.1.7 status and patient sex for the effect on mortality led to an improvement in model fit (P=0.01 interaction test, P=0.04 lineage B.1.1.7 effects by sex vs no B.1.1.7 effect, on likelihood ratio tests (LRT)). The estimated HR for mortality of lineage B.1.1.7 vs non-B.1.1.7 was 0.82 (95% CI, 0.61-1.10) in male patients and 1.30 (95% CI, 0.95-1.78) in female patients. No improvement to model fit was provided by the addition of an interaction between B.1.1.7 status and patient age (P=0.48, LRT with 4 d.f.), ethnicity (P=0.67, LRT with 3 d.f.) or comorbidity category (P=0.33, LRT with 3 d.f.).
A statistically significant interaction was found between the effect of B.1.1.7 and care home residence (P=0.03, LRT with 1 d.f.), with those care home residents with B.1.1.7 infection estimated to be at lower risk of death (HR 0.52, 95% CI 0.27 - 1.02) with a non-significant increase in the risk for death associated with B.1.1.7 for non-care home residents (1.09, 95% CI 0.85-1.41). We attempted to fit a model including interaction on both sex and care home residence status, but convergence of parameter estimates failed. The model with interaction on sex had the lowest AIC of all fitted models and, given also the relatively small number of care home residents in the dataset, we therefore focus on this model for interpretation and analysis.

Kaplan-Meier plots of mortality in relation to B.1.1.7 status are presented according to patient sex and age categories in Figure 2 (also provided separately for non-HOCI and HOCI inpatients in Figures S3-4, with HR estimates in Table S1).

ITU admission outcome

Admission to ITU within 28 days was reported in 337 (14.4%) of 2341 inpatients (excluding 46 HOCI cases diagnosed after admission to ITU). On mixed effects multivariable Cox regression, the overall HR for ITU admission for lineage B.1.1.7 was 1.01 (95% CI 0.75-1.37, P=0.94) (Table 2). Within this model, male sex was a substantial risk factor for ITU admission (HR 1.33, 1.05-1.68; P=0.02). Age was also strongly associated with the risk of ITU admission, although the relationship estimated was non-linear with the greatest risk of this outcome at 65 years of age (Figure 1). The risk of ITU admission was higher in those with one or two significant comorbidities (HR 1.25 (0.92-1.71) for one
comorbidity, 1.24 (0.89-1.74) for two and 0.79 (0.54-1.15) for ≥three vs none; P=0.03). Those with ethnicity other than White were estimated to be at higher risk of ITU admission, but ethnicity was not a statistically significant predictor evaluated over all categories (P=0.09). Pregnant women were found to be at lower risk of ITU admission (HR 0.13, 95% CI 0.02 to 0.98, P=0.048).

The addition of an interaction term between B.1.1.7 status and patient sex for the effect on ITU admission led to an improvement in model fit (P=0.0004 interaction test, P=0.002 lineage B.1.1.7 effects by sex vs no B.1.1.7 effect, LRTs). The estimated HR for ITU admission for lineage B.1.1.7 vs non-B.1.1.7 was 0.74 (95% CI 0.52-1.04) in male patients and 1.82 (95% CI 1.15-2.90) in female patients. There was no evidence for an interaction of B.1.1.7 status with patient age (P=0.11, LRT with 4 d.f.), ethnicity (P=0.74, LRT with 3 d.f.), comorbidity category (P=0.79, LRT with 3 d.f.), pregnancy (P=0.42, LRT with 1 d.f.) or care home residence (P=0.24, LRT with 1 d.f.) with ITU admission as the outcome. Kaplan-Meier plots of ITU admission in relation to B.1.1.7 status are presented according to patient sex and age categories in Figure 3 (also provided separately for non-HOCI and HOCI inpatients in Figures S5-6, with HR estimates in Table S1).

Discussion

Our findings provide the largest dataset on disease severity in hospitalized patients with lineage B.1.1.7 and the only one based on routine sequencing of all specimens from multiple hospitals. The overall hazard of mortality and ITU were unchanged for patients with lineage B.1.1.7 in comparison to other viral variants (HR 1.01, 95% CI 0.79-1.28; and 1.01, 95% CI 0.75-1.37, respectively).
These findings are in line with the results of a much smaller analysis of 341 (n=198 with B.1.1.7) hospital inpatients with viral sequencing over a similar time period in London, which found an adjusted mortality risk ratio for B.1.1.7 of 1.02 (95% CI 0.76-1.38)19. However, in contrast with this smaller study we also found evidence that B.1.1.7 infection appears to have a different impact on the disease course according to sex among hospitalised patients with SARS-CoV-2 infection, with increased hazard of both mortality and ITU admission associated with the variant for female but not male patients.

Several larger studies of disease severity in the UK have used PCR Spike (S) gene target failure (SGTF) as a surrogate for lineage B.1.1.720,21,22,23. These studies, based on community testing data, all found evidence of an overall increased risk of mortality associated with lineage B.1.1.7, with reported hazard ratios of 1.64 (95% CI 1.32 to 2.04) by Challen et al.20, 1.55 (1.39 to 1.72) by Davies et al.21, 1.67 (1.34–2.09) by Grint et al.22 and 1.59 (1.25-2.03) by Patone et al.23. In the UK SGTF is only available as a marker for a subset of those patients who were first positive for SARS-CoV-2 on testing within the community; most people who die of COVID-19 were not previously tested within the community20 and the relevant PCR assay is not used by all laboratories, meaning that SGTF status is only available for 8.6% of deaths21. SGTF is an imperfect predictor of lineage B.1.1.7, and is much less accurate as a marker when prevalence of the variant is low (before mid-November 2020 in the UK)24.

The apparent overall differences in mortality risk observed in the SGTF analyses in comparison to our study do not necessarily represent inconsistent findings. Studies that are limited to patients who test positive in the community may be subject to selection biases linked to propensity to present
for testing or rapidity of disease progression, whilst analyses that include only data from inpatients will not reflect the characteristics of the population as a whole. For example, increased disease severity may result in a higher proportion of subjects reaching the threshold for admission to hospital but not affect the mortality rate among those admitted to hospital. Our study also includes a subset of patients with probable nosocomial infection, whose characteristics and comorbidity profile differs greatly from the UK population as whole 25.

Individuals testing positive in the community for an SGTF-associated variant had higher risk of hospitalisation, with OR of 1.58 (95% CI 1.50 to 1.67)26. This result was confirmed by a study of national health register-data from Denmark including 18,499 patients with viral genomes available in the period 1st January to 9th February 2021 which found an adjusted OR of 1.64 (95% CI, 1.32-2.04) for hospitalisation for B.1.1.7 compared with other lineages27. Taken together with the findings regarding mortality in the UK20,21,22,23, these results are consistent with an increased risk of mortality and hospitalisation among patients testing positive for B.1.1.7 in the community but no overall increase in mortality among the subset of patients admitted to hospital.

We found a significantly increased risk of both mortality (30%) and ITU admission (82%) in hospitalised female patients infected with B.1.1.7 but not in male patients. In contrast studies of community tested individuals found no interaction with sex for the effect of B.1.1.7 on mortality21,29, critical care admission29 or risk of hospitalisation26. However, these studies were all conducted among patients who first tested positive for SARS-CoV-2 within the community, and therefore they cannot rule out an interaction with sex for the impact of B.1.1.7 on disease severity among all people infected with the virus.
or among those admitted to hospital. Nationally collated data show that
females accounted for 33.2% of patients admitted to ITU with COVID-19 in
London, East and South East England between 1 September - 30 November
2020 rising to 36.2%, between 1 December 2020 to 21 January 2021 when
lineage B.1.1.7 predominated.28

An impact of lineage B.1.1.7 on females that is not observed in males could
potentially be explained by physiological differences. For example, increased
ACE2 expression in females has been posited as one explanation for the
relatively lower mortality and morbidity observed for COVID-19 for women in
comparison to men.29,30 Lineage B.1.1.7 has mutations that increase binding of
the viral spike protein to ACE2, thereby providing a plausible mechanism by
which the new variant might have a differential effect on disease severity in
males and females.5,29,31 Our results suggest a reduction in the risk of mortality
or ITU admission associated with B.1.1.7 in comparison to other viral lineages
among male inpatients, although this finding was not definitive with HR 95%
CIs that included no effect for both outcomes.

Although ours is substantially the largest study of hospitalized patients with
confirmed lineage B.1.1.7 and non-B.1.1.7 SARS-CoV-2 infection, it has a
number of limitations. Primarily, whilst evaluation of disease severity among
only hospital inpatients can give useful information on disease course and
progression, analysis of only these patients cannot provide information on
disease severity across all SARS-CoV-2 infections in the population as a whole.
In addition, ITU admission can be difficult to interpret as a measure of disease
severity among inpatients. For instance, admission to ITU may reflect the
presence of severe disease but also local decisions around the benefit or lack
thereof to frail patients, which may be influenced by bed numbers and
availability of respiratory support in non-critical care settings. Our primary analysis also includes cases of hospital-acquired infection, but exclusion of these HOCI cases from our analyses yielded similar findings (Table S1).

A further limitation of our analysis is that we do not have any information on vaccination status for individual patients. Our dataset covers a period in which a national vaccination program was being initiated for HCWs and the elderly population in the UK, starting with those aged 80 years and above from 8th December 2020. This is a potential explanation for the observed protective interaction effect between care home residence and B.1.1.7 on mortality, as care home residents were prioritised for vaccination around the time that this viral variant was increasing in prevalence. Vaccine breakthrough infections are well described, particularly in partially vaccinated subjects.

The findings may have implications for hospital practice and public health policy, both in the UK and in other countries where lineage B.1.1.7 is now dominant or spreading. Although lineage B.1.1.7 was not associated with an overall increase in mortality among hospitalized patients, our investigation suggests that lineage B.1.1.7 may be associated with higher ITU admission and death in females compared to non-B.1.1.7 within this group. The dominance of lineage B.1.1.7 in the UK precludes ongoing comparison with earlier non-B.1.1.7 variants, and there is now concern regarding the spread of other lineages in the UK and elsewhere. There is a need for ongoing large scale sequencing of SARS-CoV-2 cases linked to data on patient characteristics and outcomes in order to generate timely information regarding the associations between viral lineages and disease severity.

Funding
This work was supported by the COG-UK consortium, itself receiving funding from UK Research & Innovation, National Institute of Health Research and Wellcome Sanger Institute.

Acknowledgments
This report was produced by members of the COG-UK HOCI Variant substudy consortium. COG-UK HOCI is part of COG-UK.

Contributors
OTS, FATB, CV, JAGA, ACJ, NF, ACH and JB planned the analysis and drafted the first draft of the manuscript. AAM, AHB, TC, AdSF, SG, TK, RKS, BK, IRM, GM, MP, EP, PR, SR, JFT, SPW, EWD, PW, RW, TCM, AH, JH, TWM, GN, DGP, CFP, JRP, SCR, KS, TIdS, LBS, ECT, AAW extracted and provided sequencing data and patient characteristics and outcome data. OTS, FATB, CV and JAGA had full access to and verified the final collated dataset. FATB, CV and JAGA carried out phylogenetic lineage assignments and merged the final dataset for analysis, and OTS carried out statistical modelling. All authors reviewed the final manuscript and approved this for submission.

Declaration of interests
NF reports grants from UKRI, during the conduct of the study; personal fees from Aimmune, personal fees from ALK, personal fees from AstraZeneca, personal fees from MSD, personal fees from Sanofi Aventis, personal fees from Novatis, personal fees from Ipsen, personal fees from Gedeon Richter, personal fees from Galderma, personal fees from Vertex, outside the submitted work. The remaining authors do not have any declarations of interest.

Data sharing
The sequence data analysed are included within publicly available datasets (https://www.cogconsortium.uk/data/). However, due to data governance restrictions it is not possible to openly share the associated patient
characteristics and clinical outcome data for the analysis described, as these are considered sensitive and full anonymisation is not possible.

References

33. Thiagarajan_2021_Why is India having a covid-19 surge.pdf [Internet]. [cited 2021 May 17];Available from: https://www.bmj.com/content/bmj/373/bmj.n1124.full.pdf
Table 1 Proportion of SARS-CoV-2 due to lineage B.1.1.7 for all inpatient sequenced samples according to patient characteristics

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Lineage B.1.1.7 (n=1107)</th>
<th>Not lineage B.1.1.7 (n=1234)</th>
<th>Total (n=2341)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-11</td>
<td>15 (62.5)</td>
<td>9 (37.5)</td>
<td>24 (100)</td>
</tr>
<tr>
<td>12-24</td>
<td>20 (58.8)</td>
<td>14 (41.2)</td>
<td>34 (100)</td>
</tr>
<tr>
<td>25-34</td>
<td>61 (62.9)</td>
<td>36 (37.1)</td>
<td>97 (100)</td>
</tr>
<tr>
<td>35-49</td>
<td>159 (56.2)</td>
<td>124 (43.8)</td>
<td>283 (100)</td>
</tr>
<tr>
<td>50-69</td>
<td>371 (53.2)</td>
<td>326 (46.8)</td>
<td>697 (100)</td>
</tr>
<tr>
<td>70-79</td>
<td>208 (42.2)</td>
<td>285 (57.8)</td>
<td>493 (100)</td>
</tr>
<tr>
<td>80+</td>
<td>273 (38.3)</td>
<td>440 (61.7)</td>
<td>713 (100)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample week starting:</th>
<th>Lineage B.1.1.7</th>
<th>Not lineage B.1.1.7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/11/2020</td>
<td>15 (8.4)</td>
<td>164 (91.6)</td>
<td>179</td>
</tr>
<tr>
<td>23/11/2020</td>
<td>26 (11.6)</td>
<td>198 (88.4)</td>
<td>224</td>
</tr>
<tr>
<td>30/11/2020</td>
<td>59 (24.2)</td>
<td>185 (75.8)</td>
<td>244</td>
</tr>
<tr>
<td>07/12/2020</td>
<td>55 (26.8)</td>
<td>150 (73.2)</td>
<td>205</td>
</tr>
<tr>
<td>14/12/2020</td>
<td>138 (43.8)</td>
<td>177 (56.2)</td>
<td>315</td>
</tr>
<tr>
<td>21/12/2020</td>
<td>220 (54.6)</td>
<td>183 (45.4)</td>
<td>403</td>
</tr>
<tr>
<td>28/12/2020</td>
<td>361 (75.2)</td>
<td>119 (24.8)</td>
<td>480</td>
</tr>
<tr>
<td>04/01/2021</td>
<td>233 (80.1)</td>
<td>58 (19.9)</td>
<td>291</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient Class</th>
<th>Lineage B.1.1.7</th>
<th>Not lineage B.1.1.7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCW</td>
<td>7 (36.8)</td>
<td>12 (63.2)</td>
<td>19</td>
</tr>
<tr>
<td>CAI*</td>
<td>347 (55.1)</td>
<td>689 (44.9)</td>
<td>1536</td>
</tr>
<tr>
<td>Indeterminate HCAI †</td>
<td>54 (25.4)</td>
<td>159 (74.6)</td>
<td>213</td>
</tr>
<tr>
<td>Probable/definite HCAI‡</td>
<td>199 (34.7)</td>
<td>374 (65.3)</td>
<td>573</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Lineage B.1.1.7</th>
<th>Not lineage B.1.1.7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasgow</td>
<td>91 (31.6)</td>
<td>197 (68.4)</td>
<td>288</td>
</tr>
<tr>
<td>Hampshire</td>
<td>74 (60.2)</td>
<td>49 (39.8)</td>
<td>123</td>
</tr>
<tr>
<td>London</td>
<td>871 (65.7)</td>
<td>455 (34.3)</td>
<td>1326</td>
</tr>
<tr>
<td>South Yorkshire</td>
<td>71 (11.8)</td>
<td>533 (88.2)</td>
<td>604</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Lineage B.1.1.7</th>
<th>Not lineage B.1.1.7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>540 (39.4)</td>
<td>829 (60.6)</td>
<td>1369</td>
</tr>
<tr>
<td>Black</td>
<td>174 (53.4)</td>
<td>152 (46.6)</td>
<td>326</td>
</tr>
<tr>
<td>Asian</td>
<td>118 (63.1)</td>
<td>69 (36.9)</td>
<td>187</td>
</tr>
<tr>
<td>Mixed or other</td>
<td>186 (67.1)</td>
<td>91 (32.9)</td>
<td>277</td>
</tr>
<tr>
<td>Unknown</td>
<td>89 (48.9)</td>
<td>33 (51.1)</td>
<td>182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Lineage B.1.1.7</th>
<th>Not lineage B.1.1.7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obese (BMI>=35)</td>
<td>122 (51) [N=1107]</td>
<td>117 (49) [N=1234]</td>
<td>239 [N=2341]</td>
</tr>
<tr>
<td>Pregnant</td>
<td>25 (55.6) [N=1103]</td>
<td>20 (44.4) [N=1234]</td>
<td>45 [N=2337]</td>
</tr>
<tr>
<td>Care home resident</td>
<td>45 (36.3) [N=1107]</td>
<td>79 (63.7) [N=1232]</td>
<td>124 (100) [N=2339]</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>337 (56.6)</td>
<td>258 (43.4)</td>
<td>695 (100)</td>
</tr>
<tr>
<td>One</td>
<td>307 (47.3)</td>
<td>342 (52.7)</td>
<td>649 (100)</td>
</tr>
<tr>
<td>Two</td>
<td>261 (45.9)</td>
<td>308 (54.1)</td>
<td>569 (100)</td>
</tr>
<tr>
<td>Three or more</td>
<td>202 (38.4)</td>
<td>324 (61.6)</td>
<td>526 (100)</td>
</tr>
<tr>
<td>Not recorded</td>
<td>NA (NA)</td>
<td>2 (100)</td>
<td>2 (100)</td>
</tr>
<tr>
<td>Died within 28d</td>
<td>217 (41.2) [N=1106]</td>
<td>310 (58.8) [N=1230]</td>
<td>527 (100) [N=2336]</td>
</tr>
<tr>
<td>Admitted to ITU within 28d†</td>
<td>220 (65.3) [N=1081]</td>
<td>117 (34.7) [N=1214]</td>
<td>337 (100) [N=2295]</td>
</tr>
</tbody>
</table>

Data shown as n (%), with [N] with available data shown where missing values possible.
*Diagnosed at or ≤2 days from admission. †Diagnosed 3-7 days from admission. ‡Diagnosed ≥8 days from admission. Excluding patients admitted to ITU prior to SARS-CoV-2 diagnosis. CAI, community-acquired infection; HCAI, healthcare-associated infection; HCW, healthcare worker; ITU, intensive therapy unit.
Table 2 Results of mixed effect Cox regression models for death and intensive therapy unit admission, shown as hazard ratio (95% CI) [P-value]. Models were also adjusted by age using natural cubic splines (as shown in Figure 1).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Outcome: death</th>
<th>Outcome: ITU admission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall effect</td>
<td>Interaction with sex</td>
</tr>
<tr>
<td>Var.: B.1.1.7</td>
<td>1.01 (0.79 to 1.28) [0.943]</td>
<td></td>
</tr>
<tr>
<td>Var.: B.1.1.7 in males</td>
<td>0.82 (0.61 to 1.1) [0.177]</td>
<td></td>
</tr>
<tr>
<td>Var.: B.1.1.7 in females</td>
<td>1.3 (0.95 to 1.78) [0.096]</td>
<td></td>
</tr>
<tr>
<td>Sex: male</td>
<td>1.46 (1.22 to 1.75) [P<0.001]</td>
<td>1.77 (1.4 to 2.25) [0]</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>[0.364]</td>
<td>0.316</td>
</tr>
<tr>
<td>White</td>
<td>1.0 (reference)</td>
<td>1.0 (reference)</td>
</tr>
<tr>
<td>Asian</td>
<td>1.29 (0.96 to 1.73)</td>
<td>1.31 (0.98 to 1.76)</td>
</tr>
<tr>
<td>Black</td>
<td>1.04 (0.68 to 1.58)</td>
<td>1.06 (0.7 to 1.62)</td>
</tr>
<tr>
<td>Mixed or other</td>
<td>1.17 (0.84 to 1.64)</td>
<td>1.18 (0.84 to 1.66)</td>
</tr>
<tr>
<td>Care home resident</td>
<td>1.39 (1.02 to 1.9) [0.037]</td>
<td>1.4 (1.03 to 1.92) [0.034]</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>[P<0.001]</td>
<td>[P<0.001]</td>
</tr>
<tr>
<td>None</td>
<td>1.0 (reference)</td>
<td>1.0 (reference)</td>
</tr>
<tr>
<td>One</td>
<td>1.78 (1.26 to 2.52)</td>
<td>1.77 (1.26 to 2.5)</td>
</tr>
<tr>
<td>Two</td>
<td>2.03 (1.43 to 2.88)</td>
<td>2.03 (1.43 to 2.87)</td>
</tr>
<tr>
<td>Three or more</td>
<td>2.89 (2.04 to 4.08)</td>
<td>2.89 (2.04 to 4.08)</td>
</tr>
<tr>
<td>Pregnant</td>
<td>0.13 (0.02 to 0.98) [0.048]</td>
<td></td>
</tr>
<tr>
<td>By sample week, London</td>
<td>0.273</td>
<td>0.22</td>
</tr>
<tr>
<td>Date</td>
<td>Var. 1 (95% CI)</td>
<td>Var. 2 (95% CI)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>16/11/2020</td>
<td>0.34 (0.15 to 0.76)</td>
<td>0.32 (0.14 to 0.72)</td>
</tr>
<tr>
<td>23/11/2020</td>
<td>0.94 (0.56 to 1.57)</td>
<td>0.89 (0.53 to 1.49)</td>
</tr>
<tr>
<td>30/11/2020</td>
<td>0.67 (0.4 to 1.12)</td>
<td>0.64 (0.38 to 1.08)</td>
</tr>
<tr>
<td>07/12/2020</td>
<td>0.95 (0.52 to 1.74)</td>
<td>0.91 (0.5 to 1.67)</td>
</tr>
<tr>
<td>14/12/2020</td>
<td>0.82 (0.51 to 1.31)</td>
<td>0.81 (0.51 to 1.29)</td>
</tr>
<tr>
<td>21/12/2020</td>
<td>0.9 (0.61 to 1.33)</td>
<td>0.89 (0.6 to 1.31)</td>
</tr>
<tr>
<td>28/12/2020</td>
<td>1.0 (reference)</td>
<td>1.0 (reference)</td>
</tr>
<tr>
<td>04/01/2021</td>
<td>0.87 (0.51 to 1.51)</td>
<td>0.87 (0.5 to 1.5)</td>
</tr>
</tbody>
</table>

/var. elsewhere

<table>
<thead>
<tr>
<th>Date</th>
<th>Var. 1 (95% CI)</th>
<th>Var. 2 (95% CI)</th>
<th>Var. 3 (95% CI)</th>
<th>Var. 4 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/11/2020</td>
<td>1.07 (0.52 to 2.19)</td>
<td>1.06 (0.52 to 2.18)</td>
<td>0.55 (0.1 to 2.91)</td>
<td>0.56 (0.1 to 3.03)</td>
</tr>
<tr>
<td>23/11/2020</td>
<td>0.8 (0.38 to 1.67)</td>
<td>0.79 (0.38 to 1.65)</td>
<td>0.56 (0.11 to 2.87)</td>
<td>0.58 (0.11 to 3.02)</td>
</tr>
<tr>
<td>30/11/2020</td>
<td>1.14 (0.57 to 2.3)</td>
<td>1.13 (0.56 to 2.28)</td>
<td>0.66 (0.13 to 3.32)</td>
<td>0.7 (0.14 to 3.55)</td>
</tr>
<tr>
<td>07/12/2020</td>
<td>0.91 (0.45 to 1.86)</td>
<td>0.88 (0.43 to 1.79)</td>
<td>0.45 (0.08 to 2.61)</td>
<td>0.48 (0.08 to 2.81)</td>
</tr>
<tr>
<td>14/12/2020</td>
<td>0.74 (0.37 to 1.47)</td>
<td>0.73 (0.37 to 1.45)</td>
<td>0.38 (0.07 to 2.06)</td>
<td>0.4 (0.07 to 2.2)</td>
</tr>
<tr>
<td>21/12/2020</td>
<td>1.01 (0.51 to 2)</td>
<td>0.98 (0.5 to 1.95)</td>
<td>0.81 (0.17 to 3.82)</td>
<td>0.86 (0.18 to 4.09)</td>
</tr>
<tr>
<td>28/12/2020</td>
<td>1.27 (0.63 to 2.53)</td>
<td>1.24 (0.62 to 2.48)</td>
<td>1.15 (0.24 to 5.42)</td>
<td>1.22 (0.25 to 5.84)</td>
</tr>
<tr>
<td>04/01/2021</td>
<td>1.6 (0.81 to 3.15)</td>
<td>1.54 (0.78 to 3.04)</td>
<td>0.74 (0.15 to 3.55)</td>
<td>0.74 (0.15 to 3.59)</td>
</tr>
</tbody>
</table>

Var., viral variant. P-values are reported from univariate and multivariate Wald tests.
Figure 1 Plots of estimated hazard ratio (HR) for (a) death and (b) intensive treatment unit admission in relation to age for mixed effects Cox regression models with single overall effect of B.1.1.7 variant. Following from the parameterisation of the model, HRs are shown relative to hazard at age of 31 years.
Figure 2 Kaplan-Meier plots of all-cause mortality among all inpatients in relation to lineage B.1.1.7 status, plotted according to patient sex and age categories. Date of sampling is used as the ‘zero’ time point for hospital-onset COVID-19 infections, with date of admission used for other patients. Naïve 95%CIs are plotted for illustrative purposes (these are not derived from the multilevel Cox models described).

a) Mortality in males

```
Age 0−49 Age 50−69 Age 70+
```

```
Time from admission or sample (days)
```

```
Cumulative mortality
```

```
Number at risk
```

```
Lineage: Other B.1.1.7
```

```
Age 0−49 Age 50−69 Age 70+
```

```
Lineage:
```

```
Time from admission or sample (days)
```

```
Cumulative mortality
```

```
Number at risk
```

```
Lineage: Other B.1.1.7
```

b) Mortality in females

```
Age 0−49 Age 50−69 Age 70+
```

```
Time from admission or sample (days)
```

```
Cumulative mortality
```

```
Number at risk
```

```
Lineage: Other B.1.1.7
```

```
Age 0−49 Age 50−69 Age 70+
```

```
Time from admission or sample (days)
```

```
Cumulative mortality
```

```
Number at risk
```

```
Lineage: Other B.1.1.7
```

Figure 3 Kaplan-Meier plots of intensive therapy unit (ITU) admission among all inpatients in relation to lineage B.1.1.7 status, plotted according to patient sex and age categories. Date of sampling is used as the ‘zero’ time point for hospital-onset COVID-19 infections, with date of admission used for other patients. Naïve 95% CIs are plotted for illustrative purposes (these are not derived from the multilevel Cox models described).

a) ITU admission in males

![Kaplan-Meier plot for ITU admission in males](image)

b) ITU admission in females

![Kaplan-Meier plot for ITU admission in females](image)