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Data processing and joint calling 
Timothy Poterba, Chris Vittal, Duncan Palmer, Cara Mason, Konrad J. Karczewski, Namrata 
Gupta, Claire Churchhouse, Daniel G. MacArthur, Anthony Philippakis, Cotton Seed, Melissa R. 
Miller, Benjamin M. Neale 

Data processing 

 All CRAM files were re-processed according to the GATK Best Practices. Briefly, reads 

were aligned using BWA-MEM 0.7.15.r1140 and processed using Picard and GATK. For each 

sample, variants were called using the Genome Analysis Toolkit (GATK) 4.0.10.1. Samples 

were called individually using local realignment by HaplotypeCaller in gVCF mode, such that 

every position in the genome is assigned likelihoods for discovered variants or for the reference. 

gVCF outputs were then post-processed, further compressing "blocks" of homozygous 

reference calls to seven GQ bins: 0, 10, 20, 30, 40, 50 and 60. All analyses were performed on 

Google Cloud Platform. 

Joint calling 

 Many technologies used to represent, store, and compute on genomic data do not scale 

efficiently to datasets of hundreds of thousands of samples with whole exome or genome 

sequence data. The Hail project is invested in addressing these scaling limitations by 

developing new technology to enable these large callsets. One key innovation that allowed 

efficient analysis of such a large callset is the Hail SparseMT representation, a storage and 

analysis target that can serve as an alternative to the project VCF (pVCF) and exhibits strictly 

linear asymptotic scaling with the number of stored samples. The SparseMT is a conceptual 

representation for the variant-level data on a sequenced cohort. In the Hail library, we have 

developed an implementation of an efficient hierarchical merge algorithm to create a Hail 

SparseMT from single-sample gVCFs, and a rudimentary set of functionality for working with 

this object as an analysis target. 



 

Representation 

We will briefly describe the representation of the SparseMT and where it differs from a 

pVCF. First, the SparseMT contains a row for each locus defined in any input gVCF. While 

pVCF only includes a row for each variant site, the SparseMT contains rows for monomorphic 

sites where reference blocks begin. This leads to significantly more rows in the SparseMT 

compared to pVCF, though this difference shrinks with increasing sample size when rare 

variants are discovered at most positions in the genome. The alternate alleles field of the 

SparseMT at a given locus contains the set of all unique alternate alleles observed in any input 

gVCF for that locus (Fig. S1). 



 

 

Fig. S1 | SparseMT created from two gVCF inputs. Panels a and b display information 
contained in gVCFs for two distinct samples in a small genomic window. Panel c represents the 
merged SparseMT, which contains all loci present in either a or b. There is no entry for Sample2 
at chr1:3331 because Sample2’s gVCF does not contain the locus chr1:3331. The GT field has 
been renamed to LGT (local GT), and the LA (local alleles) field has been added to record the 
original alleles in each gVCF, which is important at chr1:3350, a locus where both input samples 
have a variant call. 
 

An entry of the SparseMT matrix corresponding to locus L and sample S is dense 

(defined) if the gVCF for sample S has a line for locus L, and sparse (missing) otherwise. If 

defined, the entry includes a light transformation of all information from the gVCF for S at locus 

L, with the two exceptions of the locus information (chromosome and position) and the alleles 



 

(reference and alternates). The chromosome and position are necessarily the same as those 

constituting L, and instead of including alleles as strings, the SparseMT has an additional field, 

LA, or “local alleles”, which is an array of integers. The value at each index i of this list is the 

index in the full list of alternate alleles of the SparseMT row at which the ith alternate allele from 

sample S’s gVCF can be found. The final transformation is a rename of GT and all fields that 

are “R-” or “A-” numbered, such as AD and PL, to LGT, LAD, LPL, etc. This rename reflects the 

change in meaning -- the alleles referred to by these fields are the ones defined in LA, rather 

than the full list of discovered alleles in the SparseMT row. 

It is important to note that the SparseMT representation is a lossless transformation of 

gVCFs -- the original gVCFs can be recreated by reversing the transformations defined above. 

 

Merge algorithm 

We have proposed the SparseMT as an efficient conceptual representation for efficiently 

storing cohort-level data sequencing data. We now describe a hierarchical merge algorithm that 

lends itself to scalable construction of a SparseMT.  

First, each input gVCF is converted to a single-sample SparseMT. This conversion 

involves trivial reorganizations and renames of fields (GT to LGT, as described above). The 

result is a SparseMT with the same number of rows as the gVCF and one column, where every 

entry is defined. 

Second, N SparseMTs are merged together into a new SparseMT. First, an outer join on 

loci is executed for the N SparseMTs, producing some number of intermediate rows with a locus 

(the join key), the alleles for each input SparseMT (which may be missing if a SparseMT did not 

contain that locus), and the entries associated with that locus for each SparseMT. The merged 

alleles are computed by taking the set of all unique alleles from all input SparseMT matrices, 

and sorting according to a deterministic string ordering function. The merged entries are 



 

computed by taking the full set of entries across join inputs, and updating one field: the values of 

each LA (local alleles) field must be recomputed to refer to the new, merged alternate alleles. 

The Hail framework features a concrete implementation of this hierarchical merge 

algorithm. In practice, this algorithm defaults to a value of 100 for the branch factor parameter, 

N, which performs well empirically and allows for the creation of a million-sample dataset in 

three rounds of merging. 

Dense matrix analysis 

 The significant scaling advantages of the SparseMT representation are not without cost. 

The sparsity prevents random access to reference block information at any specific variant, 

because most of the reference blocks spanning that variant will have been defined at earlier 

loci. Analyses that require access to reference block metadata (such as GQ or DP) can be 

implemented following a "densification" pass that carries forward an array of genotype values, 

one for each sample, corresponding to the most recent reference block entry on the same 

chromosome. The reference blocks in this array can be used to fill sparse entries for each locus 

in the SparseMT (as long as a candidate reference block spans the locus of interest). The 

necessary dense analysis target can thus be realized at low cost on the fly during analysis 

pipelines, then discarded. It is not necessary to save the dense matrix to durable storage, which 

would incur prohibitive cost. 

 

Phenotype data processing 

In order to automate the curation and harmonisation of the large collection of variable 

scalings, encodings, and follow-up responses in a coherent manner, we created a modified 

version of the PHEnome Scan ANalysis Tool (PHESANT), available at 

https://github.com/astheeggeggs/PHESANT. Unlike the original implementation (1), our version 

does not perform association analyses, but simply generates a collection of re-coded 

phenotypes. An outline of the PHESANT pipeline and our chosen filters are displayed in Fig. S2. 



 

We manually curated the collection of phenotypes for study, which we filter to as part of the 

pipeline. Re-codings of variables, and inherent orderings of ordinal categorical variables, are 

defined in the data-coding file, which is available in our GitHub repository. 

 

Fig. S2 | Phenotype curation pipeline. Raw phenotype data (gray outlined boxes) are passed to 
PHESANT, and a collection of filters (blue boxes) are applied. The thresholds shown here are the 
defaults in our modified version of PHESANT that can be altered in our code as desired using the 
flags displayed in parentheses. Grey filled boxes display the criteria for removal, and yellow filled 
boxes show the category of the variable after the rules in the blue boxes have been enforced. 
 

In addition to the inverse-rank normalization applied to the collection of continuous 

phenotypes, we also retain the raw version of the continuous phenotype, with no transformation 

applied to the data (though re-codings of the data to guard against spurious results are 

retained). Following all of these alterations and additions, we run this modified version of 

PHESANT on the phenotypes in our UK Biobank application using a 200Gb RAM virtual 

machine on the Google Cloud Platform. 

Upon applying the PHESANT pipeline to our selected collection of phenotypes, a small 

subset of categorical variables remain that should be sex-specific but are not excluded from the 

both-sexes collection of phenotypes. We manually identified this collection of sex-specific 

phenotypes and removed them from the both-sex phenotypes before subsequent analysis. 



 

All data is loaded into a Hail MatrixTable using a custom processing script 

(https://github.com/Nealelab/ukb_exomes/blob/master/hail/load_phenotype_data.py). Briefly, we 

parsed the PHESANT output, extracted ICD codes from the “first occurrence” data (which were 

run as binarized outcomes), parsed some custom phenotypes and covariates, and combined 

these into a phenotype MatrixTable. The MatrixTable is keyed by trait type (continuous, 

categorical, and ICD code), phenocode, sex, coding (for categorical traits), and modifier (raw vs 

inverse-rank normalized for continuous traits).  



 

Genotype, Sample, and Variant Quality Control 
Julia K. Goodrich, Katherine R. Chao, Laura Gauthier, Konrad J. Karczewski, Benjamin M. 
Neale, Daniel G. MacArthur, Grace Tiao 

 We performed quality control in a similar fashion to the approach used for the Genome 

Aggregation Database (gnomAD) (2). Notably, however, we included a number of additional 

metrics, including concordance between arrays and exomes and interval QC. 

Concordance between arrays and exomes 

We confirmed that all 301,495 samples with available array data had a high proportion of 

variant concordance between their exome and array data. We filtered the UK Biobank array 

data to autosomal regions and lifted the data to genome build GRCh38 prior to examining 

concordance. The minimum proportion concordance of non-reference sample genotypes was 

0.97 (mean 0.995). 

Interval QC 

We performed quality controls on intervals targeted by the exome capture before 

applying sample hard filters. In this interval QC, we investigated how much padding to add 

around the UK Biobank capture intervals and whether to check coverage across standard Broad 

exome calling intervals (available on Google Cloud Platform at gs://gcp-public-data--broad-

references/hg38/v0/exome_calling_regions.v1.interval_list) as well. We determined that padding 

more than 50 base pairs into the intron added too much noise and reduced sample call rate and 

coverage significantly. We also discovered that adding calling intervals unique to the Broad’s set 

of exome targets also reduced call rate and coverage. Therefore, we decided to keep variants 

only within the 50 base pair padded UK Biobank intervals. For sample QC, we also decided to 

filter to intervals where 85% of samples had a mean coverage of at least 20X (Fig. S3). 



 

 

Fig. S3 | Histogram showing the percentage of samples meeting 20X mean coverage for each 
exome capture interval. 
 

Sample QC 

Sex imputation 

We used Hail's impute_sex method to infer sex using common (allele frequency > 0.1%), 

non-pseudoautosomal, bi-allelic single nucleotide variants (SNVs) on chromosome X. We then 

computed non-pseudoautosomal chromosome X and chromosome Y coverage for each sample 

and normalized these values using sample-specific coverage across chromosome 20. We then 

checked the distribution of chromosome X and Y ploidies for XX and XY karyotypes to 

determine each karyotype's ploidy cutoffs (upper cutoff for single X: 0.994, lower cutoff for 

double X: 1.011, upper cutoff for double X: 1.295, lower cutoff for triple X: 1.321, lower cutoff for 



 

single Y: 0.015, upper cutoff for single Y: 0.290, lower cutoff for double Y: 0.320). The adjusted 

ploidy cutoffs helped us add additional granularity to the inferred sex, differentiating between 

X0, XX, XXX, XY, XXY, XYY, and XXYY karyotypes (Fig. S4). 

 

Fig. S4 | Normalized chromosome X ploidy plotted against normalized chromosome Y ploidy 
and colored by sex karyotype. XY samples are spread out in terms of their normalized 
chromosome Y coverage. This long tail of samples is likely due to mosaic loss of chromosome 
Y. 
 

Hard filters 

We applied three hard filters to the samples: sex imputation filters (removing any 

samples that were not inferred as XX or XY), a call rate filter (cutoff: 0.99), and a coverage filter 

(mean coverage cutoff 20X). We excluded hard-filtered samples from platform PCA, relatedness 

inference, ancestry imputation, and outlier detection so that these low quality samples would not 

influence our downstream results. 

 



 

Platform inference 

Although we do not expect there to be noticeable technical artifacts given that the 

samples were run on the same platform, we ran a principal component analysis (PCA) on the 

per-individual per-interval call rate matrix, as previously described (2), to make sure there were 

no significant clusters. Our platform PCA picked up a few clusters and showed some differences 

between the different sample batches on PCs 3 and 4 (Fig. S5). After some investigation, we 

discovered that the PC4 separated samples due to a common CNV (chr12:9531541-9531809). 

As PC3 showed some separation by batch, we decided to use batch status as a proxy for 

platform in further sample QC and a covariate for association analysis. 

 

Fig. S5 | Platform inference using missingness PCA. PC3 vs PC4 colored by batch. Note that 
the batch names indicate the additional samples added from that batch. Thus, ‘100K’ refers to 
data tranche 1, ‘150K’ refers to samples added in tranche 1.5 (the first 50K samples released to 
the public), ‘200K’ refers to samples added in tranche 2, and ‘300K’ refers to samples added in 
tranche 3. The separation in PC4 is driven by a common copy number variant. 
 



 

Relatedness inference 

We used Hail's pc_relate method to infer relatedness on SNVs that are autosomal, bi-

allelic, common (allele frequency > 0.1%), high call rate (> 99%), and LD-pruned with a cutoff of 

r2 = 0.1. We then used the maximal_independent_set method in Hail to keep the largest set of 

unrelated samples (samples without second degree or closer relationships; kinship > 0.1), 

prioritizing samples with greater mean depth. The related samples that were not in the maximal 

independent set were flagged. 

The majority of the samples removed during sample QC were samples inferred to have 

a second-degree or greater relationship with other samples in the dataset. This finding is not 

unexpected, as previous studies have shown that the UK Biobank data contains a large number 

(approximately 30% at third-degree or greater) of related samples (3).  

 

Ancestry imputation 

We used a hybrid method to infer ancestry. We projected the UK Biobank data onto the 

gnomAD population principal components (PCs) and then used a random forest classifier 

trained on gnomAD ancestry labels to assign ancestry to the UK Biobank samples. We 

observed that many samples labeled as African using this method were flagged as outliers by 

our downstream population-stratified outlier detection method. This seemed to be due to the fact 

that one cluster of samples labeled as African appeared highly admixed. To account for this, we 

ran a PCA on the UK Biobank samples and applied a clustering method (HDBSCAN). We found 

that this clustering method split the African labeled samples into additional clusters and reduced 

the number of samples flagged as outliers while also recapturing most of the same global 

population clusters observed in gnomAD. 

As a result, we chose to assign ancestry using a hybrid of the projection onto gnomAD 

PCs and the UK Biobank specific PCA clustering: for any sample that was assigned to a cluster 

using the UK Biobank PCA, the sample was given that cluster as their ancestry assignment in 



 

order to preserve the sub-structure observed using clustering. Any sample that was not 

assigned to a cluster was given the label from the initial (gnomAD) PCA projection and random 

forest classification. 

 

Outlier detection 

We flagged any sample falling outside 4 median absolute deviations (MADs) from the 

median of any of the following metrics (stratified by population and tranche as a proxy for 

platform), which were calculated using hail's sample_qc method: 

● Number of deletions 

● Number of insertions 

● Number of SNVs 

● Insertion : deletion ratio 

● Transition : transversion (TiTv) ratio 

● Heterozygous : homozygous ratio 

The final counts of samples is shown in Table S1. 

Table S1 | Final sample counts passing QC. "nfe" refers to samples inferred as having non-
Finnish European ancestry. Note that relatedness was run after hard filtering, so the total 
number of related and unrelated individuals is equal to the total number of samples less 486. 

 



 

Variant QC 

Variant filtering consisted of a combination of a random forest (RF) classifier and hard 

filters. We used the following training sets as true positives for training the random forest model: 

● Omni - SNVs present on the Omni 2.5 genotyping array and found in 1000 Genomes 

data 

● Mills - Indels present in the Mills and Devine data (4) 

● Transmitted singletons - Variants found in only two individuals, which were a parent-

offspring pair 

● Sibling singletons - Variants found in only two individuals, which were a sibling pair 

● Common (AF > 0.1%) and concordant (>90% non-reference concordance) array variants 

For the false positive training set in the random forest model, we used variants that fail 

traditional GATK hard filters: QUAL by depth (QD) < 2, strand bias estimated using Fisher's 

exact test (FS) > 60, or root mean square mapping quality (MQ) < 30. We balanced the number 

of variants in the true positive and false positive training sets by randomly downsampling the 

false positive training set to the same number of variants found in the true positive training set. 

RF training was performed on only variants that fall within intervals that pass interval QC 

(described above; intervals where >85% of samples have a mean coverage >20X). 

We used the following allele and site annotations as features in the random forest model 

(RF feature importance shown in Fig. S6): 

● Allele type - SNV, indel 

● Number of alleles - Total number of alleles present at the site 

● Variant type - SNV, indel, multi-SNV, multi-indel, mixed 

● Mixed site - Whether more than one allele type is present at the site 

● Spanning deletion - Whether there is a spanning deletion (STAR_AC > 0) that overlaps 

the site 



 

● Quality by depth - Sum of the non-reference genotype likelihoods divided by the sum of 

the depth in all carriers of that allele 

● Read position RankSum - Rank Sum Test for relative positioning of reference versus 

alternate alleles within reads 

● Mapping quality RankSum - Rank Sum Test for mapping qualities of reference versus 

alternate reads 

● Strand bias odds ratio - Symmetric Odds Ratio test of 2x2 contingency table to detect 

strand bias 

● Max probability of allele balance - Highest p-value for sampling the observed allele 

balance under a binomial model with p=0.5 (maximum across heterozygotes) 

 

RF probability cutoffs for calling a variant PASS were chosen to maximize sensitivity and 

specificity based on criteria such as the number of de novo mutations found in the 224 trios in 

the dataset and precision-recall (PR) curves (Fig. S6B) in two truth samples present in our data 

(NA12878 and a pseudo-diploid sample (syndip); syndip was sequenced at Broad, not with the 

UK Biobank cohort). Final thresholds were RF true positive probability of 0.4 (approximately 

87% of SNVs in well-covered intervals) for single nucleotide variants and 0.2 (approximately 

70% of indels in well-covered intervals) for indels. Finally, we also excluded variants with two 

hard filters: 

● Excess heterozygotes defined by an inbreeding coefficient < -0.3 

● Variants where no sample had a high quality genotype (see Genotype QC below) 

  



 

 

 

Fig. S6 | Variant QC (A): A summary of the features used in the random forests model and their 
relative importance in the model generated. (B): Precision and recall curves for the random 
forest classifier using two truth samples present in our data (NA12878 and syndip). The 
highlighted points at 87 for SNVs and 70 for indels indicate the cutoffs used for variant filtering. 
 

Genotype QC 

We filtered genotypes based on the previously defined “adj” criteria, with a modification 

for haploid calls on chrX and chrY for XY individuals. Specifically, we filtered to genotypes 

where depth >= 10 (5 for haploid calls), genotype quality >= 20, and minor allele balance > 0.2 

for all alternate alleles for heterozygous genotypes. 

Annotations 

Variants were annotated using VEP v95 as implemented in Hail using the default 

parameters for GRCh38 (including LOFTEE (2)). 

For downstream analyses, variants were grouped by Ensembl Gene ID and functional 

impact as follows: 

● pLoF: High-confidence LoF variants (as indicated by LOFTEE), including stop-gained, 

essential splice, and frameshift variants, filtered according to a set of first principles as 

described at https://github.com/konradjk/loftee. 



 

● missense|LC: Missense variants are grouped with in-frame insertions and deletions, as 

well as low-confidence LoF variants (filtered out by LOFTEE). The latter have a 

frequency spectrum consistent with missense variation (2), and affect a set of amino 

acids in a similar fashion (e.g. a frameshift in the final exon). 

● synonymous: All synonymous variants in the gene. 

  



 

Scaling association testing using Hail Batch 
Jacqueline I. Goldstein, Daniel King, Konrad J. Karczewski, Benjamin M. Neale, Cotton Seed 

 

In order to perform the association analysis using SAIGE-GENE, we developed a new 

scientific compute scheduler, Hail Batch. Hail Batch is a cloud-based, serverless, multi-tenant 

platform as a service (PaaS). To use Hail Batch, users construct a computational graph of jobs 

to be executed, called a batch, using a Python client library (or manually). The batch is then 

submitted to Hail Batch via a REST API. The Hail Batch scheduler both manages pools of 

worker virtual machines (VMs) on which to schedule user jobs and schedules jobs on those 

workers. Hail Batch includes a Web UI for monitoring batches and viewing individual job logs. 

The documentation can be found here: https://hail.is/docs/batch/index.html. Hail Batch is fully 

open source and is contained in the Hail project monorepo which can be found here: 

https://github.com/hail-is/hail/tree/main/batch. 

Motivation 

We built Hail Batch because we wanted a serverless solution with zero operational 

overhead for users. Based on our experience building Hail Query on Apache Spark, even with 

cloud platform managed services for running Spark like Google Dataproc, configuring, 

provisioning and managing compute clusters is a significant operational burden each user must 

bear (and scales with the number of users). In addition, by operating a multi-tenant compute 

cluster, we increase the utilization of resources amongst all users. The benefits are especially 

pronounced when users are working on iterative analyses (as opposed to batch processing) 

where they might need time to assess a result before moving on to subsequent analyses. 

Bioinformatic tools come in a variety of forms, from standalone binaries and command 

line tools like GATK and SAIGE, to Python and R packages, to cloud-native analytics tools like 

Hail Query. We wanted a scheduling infrastructure that would support building data processing 



 

pipelines across all these tool modalities. Hail Batch currently supports executing containerized 

command line tools and serialized Python functions. A Hail Batch based backend for Hail Query 

which executes JVM bytecode is under development. 

Finally, we wanted to support low scheduling overhead at a large scale so that users 

could decompose pipelines based on natural biological or data considerations rather than 

computational constraints. For example, running millions of relatively fast statistical tests 

(seconds or more) for permutation testing requires small scheduling overhead to be effective. 

The association analysis described here naturally decomposed into a job per megabase per 

phenotype, for a total of approximately 18 million jobs. 

We follow the principle that the systems we build today should themselves become 

building blocks of the systems we build tomorrow just as the association pipelines described 

herein build on Hail Batch. Therefore, we wanted a system that had a native program 

programmatic interface so it could be used by other systems. For example, the Hail team’s 

continuous integration (CI) system runs tests and deployments using Hail Batch. A future 

application of Hail Batch is serving as the underlying execution engine for an incremental joint 

caller service. 

User interface 

Hail Batch provides a Python library to construct and execute batches. A simple example 

is shown in Fig. S7. Rather than focus on the Python interface, which is described in detail in 

the documentation, we will focus on the main conceptual pieces of a Hail Batch computational 

graph. 



 

 

Fig. S7 | Hail Batch schematic for SAIGE association analysis. An example batch (the SAIGE 
pipeline used in this manuscript) is shown here. 
 

A batch is the unit of submitted work. A batch primarily consists of (1) user-defined 

attributes, and (2) an ordered list of N jobs. The user-defined attributes are for searching and 

identifying batches. Jobs are the individual units of scheduling and can depend on previous jobs 

to form a directed acyclic graph (DAG) representing the full computational pipeline. The main 

parts of the job description are: (1) user-defined attributes, (2) dependencies, (3) inputs and 

outputs, (4) compute resources, and (5) executor configuration. Jobs do not run until all of their 

dependencies have completed. There are mechanisms for cancellation and controlling whether 



 

jobs run if their dependencies failed or were cancelled. Compute resources (CPU, memory, disk 

and machine type) describe resources needed to schedule the job, which will be provisioned by 

the autoscaler as needed. We refer the reader to the documentation for more details.  

During the submission and execution of a batch, jobs pass through the following states: 

pending (dependencies are not complete), ready (dependencies are complete and the job is 

ready to be scheduled), creating (the job is provisioning resources for custom resource 

configurations), running (the job has been scheduled), and the terminal states: error (the 

executor failed to run the job), cancelled, failed (the job execution failed) or successful. The 

REST API and Web UI allow users to monitor running and historical batches and view individual 

job logs. 

There are currently two backends for executing a batch: (1) a local backend that runs 

jobs locally and (2) a service backend that submits jobs to the Hail Batch service. Currently, the 

Hail Batch service supports the Google Cloud Platform. 

Implementation 
Hail Batch is written in Python and makes extensive use of asyncio. Its deployment 

consists of three parts: (1) the front-end batch service, (2) batch-driver service, and (3) a 

MySQL database instance. The batch service serves the Web UI and user-facing REST API 

queries. It is stateless and autoscales based on incoming traffic. The batch-driver runs the 

job scheduler, the autoscaler which provisions worker VMs, and the admin Web interface. Job 

and batch configuration state is stored in MySQL and job logs are stored in Google Storage. 

Hail Batch relies on a Hail PaaS auth service for session ID based authentication. The Hail 

PaaS services are deployed in Kubernetes and the autoscaler uses the Google Compute 

Engine (GCE) directly to provision workers. Hail Batch deployment is controlled by the ci 

(continuous integration) service. We also maintain Terraform scripts for bootstrap and disaster 

recovery of Hail PaaS installations. 



 

 The autoscaler in the driver service is organized in terms of instance pools. There are 

two types of instance pools, shared and private. There are three shared pools for the three main 

GCP machine types. Shared pools autoscale based on the pool size and the number of ready 

jobs that run in that pool. Batch pools can scale down to zero, but we also support a minimum 

size so small jobs can be dispatched immediately without waiting to spin up resources. Shared 

pool workers schedule jobs across all users and resource utilization is higher because instance 

startup and shutdown is generally amortized over many jobs. By default, preemptible n1-

standard-16 machines are used, but jobs that use special machine types or require non-

preemptible instances can run in a private pool which provisions a VM per job. 

In addition to autoscaling, the Hail Batch scheduler implements a fair share algorithm 

across users in order to provide a responsive experience. Jobs are scheduled per user, in 

reverse order of the amount of resources already allocated. If there are not enough ready jobs 

to saturate a user’s allocation, the unused allocation is made available to the remaining users. 

This means new jobs submitted by a user to an active cluster will scale up quickly to the user’s 

share and all users enjoy a more responsive experience when the system is actively used. 

We make a few remarks on the scheduler performance. The scheduler is able to 

schedule ~80 jobs/s. The maximum cluster size the scheduler can support is a function of the 

expected job length. The maximum cluster size is (average job length in second) * 80. 

Therefore, for the 15-30m SAIGE jobs used in the association analysis here, the scheduler is 

theoretically (and was practically) able to saturate a ~100K core pool of workers. 

Hail Batch currently supports two executors on worker VMs: Docker and the Java Virtual 

Machine (JVM). The JVM executor is used by Hail Query service. The Docker executor includes 

the details necessary to run a docker container: image, environment variables, command line, 

etc. Jobs run on the worker VMs in three steps: input, main and output. The input and output 

steps are responsible for copying between object storage and the local filesystem. For copying, 

we developed a pluggable Python asyncio filesystem abstraction and high-performance parallel 



 

copy management engine which supports local files, Google Cloud Storage, S3 and HTTP(S) 

(read-only). The main step executes the user’s code.  



 

Association testing and quality control 
Konrad J. Karczewski, Wenhan Lu, Jacqueline I. Goldstein, Daniel King, Wei Zhou, Cotton 
Seed, Benjamin M. Neale 

Association testing framework 

We performed association testing on the quality-controlled genotype data using SAIGE-

GENE (5), following the recommendations by the authors. The genetic relatedness matrix 

(GRM) was computed using a dataset sampled from allele frequency categories from the 

genotype MatrixTable considering only autosomal variants with a minimum call rate of 95%, 

including approximately 2,000 variants from each of Allele Count (AC) 1-5, AC 6-10, and AC 11-

20; and approximately 10,000 variants from each of: AC 20-AF 0.1%, AF 0.1-1%, AF 1-10%, AF 

> 10%. These variants were LD-pruned to r2 = 0.1, and exported into PLINK format. A sparse 

GRM was computed using step0 of SAIGE-GENE using the default parameters, with 2,000 

markers used for the kinship matrix, and a relatedness cutoff of 0.125. We further created a 

“gene map” file for each megabase, which included information about the variants to be 

analyzed together in each group test. We included 3 groups: pLoF variants, including only those 

annotated as high-confidence by LOFTEE; missense-like variants, including missense variants 

and variants annotated as low-confidence by LOFTEE; and synonymous variants. The script for 

pre-processing is available at 

https://github.com/Nealelab/ukb_exomes/blob/master/hail/pre_process_saige_data.py. 

The remainder of the process was parallelized using Hail Batch (Fig. S7). For each 

megabase of the genome, we exported a BGEN from the genotype MatrixTable with all variants 

that lie in genes that have a starting coordinate within that megabase. For each phenotype, we 

exported a flat file from the phenotype MatrixTable with the covariates used for analysis: age, 

sex, age2, and 20 principal components, as well as interaction terms of age * sex and age2 * 

sex. The phenotype data was combined with the sparse GRM computed above to fit a null 

model (without genotypes) using step1 of SAIGE-GENE with the default parameters and the 



 

covariates described above. Finally, the genotype tests were run using the BGEN from each 

megabase, and the null model from each phenotype using step2 of SAIGE-GENE with the 

default parameters, plus maxMAF=0.5, LOCO=FALSE, and IsSingleVarinGroupTest=TRUE. 

The results across all megabases were loaded into two Hail Tables for each phenotype, for the 

group tests and single variant tests. The pipeline is available at 

https://github.com/Nealelab/ukb_exomes/blob/master/saige_exomes.py with helper scripts that 

can be found at https://github.com/Nealelab/ukb_common/blob/master/utils/saige_pipeline.py. 

 We combined the phenotype-level Hail Tables into a Hail MatrixTable using a 

hierarchical merge, along with phenotype metadata from SAIGE, resulting in one MatrixTable 

for the group tests and one for the single variant tests. We computed lambda GC values for 

each phenotype and gene (see below) using the hl.methods.statgen._lambda_gc_agg 

aggregator in Hail. These datasets are publicly released and serve the browser framework 

described below. 

 

Random phenotype analysis 

 In order to test the asymptotic properties of our tests, we simulated 314 heritable 

phenotypes using the sparseMVN package in R (6), using the genetic relatedness matrix 

generated by SAIGE. From these normal distributions, we simulated continuous phenotypes, as 

well as binary phenotypes with varying prevalences from 10-4 to 50%. We further generated a 

series of phenotypes of varying heritabilities by introducing an additional noise component 

(rnorm) and weighting by the square root of the desired heritability. We performed association 

testing on these phenotypes and computed lambda GC values as above, and here, we show 

the qq-plots for the single-variant and group (SKAT-O and Burden) tests (Fig. S8). 



 

 

Fig. S8 | QQ-plots of randomly generated heritable (heritability = 100%) phenotypes for single-
variant tests (left) and for group tests (SKAT-O, middle; and burden tests, right). The increasing 
prevalence of each binary phenotype is indicated by the label on the right (1e-4 to 0.5), followed 
by continuous traits.  
 



 

 We summarize the information in these plots using the lambda GC metric, which is 

shown in fig. S9. Notably, in Figs. S8-9, we can see increased instability of the QQ-plot and 

lambda values for rarer variants especially for rarer outcomes, suggesting the need for an allele 

frequency threshold for large-scale analyses. This is consistent with the minimum frequency and 

prevalence required to achieve statistical significance at this sample size (Fig. S10). 

 

Fig. S9 | Lambda GC by cumulative allele frequency (CAF) by heritability. Additional heritability 
fractions are shown by the label on the right. 
 



 

 

Fig. S10 | Power for rare variant associations. The minimum p-value possible from a protective 
mechanism with an odds ratio = 0: here, we compute the p-value of a chi-squared test of the 
case where the variant is absent from cases, while controls have a frequency as plotted. For the 
color-scale, a second logarithm is applied to p values below 10-10. 
 

To compute an effective number of tests and thus a p-value threshold for each 

phenotype, we took the minimum p-value for each of the simulated continuous phenotypes: the 

median of this value across all phenotypes was 5 x 10-6 for SKAT-O tests, 1.3 x 10-5 for burden 

tests, and 1.6 x 10-7 for single-variant tests. Thus, for downstream analyses, we computed the 

experiment-wise significance threshold as 2.5 x 10-8 for SKAT-O tests, 6.7 x 10-7 for burden 

tests, and 8 x 10-9 for single-variant tests. 

 

Allele frequency filters 
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for continuous phenotypes are not significantly affected by the change of CAF. A smaller 

number of cases and lower level of CAF results in less stable values of lambda. Because of the 

highly deflated pattern of lambda GC values observed in genes with CAF 0-0.0001, we filtered 

out genes with CAF < 0.0001. 

 

Fig. S11 | Lambda GC for each phenotype vs case count, split by CAF interval for SKAT-O, 
SKAT and burden tests. 
 

Test calibration filtering 

Removing genes with CAF < 0.0001 results in improved lambda GC values (fig. S12). 

Further, we filtered association statistics with standard errors (SE) of 0, as these were the result 

of a bug in the version of SAIGE-GENE used herein (which has since been corrected). 

 



 

 

Fig. S12 | Lambda GC for each phenotype vs case count for SKAT-O, SKAT and burden tests, 
before and after filtering out genes with CAF < 0.0001 and coverage < 20. 
 

 Finally, due to the large number of phenotypes available, we devised a metric for the 

calibration of individual genes, a lambda GC for each gene across phenotypes. For most genes, 

this metric is well-behaved for synonymous variants (95% range). However, it also marks 

outliers for removal, and appears to be correlated with mean sequencing coverage (Fig. S13). 

Thus, we removed genes with coverage < 20 as well as genes that have a synonymous lambda 

GC < 0.75. 



 

 

Fig. S13 | Coverage vs gene-based lambda GC, for SKAT-O (A) and burden tests (B). 
 



 

After applying the above filters, we recompute lambda GC for each phenotype (Fig. S14) 

and gene (Fig. S15). For downstream analyses, we filter to phenotypes with lambda GC at least 

0.75. 

 

Fig. S14 | Lambda GC for each phenotype. The distribution of lambda GC values for each 
phenotype is shown, broken down by trait type, test type, and set of variants used in the lambda 
calculation. 
 



 

 

Fig. S15 | Lambda GC for each gene. The distribution of lambda GC values for each gene is 
shown, broken down by test type and set of variants used in the lambda calculation. 
 

Independent phenotypes 

 For large-scale analyses, we pruned to a set of relatively uncorrelated phenotypes. 

Using the UKB phenotype MatrixTable, we generated a pairwise correlation table using a matrix 

multiplication of the table and its transpose (Fig. S16A), and filtered the table to phenotype pairs 

with correlations (r2) over 0.5. We then applied the maximal_independent_set function in Hail to 

the remaining phenotype pairs with a tie-breaker function preferring phenotypes with more 

cases, resulting in a set of 602 related phenotypes to remove from the dataset (Fig. S16B). A 

summary of the final QC steps is shown in Table S2. 



 

 

Fig. S16 | Independence of phenotypes. (A): A histogram of the number of phenotype pairs by 
correlation (r2). (B): The number of phenotypes that would be removed by the maximum 
independent set method, by r2 threshold. 
 

 

 

 

 



 

Table S2 | QC of summary statistics. All filters are applied sequentially. 
 

Description Count 
(% Percentage Remaining) 

pLoF Missense Synonymous Total 

Group 
(SKAT-O) 

Before filtering 18,527 19,578 19,545 57,650 

Number of variants >= 2 17,930 
(96.8%) 

19,551 
 (99.9%) 

19,499 
(99.8%) 

56,980  
(98.8%) 

Mean coverage > 20 17,728 
 (95.7%) 

19,236  
(98.3%) 

19,219 
(98.3%) 

56,183 
 (97.5%) 

CAF > 0.01% 11,171 
(60.3%) 

19,183 
(98.0%) 

19,109 
(97.8%) 

49,463 
(85.8%) 

Lambda of the 
synonymous group above 

0.75  

9,558 
(51.6%) 

15,457 
(79.0%) 

15,477 
(79.2%) 

40,492 
(70.2%) 

Variant Before filtering 455,445 4,951,755 2,164,579 7,575,993 
(NA: 4,214) 

Annotation defined 
   

7,571,779 
(99.9%) 

AF > 0.01% 8,865 
 (1.9%) 

208,723 
(4.2%) 

132,353 
(6.1%) 

349,941 
(4.6%) 

  

Continuous Categorical Disease 
(ICD) 

Total 

Phenotype 
(SKAT-O) 

Before filtering 1,117 1,902 681 3,700 

Lambda above 0.75 1,117 
(100%) 

523 
(27.5%) 

310 
(45.5%) 

1,950 
(52.7%) 

Correlation < 0.5 559 
(50.0%) 

493 
(25.9%) 

310 
(45.5%) 

1,362 
(36.8%) 

 

 

Comparison to known hits 

We compared the significant associations with height discovered from our results with 

the 91 height-associated variants (p < 2 x 10-7) and 10 height-associated genes (p < 5 x 10-7) 

discovered in GIANT (7). Among the 91 rare/low-frequency variants associated with adult height 

in GIANT, 43 of the variants were found to be associated with height at p < 8 x 10-9, and 81 

variants were found to be associated with height at p < 0.05 in UK Biobank (Table S3-



 

Table S4). Among the 10 genes associated with height in GIANT, only UGGT2 is found 

associated with height at p < 2.5 x 10-8 (SKAT-O), and all but one were found at nominal 

significance (p < 0.05) for either missense or pLoF variants (Table S5). 

Table S3 | Comparison to 32 rare (MAF < 1%) variants associated with adult height in GIANT; in 
UK Biobank, 16 of these variants are found to be associated with height at p < 8 x 10-9 (blue), 
and 30 are associated with height at p < 0.05 (light blue). 

 

Locus Allele 
(Ref) 

Allele 
(Alt) Annotation Gene 

P-value 

UK 
Biobank 

GIANT 

Discovery Validatio
n Combined 

1:32673514 G C missense IQCC 4.47E-09 7.92E-08 3.83E-06 1.34E-12 

1:41540902 G A missense SCMH1 6.97E-22 1.58E-25 9.42E-13 1.35E-36 

1:41618297 G A missense SCMH1 1.39E-14 1.92E-15 1.32E-08 1.80E-22 

1:149902342 C T missense MTMR11 8.91E-11 4.16E-06 7.11E-06 3.03E-10 

1:183495812 A G missense SMG7 1.25E-08 4.97E-11 8.94E-05 1.61E-14 

1:223178026 T C missense DISP1 3.14E-08 1.11E-09 1.22E-06 1.27E-14 

2:219920461 T A missense IHH 4.12E-06 1.09E-15 1.48E-09 1.85E-23 

2:220078652 C T missense ABCB6 2.32E-13 3.43E-13 4.40E-04 2.47E-15 

3:46939587 C T missense PTH1R 2.14E-06 1.30E-11 5.48E-10 1.14E-19 

4:73179445 C T missense ADAMTS3 5.00E-09 1.82E-08 1.32E-04 1.30E-11 

4:120422407 T G missense PDE5A 2.77E-08 7.50E-17 1.28E-08 2.65E-23 

5:32784907 G A missense NPR3 6.37E-16 1.05E-08 1.78E-06 7.91E-14 

5:64766798 G A missense ADAMTS6 1.01E-11 7.82E-09 1.37E-08 4.80E-16 

5:127668685 G T missense FBN2 6.44E-22 2.47E-33 5.06E-20 1.47E-52 

5:172755066 C A missense STC2 2.96E-29 5.69E-15 1.32E-17 1.15E-30 



 

6:155450779 A G missense TIAM2 NA 1.45E-08 8.50E-01 3.96E-08 

7:73482987 G A missense ELN 1.95E-08 2.63E-06 1.51E-03 2.31E-08 

8:135614553 G C missense ZFAT 3.86E-37 4.42E-26 1.20E-14 6.12E-38 

8:135622851 G A missense ZFAT 5.82E-08 1.54E-12 5.94E-18 2.05E-28 

11:27016360 G A missense FIBIN 7.06E-08 5.79E-12 1.56E-03 3.26E-14 

11:94533444 G A missense AMOTL1 8.90E-05 9.01E-16 3.84E-07 2.84E-21 

12:58138971 G A missense TSPAN31 1.46E-01 8.26E-08 2.85E-03 5.50E-09 

12:121756084 G A missense ANAPC5 1.65E-15 1.09E-11 1.44E-11 1.45E-21 

15:44153571 C T missense WDR76 5.04E-03 1.56E-06 3.42E-04 2.32E-09 

15:89424870 G T missense HAPLN3 1.94E-23 2.84E-13 2.43E-11 1.02E-22 

16:31474091 A G missense / 
splice acceptor ARMC5 5.27E-08 5.88E-12 1.16E-03 1.62E-13 

16:47684830 C A missense PHKB 4.97E-08 3.96E-14 1.04E-01 3.43E-12 

16:67470505 G A missense HSD11B2 3.78E-04 1.27E-07 3.38E-04 1.97E-10 

16:84900645 G A missense CRISPLD2 4.54E-10 9.13E-12 4.34E-09 2.92E-19 

16:84902472 G A missense CRISPLD2 6.08E-16 7.75E-14 3.49E-08 2.36E-20 

16:88798919 G T missense PIEZO1 5.02E-12 5.27E-12 1.99E-08 8.68E-19 

X:66941751 C G missense AR 3.84E-06 7.05E-07 7.12E-09 2.67E-14 

 
Table S4 | Comparison to 59 low-frequency (MAF between 1% and 5%) variants associated 
with adult height in GIANT; in UK Biobank, 7 of the variants were not tested, 27 of these 
variants are found to be associated with height at p < 8 x 10-9 (blue), and 51 are associated with 
height at p < 0.05 (light blue).  
 

Locus Allele 
(Ref) 

Allele 
(Alt) Annotation Gene 

P-value 

GIANT 



 

UK 
Biobank Discovery Validation Combine

d 

1:51873967 G A missense EPS15 3.96E-12 5.07E-08 7.60E-11 2.56E-17 

1:119427467 A C missense TBX15 4.21E-20 1.61E-24 4.19E-15 2.79E-36 

1:150551327 G A missense MCL1 2.00E-16 2.16E-09 7.86E-12 1.55E-19 

1:154987704 C T missense ZBTB7B 4.26E-07 7.30E-17 4.46E-10 3.46E-25 

1:180886140 C T missense KIAA1614 1.26E-05 1.41E-06 4.51E-04 2.63E-09 

2:20205541 C T missense MATN3 7.28E-29 2.67E-23 6.60E-19 3.74E-41 

2:219949184 C T intron NHEJ1 NA 5.96E-21 1.12E-15 8.20E-37 

2:179474668 G A missense TTN NA 1.35E-07 2.15E-01 3.44E-07 

2:233077064 A G intron DIS3L2 NA 2.35E-16 2.58E-15 6.46E-31 

3:14214524 G A missense XPC 1.05E-06 1.22E-08 1.68E-02 1.29E-08 

3:47162886 C T missense SETD2 7.73E-07 2.24E-08 2.22E-07 1.65E-13 

3:49162583 C T missense LAMB2 2.63E-28 3.28E-12 1.33E-16 3.49E-27 

3:98600385 T C missense DCBLD2 2.46E-04 1.23E-07 5.62E-05 1.68E-12 

4:5016883 G A missense CYTL1 3.98E-13 2.01E-17 6.68E-11 1.86E-25 

4:87730980 C T missense PTPN13 1.45E-21 1.94E-19 1.38E-15 9.43E-32 

4:135121721 T C missense PABPC4L 4.36E-05 1.39E-13 1.33E-04 7.54E-16 

4:144359490 C T missense GAB1 3.92E-05 1.04E-08 3.24E-04 4.29E-12 

4:154557616 C T missense TMEM131L 8.22E-07 7.75E-08 5.75E-06 2.18E-12 

5:102338811 A G missense PAM 1.88E-05 3.76E-06 8.47E-06 1.63E-10 

5:126250812 C T missense 44258 1.94E-02 4.25E-08 2.45E-03 1.67E-10 

5:135288632 A G missense LECT2 8.76E-04 1.02E-07 4.77E-04 1.36E-09 

5:172196752 A G missense DUSP1 4.34E-10 4.00E-14 1.26E-06 1.93E-20 



 

5:176637471 G A missense NSD1 8.11E-17 2.38E-17 2.62E-12 4.27E-30 

5:176722005 G A missense NSD1 5.41E-26 1.86E-26 8.42E-18 2.32E-41 

6:30851933 G A intron DDRI NA 1.11E-08 1.24E-05 4.64E-13 

6:34730395 C T synonymous SNRPC 1.29E-33 9.21E-33 9.59E-31 3.45E-60 

6:41903798 C A missense CCND3 2.41E-25 5.51E-17 3.41E-08 1.28E-22 

7:99489571 G A 3'UTR TRIM4 NA 3.28E-10 2.26E-07 1.40E-17 

7:100490077 G A synonymous ACHE NA 8.59E-10 2.92E-02 2.98E-10 

7:135123060 G C missense CNOT4 8.92E-13 2.31E-17 5.04E-10 3.90E-26 

8:42226805 C G missense POLB 2.45E-05 1.95E-06 1.30E-02 1.88E-07 

9:34660864 C T missense IL11RA 6.11E-08 5.20E-13 4.42E-03 4.01E-13 

9:95063947 C T missense NOL8 2.67E-03 2.56E-06 3.45E-02 3.33E-06 

10:79580976 G A missense DLG5 1.64E-09 2.72E-11 5.15E-11 7.66E-20 

10:97919011 A G missense ZNF518A 5.64E-06 9.94E-08 3.05E-03 3.91E-09 

11:65715204 G A missense TSGA10IP 2.34E-30 1.82E-21 1.41E-23 1.52E-43 

12:7548996 C G missense CD163L1 2.15E-02 4.11E-08 6.68E-02 1.87E-08 

12:69140339 G C missense SLC35E3 1.11E-08 1.13E-09 5.UE-04 1.29E-11 

12:104408832 T C missense GLT8D2 1.24E-09 8.72E-10 5.82E-10 1.60E-17 

13:50842259 G A intron DLEU1 NA 2.33E-37 7.02E-25 5.66E-57 

14:23313633 G A missense MMP14 1.82E-06 1.72E-08 7.81E-09 3.27E-16 

14:24707479 G A missense GMPR2 3.18E-10 3.67E-16 1.34E-11 2.13E-29 

14:45403699 C A missense KLHL28 2.43E-06 1.55E-06 4.13E-04 3.05E-09 

14:70633411 C T missense SLC8A3 1.45E-10 2.49E-11 2.02E-06 2.03E-16 

14:94844947 C T missense SERPINA1 5.66E-71 1.39E-45 2.50E-34 1.72E-75 



 

14:101349454 G T missense RTL1 2.04E-08 1.17E-11 2.12E-04 2.50E-15 

15:34520687 T C missense EMC4 2.91E-02 1.16E-06 2.19E-02 1.60E-07 

15:72462255 C T missense GRAMD2A 9.95E-21 8.72E-17 3.66E-13 1.28E-27 

15:89388905 C T synonymous ACAN 1.06E-105 4.30E-72 1.08E-56 3.79E-130 

16:4812705 A G missense ZNF500 2.88E-06 8.61E-17 2.34E-07 2.89E-21 

16:24804954 A T missense TNRC6A 8.81E-13 1.08E-09 1.65E-07 1.90E-15 

16:67409180 G A missense LRRC36 8.12E-11 1.08E-18 3.91E-13 6.40E-31 

17:67081278 A G missense ABCA6 1.28E-11 2.17E-06 5.58E-07 5.57E-12 

18:74980601 A T missense GALR1 7.29E-05 3.60E-18 3.64E-05 5.11E-19 

19:45296806 C T missense CBLC 9.43E-02 1.48E-07 1.19E-02 2.96E-08 

19:55879672 C T missense IL11 5.47E-44 1.02E-57 2.28E-23 5.32E-81 

19:55993436 G T missense ZNF628 3.50E-33 2.28E-18 1.17E-18 6.33E-34 

22:28501414 C T missense TTC28 3.68E-13 9.47E-11 3.24E-09 3.93E-19 

22:42095658 T G missense MEI1 9.73E-03 2.25E-08 6.59E-03 3.70E-10 

 
  



 

Table S5 | Comparison to 10 genes associated with adult height in GIANT. In UK Biobank, only 
UGGT2 reaches our genome-wide significance threshold (blue), but all but one are found 
nominally significant for either pLoF or missense variants (light blue). 
 

Gene 
UK Biobank GIANT P-value 

Annotation Burden Test SKAT-O SKAT-Broad VT-Broad SKAT-
Strict VT-Strict 

B4GALNT3 

missense|LC 1.58E-05 9.15E-06 

2.40E-05 1.90E-05 1.80E-05 3.10E-07 pLoF 2.54E-06 4.42E-06 

synonymous 3.09E-01 2.81E-01 

CCDC3 

missense|LC 1.58E-02 7.82E-08 

6.30E-04 6.30E-06 3.00E-07 5.40E-09 pLoF 1.09E-02 1.34E-02 

synonymous 3.73E-01 5.63E-01 

CRISPLD1 

missense|LC 7.36E-02 1.07E-01 

2.20E-07 6.70E-11 8.50E-06 8.90E-07 pLoF 2.35E-04 5.43E-04 

synonymous 5.30E-01 1.81E-01 

CSAD 

missense|LC 6.98E-02 1.02E-01 

2.30E-08 2.40E-09 0.83 0.59 pLoF 9.46E-01 7.35E-01 

synonymous 8.64E-01 4.93E-04 

FLNB 

missense|LC 1.13E-02 2.51E-04 

2.20E-06 5.10E-04 2.40E-09 3.20E-06 pLoF 3.45E-06 8.50E-06 

synonymous 7.62E-02 4.50E-03 

G6PC 

missense|LC 2.72E-01 2.10E-01 

1.30E-05 3.60E-08 5.50E-06 1.30E-06 pLoF 7.13E-03 1.23E-02 

synonymous 7.55E-01 3.02E-01 

NOX4 

missense|LC 1.13E-04 3.77E-08 

5.10E-06 1.40E-07 NA NA pLoF 3.70E-02 6.43E-02 

synonymous 4.85E-04 3.88E-04 

OSGIN1 missense|LC 3.25E-03 3.00E-05 4.30E-11 4.50E-05 0.19 0.18 



 

pLoF 7.92E-01 3.65E-01 

synonymous 8.68E-01 8.00E-01 

SNED1 

missense|LC 1.44E-03 9.77E-04 

1.90E-05 4.30E-09 NA NA pLoF 6.61E-01 1.79E-01 

synonymous 1.74E-02 6.34E-03 

UGGT2 

missense|LC 2.86E-16 9.24E-18 

3.00E-05 2.60E-07 2.30E-05 4.80E-07 pLoF 2.52E-07 2.58E-07 

synonymous 7.42E-03 7.03E-05 

We compared the effect sizes from our single-variant test results to those of GIANT. 

Among 1,330 ExomeChip variants with p-value < 2 x 10-7 in the GIANT European-ancestry 

meta-analysis, 566 variants are tested in the UK Biobank data. The effect sizes of this group of 

shared variants are consistent between the two datasets, with a slight attenuation in results from 

UK Biobank, consistent with a degree of winner’s curse (Fig. S17). 



 

 

Fig. S17 | Comparison of effect sizes between UK Biobank and GIANT for height. The y = x line 
is shown for reference. 
 

Finally, we compared associations for 7 red blood cell phenotypes discovered in our 

results with 20 associations (p < 5 x 10-9) between missense variants and red blood cell 

phenotypes discovered by TOPMed (8) and find that 18 out of 20 are replicated at p < 0.05 with 

9 of these associated at p < 8 x 10-9 (Table S6). 

  



 

Table S6 | Comparison of 20 associations between missense variants and 7 major red blood 
cell phenotypes discovered at the genome-wide significant loci of the marginal tests in TOPMed; 
in UK Biobank, 9 of these associations are significant at p < 8 x 10-9 (blue), and 9 are found 
significant at p < 0.05 (light blue). 
 

Phenotype UKB 
phenocode Locus Allele 

(Ref) 
Allele 
(Alt) Gene Annotation 

P-value 

TOPMed UK 
Biobank 

hematocrit 
 (HCT) 

30030: 
hematocrit 
percentage 

chr6:26092913 G A HFE missense 6.40E-17 7.70E-132 

chr22:37066896 A G TMPRSS6 missense 1.03E-26 7.06E-130 

chrX:154536002 C T G6PD missense 3.36E-22 9.07E-03 

hemoglobin  
(HGB) 

30020: 
hemoglobin 

concentration 

chr6:26092913 G A HFE missense 2.16E-30 3.06E-288 

chr22:37066896 A G TMPRSS6 missense 3.16E-51 2.35E-261 

chrX:154536002 C T G6PD missense 1.47E-28 3.23E-03 

mean 
corpuscular 
hemoglobin  

(MCH) 

30050:  
Mean 

corpuscular 
hemoglobin 

chr11:5227003 C T HBB missense 1.24E-23 9.05E-02 

chrX:154536002 C T G6PD missense 2.12E-48 3.20E-02 

mean 
corpuscular 
hemoglobin 

concentration  
(MCHC) 

30060:  
Mean 

corpuscular 
hemoglobin 

concentration 

chr6:26092913 G A HFE missense 9.52E-17 3.70E-180 

chr11:5227003 C T HBB missense 4.29E-43 1.32E-01 

chr22:37066896 A G TMPRSS6 missense 3.25E-26 9.95E-142 

mean 
corpuscular 

volume  
(MCV) 

30040: 
mean 

corpuscular 
volume 

chr1:247876149 C T TRIM58 missense 1.77E-16 1.77E-88 

chr11:5227003 C T HBB missense 1.36E-64 1.46E-02 

chr16:67184472 T C EXOC3L1 missense / 
synonymous 2.13E-09 6.68E-18 

chrX:154536002 C T G6PD missense 3.96E-82 5.54E-03 

30010: chr11:5227003 C T HBB missense 2.44E-22 8.46E-03 



 

red blood cell 
count (RBC) 

red blood cell 
(erythrocyte) 

count 
chrX:154536002 C T G6PD missense 3.72E-82 1.74E-04 

red blood cell 
width (RDW) 

30070: 
 red blood 

cell 
(erythrocyte) 
distribution 

width 

chr6:26092913 G A HFE missense 5.80E-15 3.90E-320 

chr11:5227003 C T HBB missense 1.59E-10 5.11E-03 

chrX:154536002 C T G6PD missense 8.27E-
106 3.23E-03 

  



 

Analysis of summary statistics 
Wenhan Lu, Konrad J. Karczewski, Ellen Tsai, Mark J. Daly, Benjamin M. Neale 

 We performed all downstream analyses in Hail using the single-variant and group-test 

MatrixTables as described above. 

Gene set analyses 

Developmental delay genes 

We considered the SKAT-O association results for 470 genes previously implicated in 

developmental delay (9) and compared the number of associations discovered for these genes 

with the remaining genes in the dataset. In order to match the background distribution on 

frequency, we binned genes by their cumulative allele frequency into equal-spaced groups with 

widths of 0.01, and then matched genes from the remaining set to the distribution of the 470 

genes according to their CAF intervals. For each of the three annotation categories (pLoF, 

missense|LC, and synonymous), we randomly sampled 1,000 matched sets of 470 genes from 

the remaining set with replacement and computed the mean number of associations and the 

proportion of genes with at least one association meeting our p-value threshold for each set. By 

comparing the distribution of the mean and proportion of the 1,000 samples with those of the 

470 genes by annotation groups, we found that genes that are implicated in developmental 

delay are more likely to be associated through a pLoF mechanism with phenotypes in the UK 

Biobank (p = 2 x 10-3; Fig. 4). 

 

Constrained genes 

 Similar to the developmental delay, we compared 5,483 (1,848 unique genes) 

constrained gene-annotation pairs from our dataset with the remaining unconstrained genes on 

their number of associations discovered from SKAT-O results. We obtained LOEUF values for 

the genes from gnomAD (v2.1.1) and defined constrained genes as those in the highest decile 



 

of LOEUF (oe_lof_upper_decile=0). We then matched the unconstrained genes to the 

constrained genes by CAF intervals with widths of 0.01 and randomly sampled 1,000 

unconstrained gene-sets that have sample sizes and CAF distributions comparable to the 

constrained gene-set for each annotation category with replacement. Finally, we compared the 

mean number of associations and the proportion of genes with at least one association meeting 

our p-value threshold of the constrained set with the distribution of the 1000 unconstrained 

samples. We found that constrained genes are more likely to be associated with a phenotype in 

UK Biobank than the unconstrained genes, for pLoF variants (p = 2.1 x 10-6; Fig. 4). 

 

MAF/CAF Matching 

 We also compared the number of associations across the three annotation categories 

for SKAT-O and single-variant tests. We divided CAF of genes and AF of variants into bins with 

widths of 0.01. For SKAT-O, we matched genes from missense|LC and synonymous categories 

to the pLoF group by CAF intervals and then sampled a set of missense|LC genes and a set of 

synonymous genes that have comparable sample sizes and CAF distributions to the 18527 

pLoF genes from the dataset with replacement. Similarly, for variants, we matched missense|LC 

variants and synonymous variants to the 455,445 pLoF variants by their AF Intervals. We 

compared the mean number of associations and the proportion of genes with at least one 

association meeting our p-value threshold across the three annotation categories on the 

matched sets (Fig. 3). 

 

PolyPhen2 predicted variants 

We compared the proportion of variants with at least one association meeting our p-

value threshold across the three PolyPhen2 prediction groups (probably damaging, possibly 

damaging, and benign; Fig. S18). We binned variants by their minor allele frequency (MAF) into 

equal-spaced bins with width of 0.01. Using variants from each one of the three groups as 



 

reference, we matched the remaining two groups to the reference group by their MAF bins. 

Relative relationships of the proportion among the three groups are similar when using different 

reference groups. We then split the variants into allele frequency categories and compared the 

proportion among different PolyPhen2 prediction groups. We conducted a pairwise proportion 

test between each pair of groups for each allele frequency interval and observed a significant 

difference between benign and possibly damaging, as well as between benign and probably 

damaging for both intervals, and possibly damaging and probably damaging for allele frequency 

between 0.01% and 0.1%. No significant group difference is observed for allele frequencies 

above 1%. 

 

 

Fig. S18 | The proportion of variants with at least one association is shown broken down by 
PolyPhen2 annotation group and allele frequency category. * and ** indicate a significant group 
difference by chi-square test at p < 0.05 and p < 0.001, respectively. No significant difference is 
observed for allele frequencies above 1%. 
 



 

ClinVar variants 

 We obtained pathogenicity of variants from the ClinVar table in gnomAD reference data 

and then defined pathogenic and likely pathogenic variants as P/LP, benign and likely benign 

variants as B/LB. We divided the minor allele frequency (MAF) of variants into equal-spaced 

bins with widths of 0.01 and then matched variants from B/LB and Uncertain significance group 

to the 17,487 P/LP variants respectively by their MAF bins. For each of the categories, we 

randomly sampled 1,000 sets matched to the P/LP variant subset with replacement and 

computed the mean number of associations and the proportion of variants with at least one 

association meeting our p-value threshold for each set. By comparing the distributions of the 

mean and proportion of the 1,000 samples with the P/LP group, we found that pathogenic 

variants are more likely to be associated with a phenotype in the UK Biobank (Fig. 3). 

 

   



 

Data availability and release 
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Huy Nguyen, Kevin Nguyen, Cotton Seed, Benjamin M. Neale 

Data availability 

 We make the full dataset available in a browser framework (described below), as well as 

Hail formats, hosted on the Google Cloud Platform. We provide one MatrixTable for each of the 

single-variant and gene-based tests, as well as Hail Tables with filtering criteria for variants, 

genes, and phenotypes. 

Code availability 

 All code to reproduce the analyses herein is available on github: 

https://github.com/nealelab/ukb_exomes and https://github.com/nealelab/ukb_common. All 

quality control and data analysis tasks were performed using Hail (versions between 0.2.49 and 

0.2.62) (10). Unless otherwise indicated, summarized analyses and plotting were performed in 

R 4.0.2, using tidyverse. 

Data browser 

Web-based tools like PheWeb have been highly useful in the data processing and 

dissemination of several recent large-scale biobank genetic studies (11, 12). PheWeb is well-

suited for viewing associations from genotyping data along large genomic regions, where the 

signal is frequently driven by non-coding regulatory variants rather than variation in protein 

coding sequences. New web-based tools are needed for visualizing association studies in the 

context of gene-based analyses. Toward this goal, we previously extended on our gnomAD 

browser toolkit (2) to create a suite of portals for displaying gene analysis results from 

psychiatric exome association studies for schizophrenia (13), autism (14), bipolar disorder (15), 

and epilepsy (16). In this study, we extend our exome browser toolkit to support visualization of 

biobank-scale PheWAS results. We developed new layouts, navigational mechanisms, plots, 



 

and controls that enable users to visualize and compare gene and variant associations across 

thousands of phenotypes. 

 

Navigation and workflow 

The browser interface features a novel split-screen design for rapidly inspecting gene-

based PheWAS results (Fig. S19). The left hand side displays the global results index, which 

displays all hits for a given gene, phenotype, or variant (Fig. S19A). The results index displays 

PheWAS plots or manhattan plots depending on which navigational button is selected in the top 

bar (Fig. S19B). The results pane can be condensed, expanded, or hidden entirely by clicking 

the presets buttons or by dragging the central dotted line left or right. Clicking on one of the 

arrow buttons in the phenotype table will update the right hand side of the page with a detailed 

view of the selected gene-phenotype relationship (Fig. S19C). The status bar will update 

accordingly to reflect the gene, phenotype, variant, or burden dataset that is currently selected 

(Fig. S19D). Most data is served by a Hail backend, with significant associations cached for 

speed. Pages load quickly (< 1 second) if the phenotype-gene or phenotype-variant association 

p-value pair is below the cache threshold (10-4 for genes, 10-6 for variants) or ~4 seconds if 

above the cache threshold. Partitioning the page in this way allows users to quickly inspect 

many associations without losing a sense of context, and either half can be easily hidden to 

create more screen room for information of interest. 



 

 
Fig. S19 | Overview of the UKBB exome gene browser interface. The left hand side of the page 
provides access to all associations with a given gene, variant, or phenotype. The right hand side 
is for exploring detailed gene test associations (burden, SKAT-O, SKAT) across annotation 
groups (pLoF, missense and low confidence pLoF, synonymous) in addition to single variants 
that were included in the burden tests. 
 

Exploring associations by gene 

When the “gene PheWAS” results pane is active, the results index displays all 

phenotypes associated with a particular gene in PheWAS plot and tabular formats (Fig. S19C). 

The phenotype control panel (Fig. S19E) enables users to specify which of the three burden 

tests (Burden, SKAT, SKAT-O) or mutational class (pLoF, missense, synonymous) test statistics 

to display. Phenotypes can be filtered by keywords such as phenotype description or trait type 

(continuous, categorical, or ICD10). The results can also be filtered by p-value or beta using 

minimum and/or maximum thresholds. Note that for genes, the beta statistic is always derived 

from the burden test (SKAT and SKAT-O do not produce beta statistics). The PheWAS plot is 

colored and grouped by UK biobank showcase category; the category control section can be 

used to traverse the showcase tree and filter the phenotype list to those belonging to specific 

categories. The PheWAS plot can be configured to show p-values on either log or double log 



 

scales. Users can expand the plot to focus on p-values only, betas-only, or view p-values and 

betas simultaneously.  

The gene burden statistics table summarizes burden results across all mutational 

classes and tests (Fig. S19F). The gene plot displays single variants mapped to genomic 

coordinates along the gene exons. Variant -log10p values are shown on the Y axis (Fig. S19G). 

The plot transitions from to a double log scale ⅔ along the plot height in order to prevent 

variants with extremely low P-values from dominating the plot, allowing users to focus on novel 

rare variant associations near the significance threshold. Variants are depicted as circles, with 

the circle radii log-scaled by allele frequency in the non-Finnish European population. By 

default, variants are colored by their most severe VEP consequence across transcripts. If the 

selected phenotype is categorical, two additional case/control variant tracks display variants 

positions with radii log-scaled to allele frequencies in cases and controls, respectively. If the 

selected phenotype is continuous, variant radii will be log-scaled by allele frequency among 

individuals measured for the trait.  

The single variant analysis control panel is used to configure data displayed related to 

single variants (Fig. S19I). Checkboxes enable users to filter variants to those included in the 

gene burden analysis. Variants are filterable by identifier or annotation using the search box. 

Users can focus on particular parts of the allele frequency spectrum by dragging the allele 

frequency filter slider. Detailed summary statistics for all exome variants are available in a table 

below the plot (Fig. S19H). Users can specify which columns to display using the column 

selection checkboxes, or they can choose one of the column group presets. Each preset will 

select a particular set of columns that make sense to compare side-by-side (e.g., allele counts, 

frequencies, population counts, and columns best suited for categorical or continuous trait 

types). 

 



 

Exploring associations by phenotype 

 When the “gene manhattan” results pane is active, the results index displays all gene 

associations with a selected phenotype. The results are displayed in manhattan plot, QQ plot, 

and tabular format (Fig. S20). The three burden test types are displays as columns, and the 

burden set (pLoF, missense|LC, or synonymous) can be selected with the “Burden set” 

segmented control. Clicking on a gene name will navigate to the gene PheWAS view, and 

clicking on the “details” arrow will update the right hand side without leaving the gene manhattan 

view. When the “variant manhattan'' results pane is active, the left hand side results index takes 

a similar format as the gene manhattan but displays single variant association p-values instead 

of gene test statistics. Single variant results can be filtered by consequence category (pLoF, 

missense, synonymous, and other). Clicking a variant ID will navigate to that variant’s PheWAS 

view, and clicking the “details” arrow will keep the single variant manhattan view active. 

 
Fig. S20 | Results by phenotype. For a given phenotype, gene or variant association results are 
displayed in manhattan plot formats in addition to an exportable table. Detailed gene results can 
be quickly previewed using the arrow button located in each row of the table. 
 
 



 

Comparing single variant associations across phenotypes 

For a more comprehensive view of all variant-level associations for a gene in a single 

view, we developed functionality for exploring many phenotypes simultaneously on the gene 

page (Fig. S21). This feature aims to help users gain insight into pleiotropic patterns of variation 

across all high-scoring traits for a gene. Each row in the PheWAS table has a checkbox that, 

when checked, will overlay the phenotype in the gene plot (Fig. S21A). The “select top” button 

will load all phenotypes below the 10-4 p-value threshold; the “clear selected” button will unselect 

all phenotypes and return to the single phenotype view (Fig. S21B). When selected, phenotypes 

are assigned randomly generated colors to make them easier to distinguish in the plot and table 

(Fig. S21C). Many tens or hundreds of phenotypes can be loaded simultaneously; however, an 

automatic p-value threshold will be applied when there are too many variants to display and the 

user will be warned in the single variant control panel. 

 

Fig. S21 | Multi-phenotype plotting. Many phenotypes can be selected simultaneously to be 
overlaid for comparison of single variant analysis associations. 
 

 



 

By default, the variant table is configured to the “long” table format; when multiple 

phenotypes are selected, each variant-phenotype association will appear as a row in the variant 

table such that the variant table now contains duplicate entries for each variant. To make rows 

unique and to see comparison of association statistics across traits in a single row, the table can 

be set to “wide” format (Fig. S22A). The phenotype pivots to the columns, creating a sort of 

genotype-phenotype matrix (Fig. S22B). The column selection controls will affect both the long 

and wide table formats. When examining many phenotypes at once, users can click the “filter to 

selected” button on the phenotype section to simplify the PheWAS plot by only showing the 

selected phenotypes; this effectively serves as a legend for coloring-by-trait functionality 

(Fig. S22C).  

Hover interactions are especially useful when comparing multiple phenotypes; hovering 

over variants or phenotypes with the mouse will emphasize the relevant variants and bring them 

to the foreground (Fig. S22D). The transparency slider sets the opacity level for non-hovered 

variants, helping the user tune the multi-phenotype plot such that hovered selections can stand 

out better (Fig. S22E). 



 

 

Fig. S22 | Using hover interactions with the multi-phenotype pivot table. Here 10 LDLR 
associations are compared simultaneously and one splice donor of interest is hovered in the 
variant table to highlight the plot. 

 

For categorical traits in particular, it is useful to get a visual sense of how case/control 

variant positions and allele frequencies differ across the gene. The “show case/control tracks” 

checkbox will fold out case/control tracks for all traits currently selected (Fig. S23A). Continuous 

traits will be displayed in a single track and the allele frequency for individuals measured for the 

trait will be displayed. By viewing the case/control counts in the study (Fig. S23B), alongside the 

case/control allele counts for variants in the variant table (Fig. S23C) and the plots (Fig. S23D) 

users can very quickly compare burden results across phenotypes, genes, and individual 

variants to get a sense of which specific variants may be driving gene burden signals. When the 

per-phenotype tracks are expended, it can be useful to use the “Color by” switch to look for 

trends and variants across genomic coordinate, trait, consequences, association p-value, effect 

size, and zygosity (Fig. S24). 



 

Fig. S23 | Viewing case-control counts and allele frequencies for pLoF variants across traits in a 
gene. 



 

 

Fig. S24 | Color variants by attribute to uncover patterns in A) consequence, B) p-value, C) 
beta, D) trait, or E) zygosity. 
 
Single variant results 

When a variant is clicked on the single variant manhattan plot or on the gene page, the 

page will focus on the selected variant, and a PheWAS displays all associations with that variant 

(Fig. S25). Similar to the gene PheWAS page, multiple phenotypes can be selected and loaded 

at once. In the variant view, the table rows show statistics for the selected variant, and the 

columns show values across selected phenotypes. The variant position is displayed along the 

genomic coordinate. Clicking the “unselect” button will return to the gene page. In this way, 

users can easily flip back and forth between single variants and the gene context. 

 



 

 
Fig. S25 | Single variant page. 
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