1 Supplementary Materials

2	Landscape of human gut antibiotic resistome and progression of diabetes
3	Menglei Shuai ^{1,2#} , Guoqing Zhang ^{3,4#} , Fang-fang Zeng ^{5,6#} , Yuanqing Fu ^{1,2,7#} , Xinxiu Liang ^{1,2} , Ling
4	Yuan ^{3,4} , Fengzhe Xu ^{1,2} , Wanglong Gou ^{1,2} , Zelei Miao ^{1,2} , Zengliang Jiang ^{1,2,7} , Jia-ting Wang ⁵ , Lai-
5	bao Zhuo ⁵ , Yu-ming Chen ⁵ *, Feng Ju ^{2,3,4} *, Ju-Sheng Zheng ^{1,2,7} *
6	
7	This word file includes:
8	Materials and Methods
9	Study design and participants
10	Metadata collection
11	Fecal metagenomics profiling
12	Genotyping data
13	Targeted fecal metabolome profiling
14	Statistical analysis
15	
16	Figs. S1 to S10
17	Fig. S1. Flow diagram of participants' selection for the analyses of present study.
18	Fig. S2. Workflow for analysis of metagenomics sequencing data.
19	Fig. S3. Abundance and prevalence of gut antibiotic resistome in GNHS.
20	Fig. S4. The effect sizes of host factors in gut antibiotic resistome grouped by
21	diabetes status.

Fig. S5. Correlations between gut antibiotic resistome diversity and microbiota.

- Fig. S6. The comparison of inter-individual Bray-Curtis distance of gut antibiotic
 resistome.
- Fig. S7. The performance of models based on LASSO feature selection.
- Fig. S8. Veen plot of biomarkers identified by LASSO models.
- Fig. S9. Networks of co-occurring T2D-related ARGs and gut microbiota,
- 28 grouped by diabetes status.
- 29 Fig. S10. Associations between gut antibiotic resistome features and fecal
- 30 **metabolites (n = 1012).**
- 31

32 Materials and Methods

33 Genotyping data

34 Host DNA was extracted from leukocytes using the TIANamp® Blood DNA Kit

35 (DP348, TianGen Biotech Co, Ltd., China) according to the manufacturer's

36 instructions. DNA concentrations were determined using the Qubit quantification

37 system (Thermo Scientific, Wilmington, DE, USA). Extracted DNA was stored at

38 -80 °C. Genotyping was carried out with Illumina ASA-750K arrays. Quality control

and relatedness filters were performed by PLINK1.9¹. Individuals with a high or low

40 proportion of heterozygous genotypes (outliers defined as 3 standard deviations) were

41 excluded ². Individuals who had different ancestries (the first two principal

42 components \pm 5 standard deviations from the mean) or related individuals (IBD >

43 0.185) were excluded ². Variants were mapped to the 1000 Genomes Phase 3 v5 by

44 SHAP EIT ^{3,4}, and then we conducted genome-wide genotype imputation with the

45 1000 Genomes Phase 3 v5 reference panel by Minimac3 ^{5,6}. Genetic variants with

46 imputation accuracy RSQR > 0.3 and MAF > 0.05 were included in our analysis.

47

48 Targeted fecal metabolome profiling

The absolute quantification of fecal samples (n = 1012) was performed by an ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system. Briefly, the order of all samples was randomly selected prior to preparation. 10 mg lyophilized feces were homogenized with 25μ L water and extracted with 185μ L cold ACN-Methanol (8/2, v/v). At Biomek 4000 station

54	(Biomek 4000, Beckman Coulter, Inc., Brea, California, USA), 30µl centrifuged
55	supernatant was derived with 20µl freshly prepared derivatives and mixed with
56	internal standards in 30°C for 60min. The derivatization agents were 200 mM 3-NPH
57	in 75% aqueous methanol and 96 mM EDC-6% pyridine solution in methanol. After
58	derivatization, 350μ l ice-cold 50% methanol solution was added to dilute the sample
59	and then retained at -20°C for 20 minutes. After 4000g centrifugation at 4 °C for 30
60	minutes, 135μ l supernatant was mixed and sealed with internal standards for each
61	sample. Subsequently, the derivatized samples and serial dilutions of derivatized stock
62	standards were analyzed randomly and quantitated by the UPLC-MS/MS. The
63	instrument setting was: ACQUITY UPLC BEH C18 analytical column (2.1*100
64	mm,1.7 μ M); column temperature 40 °C; flow rate 0.4 mL/min; mobile phases A
65	(water with 0.1% formic acid), mobile phases B (acetonitrile: IPA, 90:10); 0-1 min (5%
66	B), 1-12 min (5-80% B), 12-15 min (80-95% B), 15-16 min (95-100%B), 16-18 min
67	(100%B), 18-18.1 min (100-5% B), 18.1-20 min (5% B); 1.5Kv (ESI+), 2.0Kv (ESI-)
68	capillary.
60	

69

Three types of quality control samples, i.e. test mixtures, internal standards, and pooled biological samples were used in the metabolomics platform. The internal standards were added to the test samples in order to monitor analytical variations during the entire sample preparation and analysis process. The derivatized pooled samples for quality control were injected per14 samples. Raw data generated by UPLC-MS/MS were processed using the QuanMET software (v2.0, Metabo-Profile, Co., Ltd, Shanghai, China) to perform peak integration, calibration, and quantification
for each metabolite. The list of metabolites was selected to capture the microbiotarelated metabolites and some key host metabolites. Finally, 117 metabolites were
selected. These metabolites mainly include amino acids, bile acids and fatty acids.

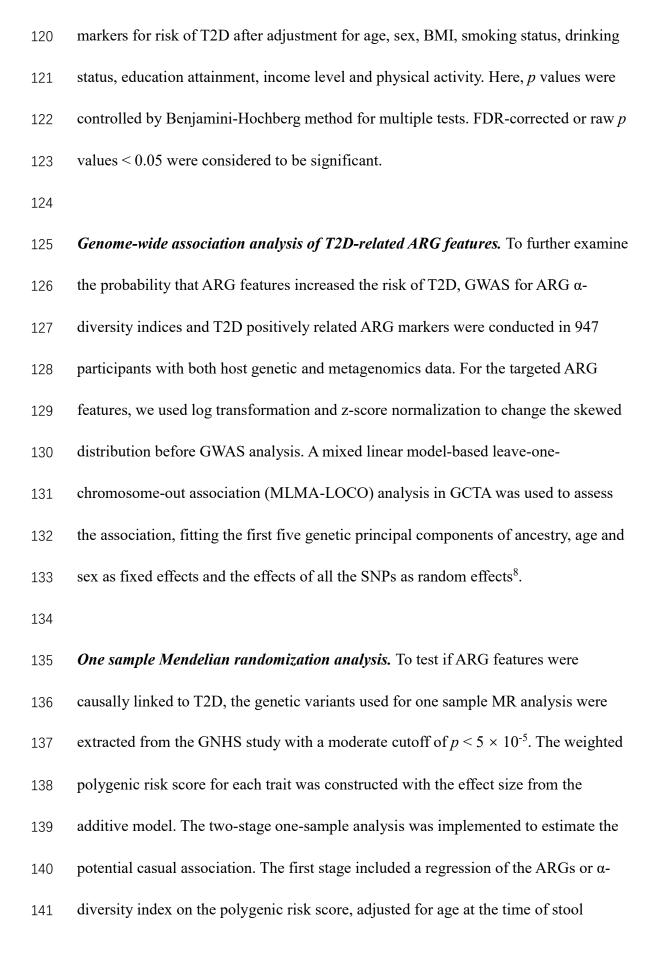
81 Statistical analysis

All statistical analyses were performed using Stata version 15 or R version 4.0.2. 82 Participants were categorized into three groups (healthy, prediabetes and T2D) based 83 84 on their diabetes status. To explore the compositional variation of gut antibiotic resistome, we correlated 37 factors (including demography, physiology and dietary 85 factors) to the ARG subtype distance matrix (Bray-Curtis) using permutational 86 87 multivariate analysis of variance (PERMANOVA). We then used Pearson correlation analysis to examine the association between α-diversity of gut antibiotic resistome 88 and microbial gene richness. The principle coordinates analysis (PCoA) on Bray-89 90 Curtis distance and PERMANOVA were performed to examine the structural differences of gut antibiotic resistome and gut microbiota among three different 91 groups using the *adonis* function (permutations = 999). In addition, Procrustes 92 analysis was performed to investigate the relationship between gut antibiotic 93 resistome and gut microbiota, and the p value was generated based on 999 94 permutations. We then examined the association between α -diversity indices of gut 95 96 antibiotic resistome and gut microbiota and prevalent T2D using a logistic regression model, adjusted for potential confounders as follows: age, sex, body mass index 97

98	(BMI), physical activity, smoking status, drinking status, education attainment,
99	household income level, Bristol stool scale and MGR. The α -diversity indices were z-
100	score normalized before regression analysis.
101	
102	To identify the markers of T2D, we used the least absolute shrinkage and selection
103	operator (LASSO) regression model with 5 repeated 5-fold cross-validations based on
104	the gut ARGs, microbial species and main covariates (age, sex, BMI, physical activity,
105	smoking status, drinking status, education attainment, household income level,
106	systolic blood pressure, diastolic blood pressure and Bristol stool scale). LASSO was
107	implemented in the R package glmnet using a binomial response type for binary
108	dependent variables (Non-T2D (healthy and prediabetes)/T2D, healthy/T2D,
109	prediabetes/T2D) ⁷ . We assessed the predictive performance of the selected models by
110	estimating the area under the receiver operation curve (AUC) for binary responses
111	(alpha = 1; 100 lambda tested) (Fig S6). The selected value of 'lambda.min' was
112	defined using cross-validation, the lambda controls the overall impact of LASSO.
113	Then we merged the features with nonzero coefficients of the three models (Non-
114	T2D/T2D, healthy/T2D, prediabetes/T2D) as markers of T2D progression.
115	
116	Subsequently, the abundances of the markers were z score transformed. We used

Kruskal-Wallis test and Mann-Whitney U test to examine the abundance differences
of the marker ARGs and microbial species among healthy, prediabetes and T2D

119 groups. The logistic regression was performed to investigate the odds ratio of the



142	sample collection, sex and the first five genetic principal components of ancestry. The
143	second stage included a logistic regression of T2D using the prediction value
144	constructed with the first stage regression, adjusted for age, sex and the first five
145	genetic principal components of ancestry. Results were presented as odds ratio per 1-
146	SD increase in polygenic risk score.
147	
148	Based on the identified T2D-related ARGs, we constructed a diabetes-ARG score
149	(DAS) as a new feature to represent the gut antibiotic resistome associated with T2D.
150	We used the formula to compute DAS as follows:
151	$DAS = \Sigma_1^n (OR_i - 1) \times A_i $ ⁽²⁾
152	Where n is the number of marker ARGs of T2D progression; OR_i is the odds ratio of
153	the i-th marker for risk of T2D; A_i is the i-th normalized abundance (z score) of ARGs.
154	
155	To test the reliability of DAS, we performed a logistic regression analysis to examine
156	the cross-sectional association between DAS and T2D, adjusted for potential
157	confounders. In addition, we assessed the cross-sectional correlation between DAS
158	and glycemic traits, including fasting blood glucose, HbA1c, insulin and HOMA-IR
159	(homeostatic model assessment of insulin resistance). The linear regression analysis
160	was performed after adjustment for age, sex, BMI, smoking status, drinking status,
161	education attainment, income level, physical activity. Considering that T2D related
162	taxonomies of the gut microbiota may confound the above association, we also

adjusted the Diabetes-Microbiota Score (DMS) constructed by the same method as

164	DAS. Moreover, the linear mixed models were used to examine the longitudinal
165	association between DAS (baseline) and glycemic traits (repeat measure at baseline
166	and follow-up visit) after excluding the baseline T2D cases, adjusted for age, sex,
167	BMI, smoking status, drinking status, education attainment, income level, physical
168	activity and DMS. In addition, we used a multivariable linear regression model to
169	assess the cross-sectional association of the gut antibiotic resistome features
170	(including DAS and α -diversity indices) with other cardiometabolic risk factors,
171	including BMI, waist circumference, total cholesterol, triglycerides, HDL cholesterol,
172	LDL cholesterol, TC/HDL ratio, systolic blood pressure and diastolic blood pressure.
173	The dependent variables with skewed distribution were log-transformed before
174	analysis (fasting blood glucose, insulin, HOMA-IR, TC/HDL-C and TG). The
175	regression associations were expressed as the difference in cardiometabolic risk
176	factors (in SD unit) per 1 SD difference in each gut antibiotic resistome feature.
177	
178	As we only used the resistome information at baseline of the cohort, it might be that
179	the gut antibiotic resistome would change over time. To address this concern, we
180	performed a Procrustes analysis in 278 participants of the cohort with a median
181	follow-up of 3.2 years. The fecal samples of these participants were collected twice
182	(baseline and a follow-up visit).
183	
104	Naturark analysis of ABC microba associations. Spearmon correlation analysis was

Network analysis of ARG-microbe associations. Spearman correlation analysis was
 performed to examine the associations between T2D-related ARGs and T2D-related

186	gut microbial species, based on 'Co-occurrence Network Analysis' package
187	(github.com/RichieJu520) ⁹ . To explore the underlying associations among T2D-
188	related ARGs and all gut microbial species, we constructed a correlation matrix by
189	calculating the pairwise Spearman correlation coefficients. A correlation between
190	ARG-ARG, species-species, or ARG-species was considered significant if FDR-
191	corrected $p < 0.05$. We further applied Gephi to visualize the correlations (Spearman's
192	rho was ≥ 0.3) in a network interface and explore its topological properties.
193	
194	To fully explore the hidden deterministic (or non-random) co-occurrence patterns, we
195	also computed the global co-occurrence associations between all the gut ARGs and
196	microbial species identified. The observed (O%) and random incidences (R%) of co-
197	occurrence correlation between two group entities (i.e., ARG and/or species) were
198	statistically checked using the method as described previously ^{9,10} . Briefly, O% was
199	calculated as the number of observed edges divided by total number of edges in the
200	observed network, while R% was theoretically calculated by considering the
201	frequencies of two group entities and assuming random association. Here co-
202	occurrence patterns with Spearman's rho ≥ 0.6 , O% $\ge 1.0 / R\% \ge 1.0$, and O/R ≥ 1.5
203	/ O/R \leq 0.5 were considered as significant difference.
204	

206 gut antibiotic resistome features (DAS, *Multidrug_emrE*, *Vancomycin_vanX*,

205

We finally used Spearman correlation analysis to investigate the associations between

- *Quinolone_norB* and *MLS_ermX*) and 117 fecal metabolites. The concentrations of
- 208 the metabolites were transformed to z-scores before analysis.

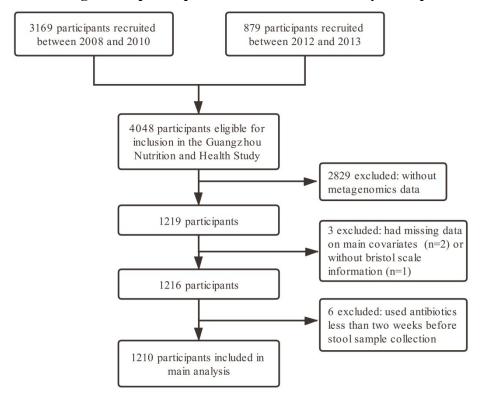


Fig. S1. Flow diagram of participants' selection for the analyses of present study.

Fig. S2. Workflow for analysis of metagenomics sequencing data. Two distinct but complementary pipelines were used for metagenomics analysis. 19 antibiotic resistance gene (ARG) types and 805 ARG subtypes were annotated using ARG-OAP2. 639 microbial bacteria species were identified using MetaPhlAn2. PCoA, principal coordinates analysis.

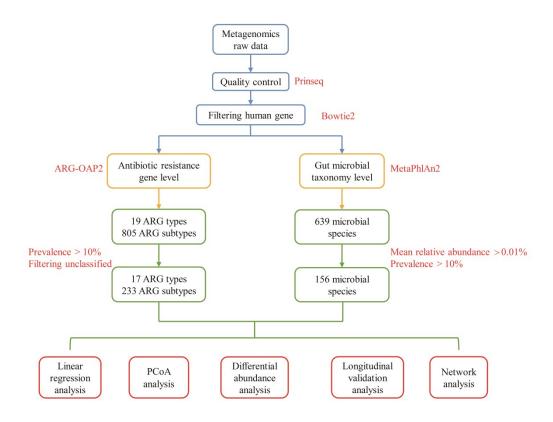


Fig. S3. Abundance and prevalence of gut antibiotic resistome in GNHS. A, The bar chart shows the prevalence of 17 antibiotic resistance genes (ARGs) types in participants with different diabetes status. **B**, The curve shows the association between ARGs subtype numbers and the prevalence among Healthy (n = 531), Prediabetes (n = 495) and T2D (n = 184) groups. C, The bar chart shows the prevalence of the ARGs types among different groups (differences between each two groups more than 3% are presented). **D**, The box plot shows the abundance of 17 core ARGs subtypes (prevalence = 100%). All box plots are the median with the interquartile range. *MLS*, *Macrolide-Lincosamide-Streptogramin*.

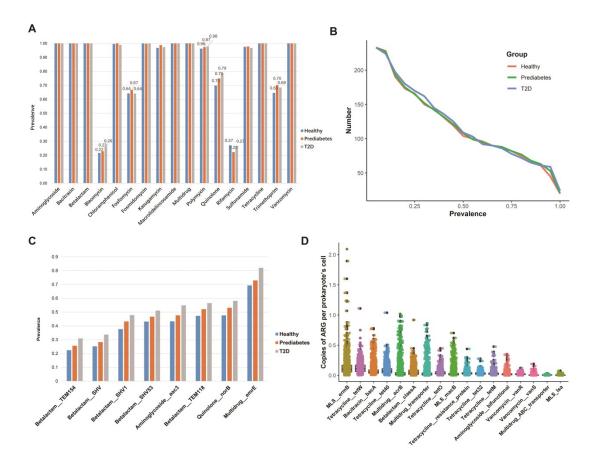


Fig. S4. The effect sizes of host factors in gut antibiotic resistome grouped by diabetes status. The effect sizes of host factors in human gut antibiotic resistome were calculated by PERMANOVA (Adonis, Bray-Curtis distance, permutations = 999) among Healthy (n = 392), Prediabetes (n = 401) and T2D (n = 154) groups.

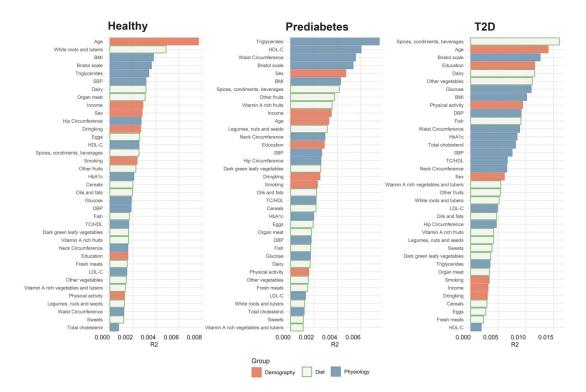


Fig. S5. Correlations between gut antibiotic resistome diversity and microbiota. A, B, Correlation between microbial gene richness (MGR) and α -diversity indices (ARGs) evaluated by Pearson tests. C, Procrustes analysis of gut ARGs versus gut microbiota. ARGs and microbiota are shown as orange and blue dots, respectively. ARGs and microbiota from the same individual are connected by grey lines.

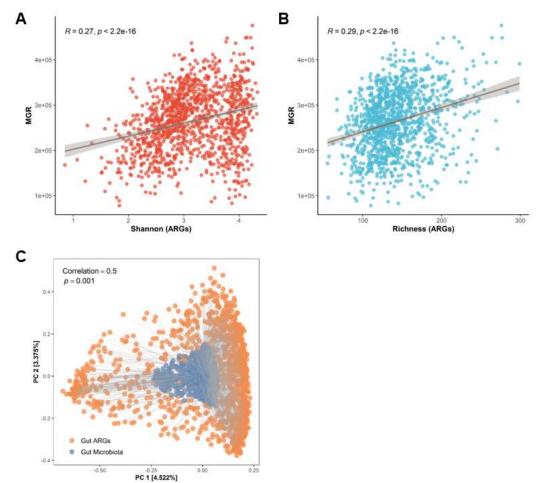


Fig. S6. The comparison of inter-individual Bray-Curtis distance of gut antibiotic resistome. Violin plots show the Bray-Curtis distance (y axis) among Healthy (n = 531), Prediabetes (n = 495) and T2D (n = 184) groups. *p* values from rank-based Wilcoxon test and Kruskal–Wallis test.

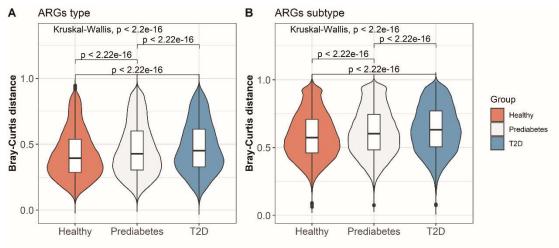


Fig. S7. The performance of models based on LASSO feature selection. LASSO regression models were performed with 5 repeated 5-fold cross-validations. The cross-validation AUCs were provided for both ARGs classifier (A-C) and microbiota classifier (D-F). Three dependent binary variables for antibiotic resistance genes marker selection: (A, D) Non-T2D (Healthy and Prediabetes)/T2D, (B, E) Healthy/T2D, (C, F) Prediabetes/T2D. LASSO, least absolute shrinkage and selection operator.

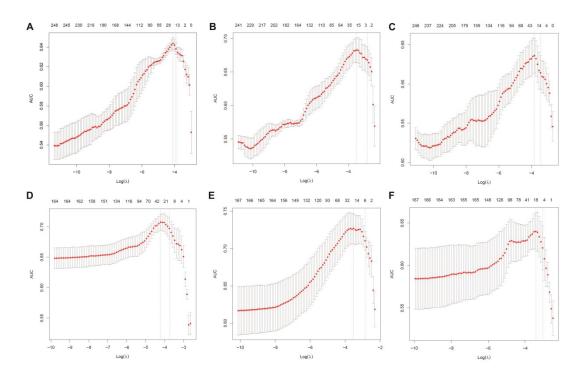


Fig. S8. Venn plot of biomarkers identified by LASSO models. Venn plot showing the number of biomarkers identified by gut ARGs classifier (**A**) and microbiota classifier (**B**) for different datasets: Non-T2D/T2D, Healthy/T2D and Prediabetes/T2D. LASSO, least absolute shrinkage and selection operator.

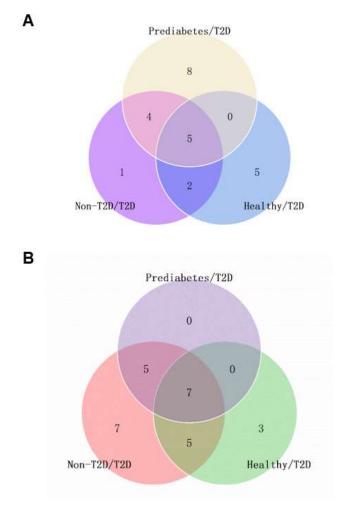


Fig. S9. Networks of co-occurring T2D-related ARGs and gut microbiota, grouped by diabetes status. Networks were presented based on correlation analysis among Healthy (n = 531), Prediabetes (n = 495) and T2D (n = 184) groups. A node stands for an ARG type/subtype or a species and a connection (i.e. edge) stands for a significant (FDR-corrected p < 0.05, Spearman's rho ≥ 0.3) pairwise correlation. Network was colored by ARGs and phylums. Node size is proportional to the number of connections (i.e. degree). *Ami, Aminoglycoside; Bet, Betalactam; Chl, Chloramphenicol; MLS, Macrolide-Lincosamide-Streptogramin; Mul, Multidrug; Qui, Quinolone; Tet, Tetracycline; Van, Vancomycin.*

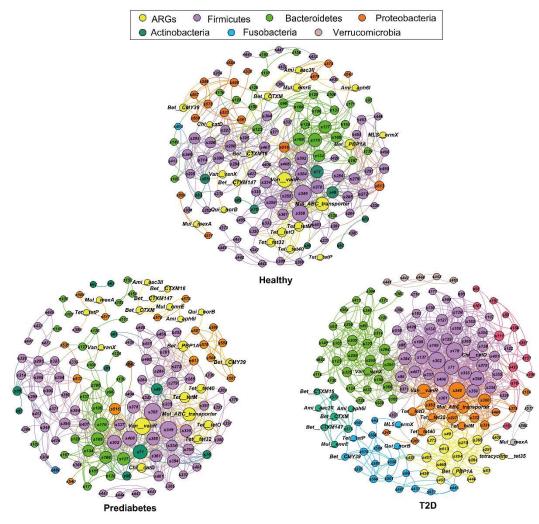
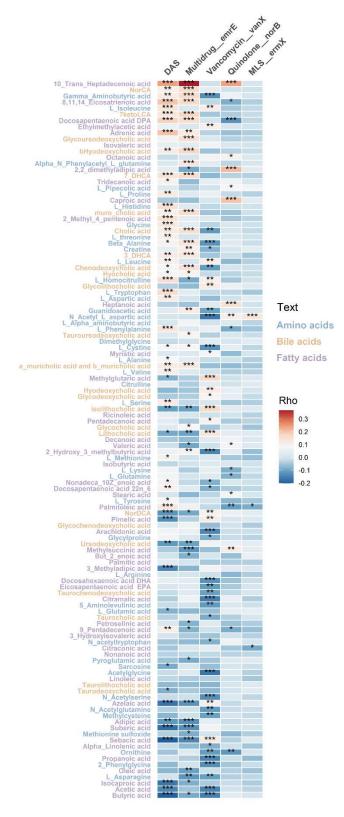


Fig. S10. Associations between gut antibiotic resistome features and fecal metabolites (n = 1012). The heatmap shows the Spearman correlation coefficients between gut antibiotic resistome features and fecal metabolites (purple text, showing fatty acids; yellow text, showing bile acids; blue text, showing amino acids). DAS, Diabetes-ARG score. *FDR-corrected p < 0.05, ** FDR-corrected p < 0.01, *** FDR-corrected p < 0.001.



References

- 1 Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559-575, doi:10.1086/519795 (2007).
- 2 Anderson, C. A. *et al.* Data quality control in genetic case-control association studies. *Nat Protoc* **5**, 1564-1573, doi:10.1038/nprot.2010.116 (2010).
- 3 Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. *Nat. Methods* **9**, 179-181, doi:10.1038/nmeth.1785 (2011).
- 4 Delaneau, O., Marchini, J., Genomes Project, C. & Genomes Project, C. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. *Nat Commun* 5, 3934, doi:10.1038/ncomms4934 (2014).
- 5 Das, S. *et al.* Next-generation genotype imputation service and methods. *Nat. Genet.* **48**, 1284-1287, doi:10.1038/ng.3656 (2016).
- 6 Clarke, L. *et al.* The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. *Nucleic Acids Res.* **45**, D854-D859, doi:10.1093/nar/gkw829 (2017).
- 7 Friedman, J., Hastie, T. & Tibshirani, R. glmnet: Lasso and elastic-net regularized generalized linear models. *R package version* **1** (2009).
- Yang, J. A., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A Tool for Genome-wide Complex Trait Analysis. *Am. J. Hum. Genet.* 88, 76-82, doi:10.1016/j.ajhg.2010.11.011 (2011).
- Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. *Isme Journal* 9, 683-695, doi:10.1038/ismej.2014.162 (2015).
- Ju, F., Xia, Y., Guo, F., Wang, Z. P. & Zhang, T. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. *Environ. Microbiol.* **16**, 2421-2432, doi:10.1111/1462-2920.12355 (2014).