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Materials and Methods 32 

Genotyping data 33 

Host DNA was extracted from leukocytes using the TIANamp® Blood DNA Kit 34 

(DP348, TianGen Biotech Co, Ltd., China) according to the manufacturer’s 35 

instructions. DNA concentrations were determined using the Qubit quantification 36 

system (Thermo Scientific, Wilmington, DE, USA). Extracted DNA was stored at 37 

−80 °C. Genotyping was carried out with Illumina ASA-750K arrays. Quality control 38 

and relatedness filters were performed by PLINK1.9 1. Individuals with a high or low 39 

proportion of heterozygous genotypes (outliers defined as 3 standard deviations) were 40 

excluded 2. Individuals who had different ancestries (the first two principal 41 

components ± 5 standard deviations from the mean) or related individuals (IBD > 42 

0.185) were excluded 2. Variants were mapped to the 1000 Genomes Phase 3 v5 by 43 

SHAP EIT 3,4, and then we conducted genome-wide genotype imputation with the 44 

1000 Genomes Phase 3 v5 reference panel by Minimac3 5,6. Genetic variants with 45 

imputation accuracy RSQR > 0.3 and MAF > 0.05 were included in our analysis. 46 

 47 

Targeted fecal metabolome profiling 48 

The absolute quantification of fecal samples (n = 1012) was performed by an ultra-49 

performance liquid chromatography coupled to tandem mass spectrometry (UPLC-50 

MS/MS) system. Briefly, the order of all samples was randomly selected prior to 51 

preparation. 10 mg lyophilized feces were homogenized with 25μL water and 52 

extracted with 185μL cold ACN-Methanol (8/2, v/v). At Biomek 4000 station 53 



4 
 

(Biomek 4000, Beckman Coulter, Inc., Brea, California, USA), 30μl centrifuged 54 

supernatant was derived with 20μl freshly prepared derivatives and mixed with 55 

internal standards in 30℃ for 60min. The derivatization agents were 200 mM 3-NPH 56 

in 75% aqueous methanol and 96 mM EDC-6% pyridine solution in methanol. After 57 

derivatization, 350μl ice-cold 50% methanol solution was added to dilute the sample 58 

and then retained at -20℃ for 20 minutes. After 4000g centrifugation at 4 °C for 30 59 

minutes, 135μl supernatant was mixed and sealed with internal standards for each 60 

sample. Subsequently, the derivatized samples and serial dilutions of derivatized stock 61 

standards were analyzed randomly and quantitated by the UPLC-MS/MS. The 62 

instrument setting was: ACQUITY UPLC BEH C18 analytical column (2.1*100 63 

mm,1.7μM); column temperature 40 °C; flow rate 0.4 mL/min; mobile phases A 64 

(water with 0.1% formic acid), mobile phases B (acetonitrile: IPA, 90:10); 0-1 min (5% 65 

B), 1-12 min (5-80% B), 12-15 min (80-95% B), 15-16 min (95-100%B), 16-18 min 66 

(100%B), 18-18.1 min (100-5% B), 18.1-20 min (5% B); 1.5Kv (ESI+), 2.0Kv (ESI-) 67 

capillary.  68 

 69 

Three types of quality control samples, i.e. test mixtures, internal standards, and 70 

pooled biological samples were used in the metabolomics platform. The internal 71 

standards were added to the test samples in order to monitor analytical variations 72 

during the entire sample preparation and analysis process. The derivatized pooled 73 

samples for quality control were injected per14 samples. Raw data generated by 74 

UPLC-MS/MS were processed using the QuanMET software (v2.0, Metabo-Profile, 75 



5 
 

Co., Ltd, Shanghai, China) to perform peak integration, calibration, and quantification 76 

for each metabolite. The list of metabolites was selected to capture the microbiota-77 

related metabolites and some key host metabolites. Finally, 117 metabolites were 78 

selected. These metabolites mainly include amino acids, bile acids and fatty acids. 79 

 80 

Statistical analysis 81 

All statistical analyses were performed using Stata version 15 or R version 4.0.2. 82 

Participants were categorized into three groups (healthy, prediabetes and T2D) based 83 

on their diabetes status. To explore the compositional variation of gut antibiotic 84 

resistome, we correlated 37 factors (including demography, physiology and dietary 85 

factors) to the ARG subtype distance matrix (Bray-Curtis) using permutational 86 

multivariate analysis of variance (PERMANOVA). We then used Pearson correlation 87 

analysis to examine the association between α-diversity of gut antibiotic resistome 88 

and microbial gene richness. The principle coordinates analysis (PCoA) on Bray-89 

Curtis distance and PERMANOVA were performed to examine the structural 90 

differences of gut antibiotic resistome and gut microbiota among three different 91 

groups using the adonis function (permutations = 999). In addition, Procrustes 92 

analysis was performed to investigate the relationship between gut antibiotic 93 

resistome and gut microbiota, and the p value was generated based on 999 94 

permutations. We then examined the association between α-diversity indices of gut 95 

antibiotic resistome and gut microbiota and prevalent T2D using a logistic regression 96 

model, adjusted for potential confounders as follows: age, sex, body mass index 97 
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(BMI), physical activity, smoking status, drinking status, education attainment, 98 

household income level, Bristol stool scale and MGR. The α-diversity indices were z-99 

score normalized before regression analysis. 100 

 101 

To identify the markers of T2D, we used the least absolute shrinkage and selection 102 

operator (LASSO) regression model with 5 repeated 5-fold cross-validations based on 103 

the gut ARGs, microbial species and main covariates (age, sex, BMI, physical activity, 104 

smoking status, drinking status, education attainment, household income level, 105 

systolic blood pressure, diastolic blood pressure and Bristol stool scale). LASSO was 106 

implemented in the R package glmnet using a binomial response type for binary 107 

dependent variables (Non-T2D (healthy and prediabetes)/T2D, healthy/T2D, 108 

prediabetes/T2D)7. We assessed the predictive performance of the selected models by 109 

estimating the area under the receiver operation curve (AUC) for binary responses 110 

(alpha = 1; 100 lambda tested) (Fig S6). The selected value of ‘lambda.min’ was 111 

defined using cross-validation, the lambda controls the overall impact of LASSO. 112 

Then we merged the features with nonzero coefficients of the three models (Non-113 

T2D/T2D, healthy/T2D, prediabetes/T2D) as markers of T2D progression. 114 

 115 

Subsequently, the abundances of the markers were z score transformed. We used 116 

Kruskal-Wallis test and Mann-Whitney U test to examine the abundance differences 117 

of the marker ARGs and microbial species among healthy, prediabetes and T2D 118 

groups. The logistic regression was performed to investigate the odds ratio of the 119 
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markers for risk of T2D after adjustment for age, sex, BMI, smoking status, drinking 120 

status, education attainment, income level and physical activity. Here, p values were 121 

controlled by Benjamini-Hochberg method for multiple tests. FDR-corrected or raw p 122 

values < 0.05 were considered to be significant. 123 

 124 

Genome-wide association analysis of T2D-related ARG features. To further examine 125 

the probability that ARG features increased the risk of T2D, GWAS for ARG α-126 

diversity indices and T2D positively related ARG markers were conducted in 947 127 

participants with both host genetic and metagenomics data. For the targeted ARG 128 

features, we used log transformation and z-score normalization to change the skewed 129 

distribution before GWAS analysis. A mixed linear model-based leave-one-130 

chromosome-out association (MLMA-LOCO) analysis in GCTA was used to assess 131 

the association, fitting the first five genetic principal components of ancestry, age and 132 

sex as fixed effects and the effects of all the SNPs as random effects8.  133 

 134 

One sample Mendelian randomization analysis. To test if ARG features were 135 

causally linked to T2D, the genetic variants used for one sample MR analysis were 136 

extracted from the GNHS study with a moderate cutoff of p < 5 × 10-5. The weighted 137 

polygenic risk score for each trait was constructed with the effect size from the 138 

additive model. The two-stage one-sample analysis was implemented to estimate the 139 

potential casual association. The first stage included a regression of the ARGs or α-140 

diversity index on the polygenic risk score, adjusted for age at the time of stool 141 
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sample collection, sex and the first five genetic principal components of ancestry. The 142 

second stage included a logistic regression of T2D using the prediction value 143 

constructed with the first stage regression, adjusted for age, sex and the first five 144 

genetic principal components of ancestry. Results were presented as odds ratio per 1-145 

SD increase in polygenic risk score. 146 

 147 

Based on the identified T2D-related ARGs, we constructed a diabetes-ARG score 148 

(DAS) as a new feature to represent the gut antibiotic resistome associated with T2D. 149 

We used the formula to compute DAS as follows: 150 

DAS = Σଵ
୬(𝑂𝑅୧ − 1) × 𝐴௜       (2) 151 

Where n is the number of marker ARGs of T2D progression; ORi is the odds ratio of 152 

the i-th marker for risk of T2D; Ai is the i-th normalized abundance (z score) of ARGs. 153 

 154 

To test the reliability of DAS, we performed a logistic regression analysis to examine 155 

the cross-sectional association between DAS and T2D, adjusted for potential 156 

confounders. In addition, we assessed the cross-sectional correlation between DAS 157 

and glycemic traits, including fasting blood glucose, HbA1c, insulin and HOMA-IR 158 

(homeostatic model assessment of insulin resistance). The linear regression analysis 159 

was performed after adjustment for age, sex, BMI, smoking status, drinking status, 160 

education attainment, income level, physical activity. Considering that T2D related 161 

taxonomies of the gut microbiota may confound the above association, we also 162 

adjusted the Diabetes-Microbiota Score (DMS) constructed by the same method as 163 
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DAS. Moreover, the linear mixed models were used to examine the longitudinal 164 

association between DAS (baseline) and glycemic traits (repeat measure at baseline 165 

and follow-up visit) after excluding the baseline T2D cases, adjusted for age, sex, 166 

BMI, smoking status, drinking status, education attainment, income level, physical 167 

activity and DMS. In addition, we used a multivariable linear regression model to 168 

assess the cross-sectional association of the gut antibiotic resistome features 169 

(including DAS and α-diversity indices) with other cardiometabolic risk factors, 170 

including BMI, waist circumference, total cholesterol, triglycerides, HDL cholesterol, 171 

LDL cholesterol, TC/HDL ratio, systolic blood pressure and diastolic blood pressure. 172 

The dependent variables with skewed distribution were log-transformed before 173 

analysis (fasting blood glucose, insulin, HOMA-IR, TC/HDL-C and TG). The 174 

regression associations were expressed as the difference in cardiometabolic risk 175 

factors (in SD unit) per 1 SD difference in each gut antibiotic resistome feature.  176 

 177 

As we only used the resistome information at baseline of the cohort, it might be that 178 

the gut antibiotic resistome would change over time. To address this concern, we 179 

performed a Procrustes analysis in 278 participants of the cohort with a median 180 

follow-up of 3.2 years. The fecal samples of these participants were collected twice 181 

(baseline and a follow-up visit). 182 

 183 

Network analysis of ARG-microbe associations. Spearman correlation analysis was 184 

performed to examine the associations between T2D-related ARGs and T2D-related 185 
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gut microbial species, based on ‘Co-occurrence Network Analysis’ package 186 

(github.com/RichieJu520) 9. To explore the underlying associations among T2D-187 

related ARGs and all gut microbial species, we constructed a correlation matrix by 188 

calculating the pairwise Spearman correlation coefficients. A correlation between 189 

ARG-ARG, species-species, or ARG-species was considered significant if FDR-190 

corrected p < 0.05. We further applied Gephi to visualize the correlations (Spearman’s 191 

rho was ≥ 0.3) in a network interface and explore its topological properties.  192 

 193 

To fully explore the hidden deterministic (or non-random) co-occurrence patterns, we 194 

also computed the global co-occurrence associations between all the gut ARGs and 195 

microbial species identified. The observed (O%) and random incidences (R%) of co-196 

occurrence correlation between two group entities (i.e., ARG and/or species) were 197 

statistically checked using the method as described previously 9,10. Briefly, O% was 198 

calculated as the number of observed edges divided by total number of edges in the 199 

observed network, while R% was theoretically calculated by considering the 200 

frequencies of two group entities and assuming random association. Here co-201 

occurrence patterns with Spearman’s rho ≥0.6, O% ≥1.0 / R% ≥1.0, and O/R ≥1.5 202 

/ O/R ≤ 0.5 were considered as significant difference. 203 

 204 

We finally used Spearman correlation analysis to investigate the associations between 205 

gut antibiotic resistome features (DAS, Multidrug_emrE, Vancomycin_vanX, 206 
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Quinolone_norB and MLS_ermX) and 117 fecal metabolites. The concentrations of 207 

the metabolites were transformed to z-scores before analysis.  208 
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Fig. S1. Flow diagram of participants’ selection for the analyses of present study. 
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Fig. S2. Workflow for analysis of metagenomics sequencing data. Two distinct but 
complementary pipelines were used for metagenomics analysis. 19 antibiotic 
resistance gene (ARG) types and 805 ARG subtypes were annotated using ARG-
OAP2. 639 microbial bacteria species were identified using MetaPhlAn2. PCoA, 
principal coordinates analysis. 
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Fig. S3. Abundance and prevalence of gut antibiotic resistome in GNHS. A, The 
bar chart shows the prevalence of 17 antibiotic resistance genes (ARGs) types in 
participants with different diabetes status. B, The curve shows the association between 
ARGs subtype numbers and the prevalence among Healthy (n = 531), Prediabetes (n 
= 495) and T2D (n = 184) groups. C, The bar chart shows the prevalence of the ARGs 
types among different groups (differences between each two groups more than 3% are 
presented). D, The box plot shows the abundance of 17 core ARGs subtypes 
(prevalence = 100%). All box plots are the median with the interquartile range. MLS, 
Macrolide-Lincosamide-Streptogramin. 
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Fig. S4. The effect sizes of host factors in gut antibiotic resistome grouped by 
diabetes status. The effect sizes of host factors in human gut antibiotic resistome 
were calculated by PERMANOVA (Adonis, Bray-Curtis distance, permutations = 999) 
among Healthy (n = 392), Prediabetes (n = 401) and T2D (n = 154) groups. 
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Fig. S5. Correlations between gut antibiotic resistome diversity and microbiota. 
A, B, Correlation between microbial gene richness (MGR) and α-diversity indices 
(ARGs) evaluated by Pearson tests. C, Procrustes analysis of gut ARGs versus gut 
microbiota. ARGs and microbiota are shown as orange and blue dots, respectively. 
ARGs and microbiota from the same individual are connected by grey lines. 

 
  



17 
 

 Fig. S6. The comparison of inter-individual Bray-Curtis distance of gut 
antibiotic resistome.  Violin plots show the Bray-Curtis distance (y axis) among 
Healthy (n = 531), Prediabetes (n = 495) and T2D (n = 184) groups. p values from 
rank-based Wilcoxon test and Kruskal–Wallis test. 
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Fig. S7. The performance of models based on LASSO feature selection. LASSO 
regression models were performed with 5 repeated 5-fold cross-validations. The 
cross-validation AUCs were provided for both ARGs classifier (A-C) and microbiota 
classifier (D-F). Three dependent binary variables for antibiotic resistance genes 
marker selection: (A, D) Non-T2D (Healthy and Prediabetes)/T2D, (B, E) 
Healthy/T2D, (C, F) Prediabetes/T2D. LASSO, least absolute shrinkage and selection 
operator. 
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Fig. S8. Venn plot of biomarkers identified by LASSO models. Venn plot showing 
the number of biomarkers identified by gut ARGs classifier (A) and microbiota 
classifier (B) for different datasets: Non-T2D/T2D, Healthy/T2D and 
Prediabetes/T2D. LASSO, least absolute shrinkage and selection operator. 
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Fig. S9. Networks of co-occurring T2D-related ARGs and gut microbiota, 
grouped by diabetes status. Networks were presented based on correlation analysis 
among Healthy (n = 531), Prediabetes (n = 495) and T2D (n = 184) groups. A node 
stands for an ARG type/subtype or a species and a connection (i.e. edge) stands for a 
significant (FDR-corrected p < 0.05, Spearman’s rho ≥ 0.3) pairwise correlation. 
Network was colored by ARGs and phylums. Node size is proportional to the number 
of connections (i.e. degree). Ami, Aminoglycoside; Bet, Betalactam; Chl, 
Chloramphenicol; MLS, Macrolide-Lincosamide-Streptogramin; Mul, Multidrug; Qui, 
Quinolone; Tet, Tetracycline; Van, Vancomycin. 
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Fig. S10. Associations between gut antibiotic resistome features and fecal 
metabolites (n = 1012). The heatmap shows the Spearman correlation coefficients 
between gut antibiotic resistome features and fecal metabolites (purple text, showing 
fatty acids; yellow text, showing bile acids; blue text, showing amino acids). DAS, 
Diabetes-ARG score. *FDR-corrected p < 0.05, ** FDR-corrected p < 0.01, *** 
FDR-corrected p < 0.001. 
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