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Results

Genome Wide Association Studies

Musculoskeletal general aging

Accelerated musculoskeletal aging is 34.9±1.8% heritable and 11 SNPs in nine genes are

significantly associated with this phenotype (Figure 5). The GWAS highlighted six peaks: (1)

FGFR3P1 (Fibroblast Growth Factor Receptor 3 Pseudogene 1, a pseudogene involved in

vascular endothelial growth factor signaling); (2) TBX15 (T-Box Transcription Factor 15,

transcription factor involved in development and linked to Cousin syndrome and acromegaloid

facial appearance syndrome); (3) CCDC91 (Coiled-Coil Domain Containing 91, involved in the

trans-Golgi network associated with ossification of the posterior longitudinal ligament of the

spine and diffuse idiopathic skeletal hyperostosis); (4) AAGAB (Alpha And Gamma Adaptin

Binding Protein, involved in vesicle trafficking and linked to palmoplantar keratoderma); (5)

FAM3C (FAM3 Metabolism Regulating Signaling Molecule C, linked to deafness and pancreatic

cancer); and (6) SCEL (Sciellin, expressed in keratinocytes and linked to extrahepatic bile duct

adenocarcinoma).

Full body aging

Accelerated full body aging is 30.7±1.6% heritable and eight SNPs in eight genes are

significantly associated with this phenotype (Fig. S6). The GWAS highlighted four peaks: (1)

TBX15 (T-Box Transcription Factor 15, transcription factor involved in development and linked to

Cousin syndrome and acromegaloid facial appearance syndrome); (2) FGFR3P1 (Fibroblast



Growth Factor Receptor 3 Pseudogene 1, a pseudogene involved in vascular endothelial growth

factor signaling); (3) SCEL (Sciellin, expressed in keratinocytes and linked to extrahepatic bile

duct adenocarcinoma); and (4) FGFR1 (Fibroblast Growth Factor Receptor 1, a fibroblast

growth factor receptor linked to osteoglophonic dysplasia and Hartsfield syndrome).

Spine aging

Accelerated spine aging is 32.9±1.7% heritable and 22 SNPs in 13 genes are significantly

associated with this phenotype (Fig. S7). The GWAS highlighted nine peaks: (1) TNFSF11

(Tumor Necrosis Factor Ligand Superfamily Member 11, a ligand for osteoprotegerin involved in

osteoclast differentiation and activation, and linked to osteopetrosis); (2) HTRA1 (HtrA Serine

Peptidase 1, involved in cell growth regulation); (3) FAM3C (FAM3 Metabolism Regulating

Signaling Molecule C, linked to deafness and pancreatic cancer); (4) SUPT3H (SPT3 Homolog,

SAGA And STAGA Complex Component, involved in chromatin organization and linked to

dysostosis and hepatic adenoma); (5) RP11-438P9.2 (a pseudogene); (6) SOX5 (SRY-Box

Transcription Factor 5, involved in chondrocytes differentiation and cartilage formation, linked to

Lamb-Shaffer syndrome); (7) ESR1 (Estrogen Receptor 1, an estrogen receptor involved in

sexual functions and linked to osteoporosis, breast cancer and endometrial cancer); (8)

COLGALT2 (Collagen Beta(1-O)Galactosyltransferase 2, involved in degradation of the

extracellular matrix and linked to porencephaly); and (9) AAGAB (Alpha And Gamma Adaptin

Binding Protein, involved in vesicle trafficking and linked to palmoplantar keratoderma).

Hip aging

Accelerated hip aging is 27.7±1.6% heritable and 20 SNPs in seven genes are significantly

associated with this phenotype (Fig. S8). The GWAS highlighted four peaks: (1) SUPT3H (SPT3



Homolog, SAGA And STAGA Complex Component, involved in chromatin organization and

linked to dysostosis and hepatic adenoma); (2) CCDC91 (Coiled-Coil Domain Containing 91,

involved in the trans-Golgi network associated with ossification of the posterior longitudinal

ligament of the spine and diffuse idiopathic skeletal hyperostosis); (3) TNFSF11 (Tumor

Necrosis Factor Ligand Superfamily Member 11, a ligand for osteoprotegerin involved in

osteoclast differentiation and activation, and linked to osteopetrosis); and (4) RP11-396020.1 (a

long intergenic non-coding RNA).

Knee aging

Accelerated knee aging is 25.3±1.7% heritable and 16 SNPs in six genes are significantly

associated with this phenotype (Fig. S9). The GWAS highlighted four peaks: (1) WNT16 (Wnt

Family Member 16, involved in signaling, cell fate and oncogenesis); (2) CCDC91 (Coiled-Coil

Domain Containing 91, involved in the trans-Golgi network associated with ossification of the

posterior longitudinal ligament of the spine and diffuse idiopathic skeletal hyperostosis); and (3)

HLA-DRB9 (Major Histocompatibility Complex, Class II, DR Beta 9 Pseudogene, a

pseudogene).

Anthropometry, impedance, heel bone densitometry and hand grip

strength-based aging

Accelerated musculoskeletal scalar features-based (anthropometry, impedance, heel bone

densitometry and hand grip strength) aging is 22.1±0.2% heritable and that 2,631 SNPs in 954

genes are significantly associated with this phenotype (Fig. S10). The ten highest peaks

highlighted by the GWAS are (1) GDF5 (Growth Differentiation Factor 5, involved in the

development of cartilage, joints, brown fat, teeth, and neurons, linked to osteoarthritis,



acromesomelic dysplasia, brachydactyly, proximal symphalangism, chondrodysplasia and

multiple synostoses syndrome); (2) CRHR1 (Corticotropin Releasing Hormone Receptor 1, a

GPCR protein involved in the hypothalamic-pituitary-adrenal pathway); (3) HOTTIP (HOXA

Distal Transcript Antisense RNA, involved in cell proliferation and linked to tumors); (4) SOCS2

(Suppressor Of Cytokine Signaling 2, involved in cytokine signaling and linked to polycythemia);

(5) PKD2L1 (Polycystin 2 Like 1, Transient Receptor Potential Cation Channel, involved in

cell-cell and cell-matrix interactions and linked to polycystic kidney disease); (6) GPR126

(Adhesion G Protein-Coupled Receptor G6, a G protein-coupled receptor involved in body

height, linked to distal arthrogryposis); (7) AC013480.2 (an antisense gene). AC013480.2 is in

linkage disequilibrium with PKDCC (Protein Kinase Domain Containing, Cytoplasmic, involved in

development and linked to rhizomelic limb shortening with dysmorphic features); (8) POLD3

(DNA Polymerase Delta 3, Accessory Subunit, involved in DNA replication and repair and linked

to Ruijs-Aalfs syndrome); (9) ZBTB38 (Zinc Finger And BTB Domain Containing 38, a

transcriptional activator involved in height); and (10) FUBP3 (Far Upstream Element Binding

Protein 3, involved in gene expression).

Discussion

Comparison between our age predictors and the literature

Full body X-rays

Langner et al. predicted chronological age with a testing R2 of 82% and MAE of 2.47±1.91 years

after training the VGG16 CNN architecture1 on 32,323 UKB’s full body Dual-energy X-ray

https://paperpile.com/c/rejgiN/iTWkQ


absorptiometry [DXA] images2. We found that our preprocessing and the architectures that we

used did not outperform their model individually. However, we found that our ensemble model

yielded a statistically significant higher final testing R2 of 85.7±0.1% (RMSE=2.85±0.01 years).

We also found that adding to this ensemble predictions generated on spine DXA images

(R2=74.6±0.2%), hip DXA images (R2=69.0±0.3%), Knee DXA images (R2=69.0±0.3%) and

scalar musculoskeletal features such as anthropometry, heel bone densitometry and hand grip

strength (R2=25.9±0.1%) yielded a chronological age predictor with a R2 of 87.6±0.1%.

Karargyris et al. used chest X-rays and the DenseNet121 CNN architecture to predict

chronological age with a R2 of 90%3. After testing several architectures on the ChestX-ray84

dataset using transfer learning we found that the best architecture was indeed DenseNet121,

which yielded the same R2 of 90%. We also found that our ensemble model predicted

chronological age with a R2 of 91%. These R2 values are slightly higher than the one we

obtained on the UKB datasets (85.7±0.1% for the full body DXA images), but as previously

explained this difference in prediction accuracy is largely driven by the difference in age ranges.

Figure 1 of the publication shows that the age range for the ChestX-ray8 dataset is 1-90 years,

which includes the childhood and the teenagerhood during which significant anatomical

changes happen, compared to 37-82 years for UKB.

Hip X-rays

Wittschieber et al.5 used a linear regression on features extracted from 643 pelvic X-rays

collected from participants aged 10-30 years and obtained a R2 value of 38%. Similar work was

performed on the pelvis6, the iliac crest7,8 and the ilium9. Our model (R2=69.0±0.3%;

RMSE=4.20±0.02) significantly outperformed the one developed by Wittschieber et al. despite

https://paperpile.com/c/rejgiN/C3BuN
https://paperpile.com/c/rejgiN/psQzL
https://paperpile.com/c/rejgiN/dlCJI
https://paperpile.com/c/rejgiN/6n5Z1
https://paperpile.com/c/rejgiN/7aH5E
https://paperpile.com/c/rejgiN/3uqOG+xy6cf
https://paperpile.com/c/rejgiN/Ukgfe


our age range not covering teenagerhood years, which can be explained by the 65 times larger

sample size we leveraged.

Knee X-rays

Two chronological age predictors were built on knee X-ray images collected from young

participants10,11. O’Connor et al. used a linear regression on features extracted from 221 knee

X-rays collected from participants aged 9-19 years and obtained a R2 value of 77.5-81.5%10.

Tang et al. used a linear regression on features extracted from 503 knee X-rays collected from

participants aged 6-19 years and obtained a R2 value of 88-90%11. Fan et al. used a linear

regression on features extracted from 322 knee X-rays and MRIs collected from participants

aged 11-30 years and obtained R2 values ranging from 44.1% to 65.4%12 and other researchers

performed similar studies13–16. We trained CNNs on 79,477 knee X-ray images collected from

participants aged 45-82 and obtained a R2 value of 69.0±0.3% and a RMSE value of 4.20±0.02

years. The significantly higher accuracy of the two first models described above can be

explained by the age range over which they were trained and tested, as the human body

changes significantly faster during development. We are, to our knowledge, the first to build a

chronological age from knee X-rays for the older adult population.

Hand X-rays

Several researchers leveraged hand X-ray images to predict chronological age in infants,

children, and teenagers during the last six years17–24. Westerberg for example trained the

Xception25 architecture on 12,811 images from patients aged 0-19 years and predicted

chronological age with a MAE of 1.007 years19.

https://paperpile.com/c/rejgiN/HkzIH+E2tet
https://paperpile.com/c/rejgiN/HkzIH
https://paperpile.com/c/rejgiN/E2tet
https://paperpile.com/c/rejgiN/6qJqE
https://paperpile.com/c/rejgiN/pOPix+GfMnu+KlWhW+uhHAZ
https://paperpile.com/c/rejgiN/6Jyt3+eUtMQ+eypfL+rrXbl+Qy8bG+1GLdj+ZO3LN+0TFNT
https://paperpile.com/c/rejgiN/3Nm2t
https://paperpile.com/c/rejgiN/eypfL


Other skeletal structures

Other skeletal structures have been leveraged to predict age such as the clavicle epiphyses

26–28, the fourth cervical vertebra29, the mandibular ramus length 30 or the molars 31–33.

Methods

Hardware

We performed the computation for this project on Harvard Medical School’s compute cluster,

with access to both central processing units [CPUs] and general processing units [GPUs]

(Tesla-M40, Tesla-K80, Tesla-V100) via a Simple Linux Utility for Resource Management

[SLURM] scheduler.

Software

We coded the project in Python 34 and used the following libraries: NumPy 35,36, Pandas 37,

Matplotlib 38, Plotly 39, Python Imaging Library 40, SciPy 41–43, Scikit-learn 44, LightGBM 45,

XGBoost 46, Hyperopt 47, TensorFlow 2 48, Keras 49, Keras-vis 50, iNNvestigate 51. We used Dash

52 to code the website on which we shared the results. We set the seed for the os library, the

numpy library, the random library and the tensorflow library to zero.

https://paperpile.com/c/rejgiN/ojKFg+GQQQQ+H73cZ
https://paperpile.com/c/rejgiN/9jwPs
https://paperpile.com/c/rejgiN/Utfq0
https://paperpile.com/c/rejgiN/tC2vF+surcH+koM0t
https://paperpile.com/c/rejgiN/wHhbI
https://paperpile.com/c/rejgiN/3Nrui+2UQQW
https://paperpile.com/c/rejgiN/xFADR
https://paperpile.com/c/rejgiN/KDNwU
https://paperpile.com/c/rejgiN/dLcM0
https://paperpile.com/c/rejgiN/5quul
https://paperpile.com/c/rejgiN/ZIR4o+zBFCW+wLNMm
https://paperpile.com/c/rejgiN/1Aa5c
https://paperpile.com/c/rejgiN/c8MYB
https://paperpile.com/c/rejgiN/sW5gW
https://paperpile.com/c/rejgiN/r7uCy
https://paperpile.com/c/rejgiN/vFs2e
https://paperpile.com/c/rejgiN/XNciw
https://paperpile.com/c/rejgiN/9Sh9I
https://paperpile.com/c/rejgiN/NXxrQ
https://paperpile.com/c/rejgiN/3lKaO


Training, tuning and predictions

Data splitting

We split the 676,787 samples into ten data folds, while keeping all samples from the same

participant in the same fold. To ensure this, we split the 502,211 participants’ ids (referred to by

UKB as “eid”) into ten different buckets of the same size. To generate ten folds for each

sub-dataset (e.g. ECGs), we took the intersection of the samples in each of the ten folds with

the samples for which the sub-dataset data was available. This method had however one

important loophole, which is that we could not guarantee that the folds for the sub-datasets

would be balanced. For example, resting ECG data was only recorded for 42,360 out of the

502,211 participants. Since the 502,211 participants are split into ten folds, a fold contains

approximately 50,221 participants. Although unlikely, we could therefore not guarantee that all

or most of the ECG samples would be attributed to the first data fold, leading to highly

unbalanced folds for the ECGs analysis. Unbalanced folds can lead to problems during the

cross-validation (see further below), as models trained on a smaller number of samples will tend

to generalize worse. One solution would have been to use a different split for each dataset, but

this would have generated problems when building the ensemble models fold by fold (see

Methods - Models ensembling). To mitigate this issue of unbalanced data folds, we developed

the following heuristic. We randomly split the 502,211 participants into ten folds, 1,000 times.

For each of these 1,000 splits, we computed for each sub-dataset the variance of the

percentages of samples in each fold. We then scored each of the 1,000 splits using the

maximum of the variance among the different sub-datasets. For example, if the ECG samples

were not evenly split for the ith split out of the 1,000 splits (e.g. fold 1: 55% of the samples,



every other fold: 5% of the samples), the variance of the sample proportions would be high,

which would yield a poor score for the ith split. Finally, we selected the split with the lowest

score as the final split for the main dataset, and for all the sub-datasets. This selected split had

a score of 5.8e-4, which means that the most unbalanced sub-dataset had a variance in its

sample size proportion between its ten folds of 5.8e-4.

Scalar data

Nested cross-validation

Cross-validation is a method to tune the regularization of models and prevent overfitting 53. For

the models inputting scalar data (Figure 1A in green), we tuned the hyperparameters and

generated a testing prediction for each sample using a nested 10x9-folds cross-validation. We

refer to the two nested cross-validations as the “outer” and the “inner” cross-validations. The

outer-cross validation is used to generate an unbiased testing prediction for each sample, as

opposed to a simple split of the data into a “training+validation” set on one hand, and a testing

set on the other hand, which would only generate a testing prediction for one tenth of the

dataset. The inner cross-validation is used to tune the hyperparameters more precisely,

leveraging the full inner cross-validation dataset as a validation set, as opposed to a simple data

split of the “training+validation” dataset into a training and a validation sets, which would only

use one data fold as the validation set to estimate the performance associated with a specific

combination of hyperparameters. The nested cross-validation is illustrated in Table S26.

Bayesian hyperparameters optimization

To tune the hyperparameters, we used the Tree-structured Parzen Estimator Approach 54 [TPE]

of the hyperopt python package 55. TPE is a sequential Bayesian hyperparameters optimization

https://paperpile.com/c/rejgiN/cOEhp
https://paperpile.com/c/rejgiN/21Tyw
https://paperpile.com/c/rejgiN/5jcOM


method that iteratively suggests the next most promising hyperparameters combination as a

function of the hyperparameters combinations that have already been tested, by building a

probabilistic representation of the objective function. We set the number of iterations to 30. For

each model, 30 different hyperparameter combinations are iteratively tested before selecting the

best performing one. The hyperparameters names and their ranges defining the

hyperparameters space can be found in Table S25. It might be of interest to other researchers

that we initially tuned the hyperparameters using a random search 56 with the same number of

iterations, and we did not observe a significant improvement in the model’s performance after

implementing the Bayesian hyperparameters optimization.

Example

For the sake of clarity, let us walk through a concrete example, which is illustrated in Table S26.

Suppose we want to generate unbiased predictions for every sample in a dataset using an

elastic net. First, let us generate the testing prediction for the data fold F9, which is performed

by the first fold of the outer cross-validation (outer cross-validation fold 0). We select the data

fold F9 out of the ten data folds as the testing fold, and we select the remaining nine data folds

as “training+validation” folds for the inner cross-validation. We scale and center the target (age)

and the predictors using the mean and standard deviation values of the variables on the

“training+validation” dataset. We then enter the first inner-cross validation.

For the first inner cross-validation fold, we select the data fold F8 as the validation set, and the

remaining eight “training+validation” data folds as the training set. We re-scale and center age

and the predictors in the training and the validation sets using the mean and standard deviation

values of the training set. We train the model on the eight training data folds with the first

https://paperpile.com/c/rejgiN/Zv9XA


hyperparameters combination sampled by the TPE algorithm (one value for alpha and one

value for l1_ratio) and generate validation predictions on the validation fold (data fold F8), which

we unscale. This completes the first of the nine inner cross-validation folds (Inner CV fold 0). We

then permute the nine inner data folds. We scale the age and the predictors using the mean and

standard deviation computed on the new training set. Then we train the model with the same

first combination of hyperparameters on eight data folds, leaving aside the data fold F9 (still

being used as the testing set for the outer cross-validation) and the data fold F7 (now being

used as the validation set for the inner cross-validation). We then use the new trained model to

generate validation predictions on the data fold F7, which we unscale. This completes the

second of the nine inner-cross validation folds (Inner CV fold 1). We then reiterate these inner

permutation and training processes seven more times, until every data fold in the nine

“training+validation” data folds is used as the validation set once. At this point, we concatenate

the validation predictions from these nine validation folds to obtain the overall validation

predictions associated with the first hyperparameters combination, and compute the associated

performance metric (e.g. RMSE). This completes the inner-cross validation for the first

hyperparameters combination.

We then perform the same 9-folds inner cross-validation, this time with the second

hyperparameters combination suggested by the TPE algorithm. We iterate this process 28 more

times, until 30 different hyperparameters combinations have iteratively been tested. Next, we

select the hyperparameter combination that yielded the best validation performance (e.g.

minimum RMSE), and we retrain a model on the whole nine “training+validation” data folds (all

data folds except for data fold #1), using this best performing hyperparameters combination.

This completes the first inner cross-validation.



We then use the model to generate unbiased predictions on the unseen testing set (data fold

F9) and record these predictions. By anticipation for the ensembling algorithm (see Methods -

Models ensembling) we also need to compute validation predictions on the data fold F8. We do

this by training a model on all the data folds aside from the validation fold (data fold F8) and the

testing fold (data fold F9), with the selected hyperparameters combination. We then use this

trained model to compute predictions on the validation fold (data fold F8) and record these

predictions, after unscaling them. This completes the first of the ten outer cross-validation folds

(outer cross-validation 0).

We then complete the second outer cross-validation fold (outer cross-validation 1), this time

using the data fold F8 as the testing dataset, to obtain unbiased testing predictions on this data

fold, as well as validation predictions on the data fold F7. We reiterate the process eight more

times to obtain the testing and validation predictions on the remaining data folds. We then

concatenate the testing predictions from the ten data folds to obtain our final testing predictions

for the model. Similarly, we concatenate the validation predictions from the ten data folds to

obtain our final testing predictions for the model, which will later be used during ensemble

models building and model selection (see Methods - Models ensembling).

The final validation and testing predictions for each data fold are therefore not necessarily

associated with the same hyperparameters combination. It is also important to notice that we

performed a single outer cross-validation, but that we performed a separate inner-cross

validation for each outer cross-validation fold (hence the word “nested”), for a total of ten inner

cross-validations per outer cross-validation fold.



Images

Hyperparameters tuning upstream of the cross-validation

The hyperparameters we tuned were the number of added fully connected dense layers, the

number of nodes in these layers, their activation function, the optimizer, the initial learning rate,

the weight decay, the dropout rate, the data augmentation amplitude and the batch size.

Repeatedly tuning the values of the hyperparameters for different deep neural networks

architectures and on the different cross-validation folds would have been prohibitively time and

resource consuming. Instead, we sequentially explored how each hyperparameter was affecting

the training and validation performances for a single architecture (InceptionV3) on a single cross

validation fold (fold #0, see Methods - Training, tuning and predictions - Images -

Cross-validation for the detailed description of the cross-validation). We then extrapolated the

hyperparameter values to the other architectures, datasets and cross-validation folds. The

hyperparameters combinations tested during the tuning can be found in Table S27.

First, we maximized the batch size for each architecture. The maximum number of images per

batch depends on the memory of the GPU and the size of the architecture, which itself depends

on the dimensions of the image. We used a batch size of 32 for InceptionV3 and 8 for

InceptionResNetV2.

Then, we tested the learning rates, including 1e-6, 1e-5, 1e-4, 1e-3, 1e-2 and 1e-1. We

observed that learning rates larger than 1e-4 prevented the model from converging for some

runs. Second, we did not observe significant differences between the results obtained with

learning rates smaller than 1e-4. We therefore set the initial learning rate to be 1e-4 for all



models to shorten the time to convergence while ensuring that the learning rate was small

enough to allow convergence and the finding of a local minima for the loss function.

Then we tested three different optimizers to perform the gradient descent: Adam 57, Adadelta 58

and RMSprop 59. We did not observe any significant differences between the optimizers, so we

set the optimizer to be Adam.

We then added different numbers of fully connected layers between the base CNN and side

CNN’s concatenated outputs and the final activation layer. We set the number of nodes to be

1,024 in the first added layer and then decreased the number of nodes by a factor of two for

each successive layer. For example, if we added three fully connected layers, the number of

nodes was 1024, 512 and 256. We added zero, one and five layers. We did not observe

significant differences in the performance of the different architectures, so we set the number of

fully connected layers to one.

We then tested powers of two from 16 to 2,048 as the number of nodes in this single layer. We

did not observe significant differences between these architectures, so we set the number of

nodes to be 1,024 to keep the number close to the initial number of nodes in the imported CNN

architectures, as these were initially used to perform classification between 1,000 categories.

We tested two different activation functions for the activation functions of the fully connected

layers we added in the side neural network and before the final linear layer. We did not observe

any significant differences between the rectified linear units [ReLU] 60 and the scaled

exponential linear units [SELU] 61 as activation functions, so we used the more common ReLU.

https://paperpile.com/c/rejgiN/rkkxq
https://paperpile.com/c/rejgiN/cXdG8
https://paperpile.com/c/rejgiN/bUCbr
https://paperpile.com/c/rejgiN/oC2Mf
https://paperpile.com/c/rejgiN/o5LSB


We then tested different levels of data augmentation. We introduced a hyperparameter that we

called “data augmentation factor”. The data augmentation factor modulates the amount of

variation introduced by the data augmentation, while preserving the ratio between the different

transformations. For example, a data augmentation factor of one is equivalent to the default

data augmentation (see Preprocessing - Data augmentation - Images), but a data augmentation

factor of two will double the ranges of the possible values sampled and the expected values for

the vertical shift, the horizontal shift, the rotation and the zoom on the original images. We

tested the following values for the data augmentation factor: 0, 0.1, 0.5, 1, 1.5 and 2. We found

that different values for the data augmentation factor hyperparameter yielded similar results, as

long as the data augmentation factor was not zero. We therefore set the data augmentation

factor to be one when training the final models.

We then tuned the dropout rate for the fully connected layers we added. We tested the following

values: 0, 0.1, 0.25, 0.3, 0.5, 0.75, 0.9 and 0.95. We observed that a dropout rate of 0.95 led to

underfitting and that smaller values reduced overfitting on the training set but without improving

the validation performance. As a consequence, we used a dropout rate of 0.5.

Finally, we tuned the weight decay. We tested the following values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5,

10 and 100. For the larger datasets, we found that weight decay values as low as 0.4 could lead

to underfitting. We found that lower weight decay values reduced overfitting on the training set

without significantly improving the validation performance. We set the weight decay to 0.1.

Altogether, we found that hyperparameter tuning had little effect on the validation performance

as long as extreme hyperparameters values were not selected.



Cross-validation

Training deep convolutional neural networks on images and videos is too time and resource

consuming to perform a nested cross-validation. Therefore, we tuned the hyperparameters

during the preliminary analysis, as described above. After hyperparameters tuning, we

performed a simple outer cross-validation to obtain a testing prediction for each sample of the

datasets, but we replaced the inner cross-validation with a simple split between the training fold

and the validation fold (Table S28). Although the hyperparameters were already tuned, a

validation set was still required for two reasons: (1) to perform early stopping 62, a form of

regularization. (2) to generate a set of validation predictions that are necessary for efficient

ensemble building (see Methods - Models ensembling) and model selection. During the

cross-validation, we scaled and centered the target variable (chronological age) as well as the

side predictors (sex and ethnicity) around zero with a standard deviation of one, using the

training summary statistics. Scaling the target and the input helps prevent the issues of

exploding and vanishing gradients 63,64.

Cross-validation example

For the sake of clarity, let us walk through an example. Let us say that we want to generate

unbiased predictions for every sample in a dataset using a CNN. First, we select the data fold

#0 as the validation set, the data fold #1 as the testing set, and the remaining data folds (#2-9)

as the training set. Then we scale and center the target (age), and the side predictors (sex and

ethnicity) using the training mean and standard deviation: for each of the variables, we subtract

the training mean to the variable on both the training, the validation and the testing set, and we

divide it by the training standard deviation. We then train the model on the training set until

convergence and select the architecture’s parameters (also known as “weights”) associated with

https://paperpile.com/c/rejgiN/Q2OlR
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the epoch that yielded the lowest validation RMSE. We then use the optimal weights to generate

validation predictions for the data fold #0 and testing predictions on the data fold #1. Finally, we

unscale the validation and testing predictions by multiplying them by the initial age training

standard deviation before adding the initial age training mean to them. This completes the first

cross-validation fold.

We then reiterate the process, this time using the data fold #1 as the validation set, the data fold

#2 as the testing set, and the remaining data folds (#0 and #3-9) as the training set. We use the

optimized weights to generate the validation predictions on the data fold #2, and the testing

predictions on the data fold #3. We unscale the validation and testing predictions. This

completes the second cross-validation fold. We reiterate the process eight more times to

complete the cross-validation. We then concatenate the validation predictions from the ten data

folds to obtain the final validation predictions, and the testing predictions from the ten data folds

to obtain the final testing predictions.

Interpretability of the predictions

Scalar data-based predictors

For elastic nets, we interpreted the models using the values of the regression coefficients. Large

absolute values for these coefficients means they played an important role when generating the

predictions. For gradient boosted machines we used the feature importances, which are based

on the number of times a tree selected each of the variables. Variables with high feature

importances were selected more often and are therefore likely to play a key role in predicting

chronological age. For neural networks, we estimated the importance of each feature by



permuting it randomly between samples before computing the performance of the model. The

score of each feature is the difference between the R-Squared value before and after the

random permutations. Features whose random permutation leads to a large decrease in the

model’s performance are estimated to be important predictors of chronological age.

We estimated the concordance between the three different algorithms by computing the

Pearson and the Spearman correlations between their feature importances.

Image-based predictors

To interpret the CNNs built on images, we first used saliency maps 65, which we coded using the

keract python library. For each input sample, a saliency map uses the gradient of the final

prediction with respect to each individual input pixel to estimate whether changing the value of

this pixel would affect the prediction. Pixels for which the gradient is close to zero are not

important, whereas pixels with a large gradient are estimated to be important.

We then built a second attention map using a custom version of the Gradient-weighted Class

Activation Mapping [Grad-CAM] algorithm 66 adapted to regression rather than multi-class

classification: Gradient-weighted Regression Activation Mapping [Grad-RAM]. The intuition

behind Grad-CAM maps is that they are similar to saliency maps 66, but instead of computing

the gradient with respect to the input image, they compute it with respect to the activation of the

last convolutional layer. As convolutional layers maintain the spatial organization of the input

image, Grad-CAM can still identify which region of the image is driving the predictions. Because

Grad-CAM does not have to backpropagate the gradient all the way back to the input image, it

is considered a less noisy alternative to the saliency maps. In the same way that saliency maps

https://paperpile.com/c/rejgiN/Kr5sb
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need to combine the attention maps generated in the different input channels (e.g. RGB) into a

single activation map, Grad-CAM must combine the attention maps generated on the different

filters of the last convolutional layer. For example, the last convolutional layer for

InceptionResNetV2 has 1,792 filters. Grad-CAM combines these 1,792 attention maps into a

single attention map using a linear combination. In the initial Class Activation Mapping [CAM]

algorithm 67, generating CAM activation maps required to retrain the model after modifying the

architecture and replacing all the fully connected layers after the final convolutional layer with a

global max pooling operation, which converted each filter into a scalar feature. The intuition

behind this substitution was that each filter could be interpreted as detecting a specific feature,

and global max pooling yielded a scalar that could be interpreted as the presence (high value)

or absence (low value) of the feature anywhere on the image. The scalar values were then

linearly combined and activated using the softmax function to yield the probabilities of belonging

to different classes. To obtain the activation map for a specific class, the filters of the last

convolution layer were linearly combined using the weights connecting the scalar features

obtained after the max pooling operation to the final prediction score for that class. CAM was

later improved to become Grad-CAM 66. Grad-CAM saves the need for modifying the

architecture of the model and retraining it by approximating the linear regression weight for each

final convolutional filter by the mean activation gradient over the pixels of the filter. The intuition

behind this approximation is that a filter’s pixel is important if changing its value affects the final

prediction, so a high average gradient over the pixels of the filter justifies that this filter should

be given a higher weight when merging all the filters into a single attention map. To adapt

Grad-CAM to our regression task we (1) computed the derivatives of the chronological age

prediction rather than a class’ prediction and (2) removed the ReLU activation applied to the

weighted sum of the last convolutional filters, which we replaced by an absolute value. The

https://paperpile.com/c/rejgiN/6v8Jj
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rationale is that for (Grad-)CAM maps, we only want to highlight the regions of the picture which

are associated with a high probability for the class. In contrast, for (Grad-)RAM we care as much

about the regions of the input image that can strongly increase the chronological age prediction

as about the regions that can strongly decrease it. Because the filters in the last convolutional

layer are the result of the processing of the input image by several convolutional layers with

possibly negative weights, the sign of the last convolutional layer’s pixels and regression

weights cannot be linked to either accelerated aging or decelerated aging, only to the magnitude

of the shift that would affect the prediction if each region of the input image was modified.

Regression Activation Mapping (RAM) was mentioned as a possible extension of CAM in the

original CAM publication 67 and has been used to interpret models CNNs built on retinal images

68 and cortical surfaces 69, but we are to our knowledge the first to describe the generalization of

Grad-CAM to a regression task. One notable difference between our implementation and Wang

and Yang.’s implementation 68 is that we are taking the absolute value of the final attention map,

as mentioned above. We found that not taking the absolute value led to misleading attention

maps for participants with high chronological age predictions. The attention map highlights

important areas with negative values, which are therefore depicted in blue, a color otherwise

associated with unimportant regions in traditional CAMs. Inversely, regions on the input image

for which the attention map has a slight positive value are spuriously considered to be the most

important and are highlighted in red. We therefore advise that RAM or Grad-RAM be

implemented using an absolute value. We coded Grad-RAM using the get_activations and

get_gradients_of_activations functions of the keract python library.

It is important to understand that unlike the feature importances described under “Scalar

data-based predictors”, which describe the model itself, attention maps are sample specific. In

https://paperpile.com/c/rejgiN/6v8Jj
https://paperpile.com/c/rejgiN/WUokc
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other words, they can be used to explain which features drove the predictions for a specific

inputted sample but cannot provide an explanation for the way the model is performing

predictions in general.

For each aging subdimension, we generated the attention maps for the best performing CNN

architecture. We selected representative samples for which we computed the different attention

maps. We computed attention maps for the two sexes (female and male), for three age ranges

(ten youngest ages, ten middle ages and ten oldest ages of the chronological age distribution)

and for three aging rates (accelerated agers, normal agers, decelerated agers). For each

intersection of the three categories listed above, we selected the ten most representative

samples (e.g. the ten most accelerated agers among young males). The figures in this paper

only present the first, most representative of these ten samples. The complete set of samples

can be found on the website.

Non-genetic correlates of accelerated aging

Unlike DNA, biomarkers, phenotypes, diseases, family history, environmental variables and

socioeconomics can change over life. As a consequence, we compared each biomarker,

phenotype and environmental variable with the accelerated aging of the participant at the time

the exposure was measured and we used the “Samples predictions”, as opposed to the

“Participants predictions” that we used for the identification of genetic correlates (see Methods -

Models ensembling - Generating average predictions for each participant).



Imputation of the non-genetic X-variables

Most X-variables were not collected on all four instances. Additionally, no X-variables were

collected at the same time as the accelerometer data was collected. To identify the non-genetic

correlates of accelerated aging, we had to impute the values of the X-variables for the ages of

the participants for which they were not available. We considered two imputation methods,

which we refer to as the “cross-sectional” and the “longitudinal” imputations.

For the cross-sectional imputation, we computed a linear regression for each X variable as a

function of age, adjusting for sex. We then used the slope of the linear regression to extrapolate

the value of the XWAS variable at different ages.

For the longitudinal imputation, we first selected, for each X variable, all the participants that had

at least two measures taken for this X variable. We then performed a linear regression for each

participant. We then averaged the slope of the linear regressions over all the participants of the

same sex. Finally, we used this slope to extrapolate the value of the XWAS variable at different

ages for all participants depending on their sex, in the same way we did it for the cross-sectional

imputation.

It is important to notice that for both the cross-sectional imputation and the longitudinal

imputation, data can only be imputed when the XWAS variable has been measured at least

once for the participant. This raw measure is then used to extrapolate which value the X

variable was likely taking a couple years earlier and/or later.



The advantage of the cross-sectional imputation is larger sample sizes. The advantage of the

longitudinal method is that it corrects for generational effects. For example, old people have

shorter legs than young people on average 70. This is not because human legs shrink as we

grow older. Instead, people who are old today already had shorter legs when they were young.

If the cross-sectional regression is used to impute the length of the participants on instances

where it was not measured, it will spuriously assign smaller values to the older samples. In

contrast, the longitudinal regression learns the regression coefficient by comparing each

participant to themselves as they age and will therefore not capture the generational effect.

When used to predict the participants legs’ length, it will impute constant values over time. To

evaluate which of the two imputation methods should be preferred, we used them to predict

X-variables for which we knew the actual values and computed the R-Squared values

associated with the predictions. We found that, even with sample sizes as small as 200

samples, longitudinal imputation outperformed cross-sectional imputation. We therefore used

longitudinal imputation.

X-Wide Association Studies

First, we tested for associations in an univariate context by computing the partial correlation

between each X-variable and musculoskeletal aging dimensions. To compute the partial

correlation between an X-variable and an aging, we followed a three steps process. (1) We ran

a linear regression on each of the two variables, using age, sex and ethnicity as predictors. (2)

We computed the residuals for the two variables. (3) We computed the correlation between the

two residuals and the associated p-value if their intersection had a sample size of at least ten

samples. We used a threshold for significance of 0.05 and corrected the p-values for multiple

https://paperpile.com/c/rejgiN/0gA2t


testing using the Bonferroni correction. We plotted the results using a volcano plot. We refer to

this pipeline as an X-Wide Association study [XWAS].



Supplementary Figures

Figure S1: Demographics of the UK Biobank cohort



Figure S2: Attention maps for spine X-ray images (sagittal view)



Figure S3: Attention maps for spine X-ray images (coronal view)



Figure S4: Attention maps for hip X-ray images



Figure S5: Attention maps for knee X-ray images



Figure S6: GWAS results - Full body aging

-log10(p-value) vs. chromosomal position of locus. Dotted line denotes 5x10-8.

Figure S7: GWAS results - Spine aging

-log10(p-value) vs. chromosomal position of locus. Dotted line denotes 5x10-8.



Figure S8: GWAS results - Hip aging

-log10(p-value) vs. chromosomal position of locus. Dotted line denotes 5x10-8.

Figure S9: GWAS results - Knee aging

-log10(p-value) vs. chromosomal position of locus. Dotted line denotes 5x10-8.



Figure S10: GWAS results - Anthropometry, impedance, heel bone densitometry and

hand grip strength-based aging

-log10(p-value) vs. chromosomal position of locus. Dotted line denotes 5x10-8.



Figure S11: Phenotypic correlation between all accelerated musculoskeletal aging

dimensions and subdimensions



Figure S12: Average correlation between musculoskeletal accelerated aging dimensions

in terms of association with non-genetic factors

Figure S13: Correlation between accelerated hip and knee aging in terms of associated

biomarkers, clinical phenotypes, diseases, family history, environmental and

socioeconomic variables



Figure S14: Sample preprocessed musculoskeletal full body X-ray images

The participant is a 50-55-year-old female.



Figure S15: Sample preprocessed spine X-ray images

The participant is a 50-55-year-old female.

Figure S16: Sample preprocessed hip X-ray images

The participant is a 60-65-year-old male.



Figure S17: Sample preprocessed knee X-ray images

The participant is a 60-65-year-old male.



Figure S18: Attention map algorithms: saliency map and Grad-RAM.

The participant is a 60-65-year-old male whose chronological age was accurately predicted by

the machine using a “Figure” musculoskeletal X-ray image.



Supplementary Tables

Table S1: Comparison between our musculoskeletal age predictors and the literature in

terms of prediction performance

Musculo-
skeletal
aging

dimension

Our model Model(s) in the literature

R-Square
d (%)

RMSE
(years)

Sample
size

Age
range
(years)

R-Squar
ed (%)

RMSE
(years) Algorithm Sample

size

Age
range
(years)

Authors

Spine 74.6±0.2 3.81±0
.01 40,951 45.1-82.5 N/A

Hips 69.0±0.3 4.20±0
.02 83,234 45.1-82.5 38 1.91 Linear regression 643 10-30 Wittschieb

er et al.

Knees 69.0±0.3 4.20±0
.02 79,477 45.1-82.5

77.5-81.
5; 88-90;
44.1-65.

4

N/A;
N/A;
N/A

Linear regression;
Linear regression;
Linear regression

221;
503;
322

9-19;
6-19;
11-32

O'Connor
et al.; Tang
et al.; Fan

et al.

Full body 85.7±0.1 2.85±0
.01 42,164 45.1-82.5 82

2.47±1
.91

(MAE)
CNN (VGG16) 32,323 44-82 Langner et

al.

Hand N/A N/A 1.01
(MAE) CNN (Xception) 12,811 0-19 Westerberg

Scalar-
Biomarkers 25.9±0.01 7.10±0

.01
486,64

2 37.4-82.3 N/A

Table S2: Comparison between the models trained on scalar features

Musculoskeletal
subdimension

Number of Predictors
(non-demographics)

ElasticNet
(R-Squared)

LightGBM
(R-Squared)

NeuralNetwork
(R-Squared)

Impedance 5 0.020±0.001 0.042±0.002 0.041±0.005

Anthropometry 8 0.132±0.003 0.151±0.003 0.147±0.004

HeelBoneDensitometry 6 0.035±0.001 0.049±0.002 0.048±0.002

HandGripStrength 2 0.117±0.003 0.131±0.003 0.130±0.003

AllScalars 21 0.205±0.004 0.252±0.004 0.252±0.005

Table S3: Pearson correlations between the feature importances for different scalar

features-based algorithms

Musculoskeletal
subdimension

Correlation
Versus

ElasticNet

Correlation
Versus

LightGBM

Correlation
Versus

NeuralNetwork

ElasticNet
Versus

LightGBM

ElasticNet
Versus

NeuralNetwork

LightGBM
Versus

NeuralNetwork



Impedance 0.535 0.043 0.72 0.385 0.344 0.032

Anthropometry 0.402 0.361 0.389 0.712 0.648 0.288

HeelBoneDensitometry 0.611 0.699 0.418 0.499 0.446 0.033

HandGripStrength 0.581 0.837 0.49 0.706 0.584 0.277

AllScalars 0.337 0.352 0.241 0.588 0.495 0.213

Table S4: Spearman correlations between the feature importances for different scalar

features-based algorithms

Musculoskeletal
subdimension

Correlation
Versus

ElasticNet

Correlation
Versus

LightGBM

Correlation
Versus

NeuralNetwork

ElasticNet
Versus

LightGBM

ElasticNet
Versus

NeuralNetwork

LightGBM
Versus

NeuralNetwork

Impedance 0.64 0.49 0.796 0.582 0.455 0.608

Anthropometry 0.329 0.563 0.588 0.685 0.523 0.739

HeelBoneDensitometry 0.526 0.732 0.457 0.638 0.232 0.357

HandGripStrength 0.461 0.693 0.545 0.557 0.477 0.703

AllScalars 0.331 0.513 0.384 0.566 0.567 0.618

Table S5: List of biomarkers by subcategories for the Biomarkers Wide Association

Study [BWAS]

See supplementary data

Table S6: Biomarkers most associated with accelerated aging for each musculoskeletal

aging dimension

See supplementary data

Table S7: Biomarkers most associated with decelerated aging for each musculoskeletal

aging dimension

See supplementary data



Table S8: List of clinical phenotypes by subcategories for the Clinical Phenotypes Wide

Association Study [CWAS]

See supplementary data

Table S9: Clinical phenotypes most associated with accelerated aging for each

musculoskeletal aging dimension

See supplementary data

Table S10: Clinical phenotypes most associated with decelerated aging for each

musculoskeletal aging dimension

See supplementary data

Table S11: List of diseases by subcategories for the Diseases Wide Association Study

[DWAS]

See supplementary data

Table S12: Diseases most associated with accelerated aging for each musculoskeletal

aging dimension

See supplementary data

Table S13: Diseases most associated with decelerated aging for each musculoskeletal

aging dimension

See supplementary data



Table S14: List of family history variables by subcategories for the Family History

Phenotypes Wide Association Study [FWAS]

See supplementary data

Table S15: Family history variables most associated with accelerated aging for each

musculoskeletal dimension

Musculoskeletal dimension X-subcategory Variables

General FamilyHistory (0.0%)

Full body FamilyHistory (1.1%)

Hip FamilyHistory (1.1%)

Knee FamilyHistory (0.0%)

Scalar biomarkers FamilyHistory (3.3%)
Illnesses of siblings.Prefer not to answer1 (.013); Illnesses of siblings.Severe
depression (.011); Illnesses of mother.Severe depression (.009)

Spine FamilyHistory (0.0%)

Table S16: Family history variables most associated with decelerated aging for each

musculoskeletal dimension

Musculoskeletal dimension X-subcategory Variables

General FamilyHistory (1.1%)

Full body FamilyHistory (0.0%)

Hip FamilyHistory (1.1%) Illnesses of father.Prostate cancer (.027)

Knee FamilyHistory (3.3%)
Illnesses of father.Prostate cancer (.025); Illnesses of mother.Severe
depression (.025)

Scalar biomarkers FamilyHistory (6.5%)
Illnesses of father.Lung cancer (.141); Illnesses of adopted mother.Chronic
bronchitis/emphysema (.124); Illnesses of adopted father.Lung cancer (.121)

Spine FamilyHistory (1.1%)

Table S17: List of environmental variables by subcategories for the Environmental Wide

Association Study [EWAS]

See supplementary data



Table S18: Environmental variables most associated with accelerated aging for

musculoskeletal each aging dimension

See supplementary data

Table S19: Environmental variables most associated with decelerated aging for each

musculoskeletal aging dimension

See supplementary data

Table S20: List of socioeconomic variables by subcategories for the Socioeconomics

Wide Association Study [SWAS]

See supplementary data

Table S21: Socioeconomic variables most associated with accelerated aging for each

musculoskeletal aging dimension

See supplementary data

Table S22: Socioeconomic variables most associated with decelerated aging for each

musculoskeletal aging dimension

See supplementary data

Table S23: Image sizes after resizing

Musculoskeletal
Dimension

Musculoskeletal
Subdimension

Size before
resizing

Size after
resizing

Spine
Sagittal 1513, 684 466, 211

Coronal 724, 720 315, 313



Hips MRI 626, 680 329, 303

Knees MRI 851, 700 347, 286

FullBody

Mixed 811, 272 541, 181

Figure 811, 272 541, 181

Skeleton 811, 272 541, 181

Flesh 811, 272 541, 181

Table S24: Data augmentation hyperparameters for X-ray images

Dataset
Rotation

range
Horizontal shift percentage

range
Vertical shift percentage

range
Zoom
range

Musculoskeletal
Spine

10 0.1 0.1 0

Musculoskeletal Hips 10 0.1 0.1 0.1

Musculoskeletal
Knees

10 0.1 0.1 0.1

Musculoskeletal
FullBody

10 0.05 0.02 0

Table S25: Hyperparameter space for scalar features-based models Bayesian

optimization

Algorithm Hyperparameter Scale Low High

Elastic
net

alpha loguniform -10 0

l1_ratio uniform 0 1

Gradient
Boosted
Machine

num_leaves quniform 5 45

min_child_samples quniform 100 500

min_child_weight loguniform -5 4

subsample uniform 0.2 0.8

colsample uniform 0.4 0.6

reg_alpha loguniform -2 2

reg_lambda loguniform -2 2

n_estimators quniform 150 450

Neural
network

learning_rate_init loguniform -5 -1

apha loguniform -6 3



Table S26: Nested Cross-Validation pipeline



Table S27: Hyperparameters tuning upstream of the cross-validation for images-based

models

See supplementary data

Table S28: Outer Cross-Validation with inner split pipeline

The values displayed are validation RMSE values. Lower values are associated with better

hyperparameter tuning. When two values are displayed (value1/value2), the second value

corresponds to the training RMSE. The architecture used was InceptionV3, with an initial

learning rate of 0.001. The model was trained on the data folds 2-9, and validated on the data

fold #0. The data fold #1 was set aside as the testing set and was not used.

Dat
a

Fold

N=
10
0

Outer
CV

folds 0

Outer
CV

folds 1

Outer
CV

folds 2

Outer
CV

folds 3

Outer
CV

folds 4

Outer
CV

folds 5

Outer
CV

folds 6

Outer
CV

folds 7

Outer
CV

folds 8

Outer
CV

folds 9

F0
N=
10

Train Train Train Train Train Train Train Train
Validati

on
Test

F1
N=
10

Train Train Train Train Train Train Train
Validati

on
Test Train

F2
N=
10

Train Train Train Train Train Train
Validati

on
Test Train Train

F3
N=
10

Train Train Train Train Train
Validati

on
Test Train Train Train

F4
N=
10

Train Train Train Train
Validati

on
Test Train Train Train Train

F5
N=
10

Train Train Train
Validati

on
Test Train Train Train Train Train

F6
N=
10

Train Train
Validati

on
Test Train Train Train Train Train Train

F7 N= Train Validati Test Train Train Train Train Train Train Train



10 on

F8
N=
10

Validati
on

Test Train Train Train Train Train Train Train Train

F9
N=
10

Test Train Train Train Train Train Train Train Train
Validati

on
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