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Abstract

Genome-wide association studies (GWAS) have identified hundreds of loci associated
with Crohns disease (CD), however, as with all complex diseases, deriving pathogenic
mechanisms from these non-coding GWAS discoveries has been challenging. To
complement GWAS and better define actionable biological targets, we analysed
sequenced data from more than 30,000 CD cases and 80,000 population controls. We
observe rare coding variants in established CD susceptibility genes as well as ten genes
where coding variation directly implicates the gene in disease risk for the first time.

GWAS in Crohn’s Disease (CD), and inflammatory bowel disease (IBD) more generally, have
successfully identified more than 200 loci contributing to risk of disease1–4. While most GWAS
hits do not immediately implicate an obvious functional variant or gene, a subset have been
directly mapped to coding variants (e.g., NOD2, IL23R, ATG16L1, SLC39A8, FUT2, TYK2,
IFIH1, SLAMF8, PLCG2)5, providing more direct clues to pathogenesis. Further, targeted and
genome-wide sequencing approaches have revealed additional, lower-frequency,
disease-associated coding variants (e.g., CARD9, RNF186, ADCY7, INAVA/C1orf106,
SLC39A8, NOD2)6–9 originally undetected by GWAS. Such coding variants, common and rare,
have led to functional follow-up experiments demonstrating causal mechanisms for at least ten
genes and have provided the most direct biological insights to emerge from genetic studies of
IBD10–13.

Results

To further advance the interpretation of GWAS loci — and to define novel CD associated genes
using variation rarer than that routinely detected by GWAS — we pursued large-scale exome
sequencing at multiple centers using CD case and control collections from more than 35 centers
in the International IBD Genetics Consortium. The primary analysis consisted of exome
sequencing of 18,828 CD cases across 35 IBD studies and 13,499 non-IBD control samples
from the same studies. These samples were all sequenced at the Broad Institute and were
supplemented with 22,536 population controls from approved non-IBD studies sequenced
contemporaneously at the Broad Institute and accessed from dbGAP (Supplementary Table 1).
Two different exome capture platforms were employed during the course of the study (referred
to hereafter as Nextera [Illumina] and Twist [Twist Biosciences]). Details of capture and
sequencing of these cohorts (and those subsequently used in follow-up) are provided in
Supplementary Material.

Calling and quality control (QC) of data from the two exome capture platforms were conducted
in parallel (Table 1; Supplementary Figure 1; Online Methods). Sensitivity to detect
low-frequency coding variants was evaluated in each callset post-QC by comparison to passing
sites in gnomAD v2.1 that had 0.0001 < non-Finnish European (NFE) minor allele frequency
(MAF) < 0.1 (Online Methods). We observed that 84% of all exonic single nucleotide
polymorphisms (SNPs) in this frequency range were detected in both CD datasets with
sufficiently high quality to enter meta-analysis. Analysis of each dataset was conducted in
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SAIGE using a logistic mixed-model14, and meta-analysis was conducted with the standard
inverse-variance weighted (IVW) method. Forty-three sites (Supplementary Table 2) failed a
heterogeneity-of-effect test (IVW pHET < 0.0001) and were eliminated from further analysis. We
did not observe an inflation in the exome-wide distribution of test statistics (Supplementary
Figure 2).

Sequencing
Center Type Exome Capture

#CD
cases #controls

Broad WES Nextera 11,125 25,145

Broad WES TWIST 6,109 6,064

Sanger WGS n/a 6,000 11,852

Sanger WES Agilent 3,731 33,704*

Regeneron WES Agilent 4,071 4,223

Table 1. Sample characteristics. Numbers listed are post-QC and are of samples entered into
analysis. Whole-exome sequencing data derived from the UK Biobank cohort, sequenced by Regeneron
using the IDT xGen Exome Research Panel v1.0 including supplemental probes, was used as population
controls for the Sanger WES cases (Online Methods).

Association tests were carried out for 164,149 non-synonymous variants with minor allele
frequency (gnomAD NFE) between 0.0001 - 0.1, yielding a study-wide significance threshold of
3 x 10-7 (Supplementary Table 3). The most significantly-associated variants (p < 10-10) in this
analysis were previously-known CD variants (or variants in linkage disequilibrium [LD] with
them, Supplementary Table 3), indicating the QC and analysis pipeline removed highly
associated false positives. Twenty-eight variants achieved study-wide significance (p < 3 x 10-7),
including known variants within CD genes established in prior GWAS and sequencing efforts:
NOD2, IL23R, LRRK2, TYK2, SLC39A8, IRGM and CARD9. Encouraged by this, we then
nominated a list of 116 variants (including known variants) with p < 0.0002 for further evaluation.

Additional exome and genome sequencing was undertaken at the Sanger Institute on an
independent cohort of 9,731 CD cases ascertained by the UK IBD Genetics Consortium and
IBD BioResource. Genome sequencing with a target depth of 15x was performed on 6,000 CD
patients. Whole-genome sequences from 11,852 individuals from the INTERVAL blood donor
cohort were used as population controls. Another 3,731 CD patients were exome sequenced
using the Agilent SureSelect Human All Exon V5 capture. 33,704 individuals without IBD or
other related diseases from the UK Biobank were used as controls for the Sanger WES cases.
These UK Biobank samples were sequenced by Regeneron using the IDT xGen Exome
Research Panel v1.0 (including supplemental probes), and thus QC and subsequent analyses
were restricted to the intersection of the Agilent and the IDT capture regions. Exome and
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genome datasets were processed in parallel with similar QC parameters (Online Methods).
Association analyses were performed using a logistic mixed-effects model implemented in the
REGENIE software, correcting for the case-control imbalance using the Firth correction. 28 of
116 variants were associated (p < 4.3 x 10-4 (.05/116)) with CD in the meta-analysis of the two
Sanger cohorts and 94 replicated the direction of effect seen in the discovery cohort (p = 3.34 x
10-12, binomial test). Summary statistics from a German dataset of 4,071 CD cases and 4,223
controls exome-sequenced at Regeneron (Online Methods) were also ascertained and an
inverse-variance weighted meta-analysis carried out across all five cohorts (Table 1). 45 of the
116 variants exceeded the study-wide significance threshold, p < 3 x 10-7 (Supplementary
Table 3).

To identify new loci not yet implicated in CD and independent exonic association signals at
known loci, we accounted for the LD between these 45 variants and previously-reported IBD
GWAS hits, as well as prior rare variant discoveries (Online Methods). We identified five coding
variants in genes not previously implicated in IBD susceptibility as well as six independently
associated novel exonic variants in genes previously known to harbor coding mutations
underpinning CD or IBD risk, two of which are in NOD2 (Figure 1; Supplementary Table 4).

Figure 1. Odds ratio and minor allele frequency for exome-wide significant findings that are not
tagging stronger, established non-coding association signals. Known causal candidate: in a credible
set from a fine-mapping study5 with posterior inclusion probability > 5% or reported in previous studies6,8

(Online Methods). New locus: in a locus not yet implicated by GWAS. New variant in known locus: in a
known GWAS locus, but represents an association independent from previously-reported IBD putative
causal variants (Online Methods).
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Most of the newly implicated CD genes (Table 2) play roles in biological processes already
established in IBD pathogenesis, including: DOK2:P274L (downstream of tyrosine kinase 2:
myeloid cell development and negative regulator of TLR2); TAGAP:E147K (Th17 differentiator
and antifungal signaler); PTAFR:N114S (regulator of the NLRP3 inflammasome); CCR7:M7V
(responsible for homing of T-cells and dendritic cells, lymphocyte egress, regulatory and
memory T-cell function); IL10RA:P295L (a regulator of innate/adaptive immune response in
which recessive-acting mutations are known to cause severe neonatal enterocolitis);
RELA:D288N (Th17 regulator with mutations reported to cause chronic mucocutaneous
ulceration [CMCU]); and HGFAC, PDLIM5 and SDF2L1. Further details on the newly-implicated
genes are contained in Box 1.

Chr Pos A0 A1 MAF Scan p Meta p OR Gene Conseq.

1 28,150,681 T C 0.0037 1.68E-07 2.96E-12 1.702 PTAFR N114S

4 3,447,925 G A 0.0704 1.37E-10 6.92E-15 1.170 HGFAC R516H

4 94,573,345 C T 0.0034 1.79E-05 2.55E-07 1.610 PDLIM5 spl reg

6 159,041,392 C T 0.0233 7.60E-06 4.04E-10 0.786 TAGAP E147K

8 21,909,729 G A 0.0316 1.34E-04 2.09E-13 1.248 DOK2 P274L

11 65,658,293 C T 0.0057 6.23E-05 2.31E-07 1.457 RELA D288N

11 117,998,788 C T 0.0014 1.13E-05 6.29E-09 2.107 IL10RA P295L

17 40,558,934 T C 0.0393 6.16E-06 4.70E-08 1.153 CCR7 M7V/M1?

22 21,643,991 G A 0.0152 2.44E-05 2.21E-07 1.242 SDF2L1 R161H

Table 2. Variants achieving study-wide significance that implicate genes directly for the first time.
Four of these variants (in TAGAP1,15, SDF2L11, RELA1 and HGFAC2) are in regions highlighted in prior
GWAS but represent independent associations, directly implicating these genes (Online Methods). Pos:
genomic position in hg38; Scan p: p-value from the exome-wide discovery including subjects exome
sequenced at the Broad Institute; Meta p: p-value from the full meta-analysis of the five cohorts shown in
Table 1.

The identified coding variants in RELA, TAGAP, and SDF2L1 are close to, but not in LD (r2 <
0.05) with common non-coding variants significantly associated with IBD risk via GWAS (Online
Methods). These very likely pinpoint the genes dysregulated by the associated common variant
and provide a focus for uncovering the function of those variants, perhaps leading to allelic
series of perturbations further informing on the mechanism of their contribution to CD
pathogenesis. The association at HGFAC likely explains the prior common variant association in
the region, but as this was not previously a high-resolution region and the missense variant not
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included in the design of Immunochip, the variant was not previously flagged. The two novel
NOD2 associations are not in LD with previously reported putative causal variants. One of them
modestly reduces basal activity and has at least 2-fold reduction in peptidoglycan induced
NF-κB response(Chamaillard et al. 2003). The other novel NOD2 variant is a splice donor
variant (Supplementary Table 5).

We performed two gene-based rare-variant (MAF < 0.001) burden tests in the full-exome
Nextera and TWIST data sets using SAIGE-GENE16, one restricted to loss-of-function variants
and another using all non-synonymous variants (Supplementary Table 6). NOD2 unsurprisingly
stood out far above the expected distribution (LoFp = 7.7 x 10-7; NonSynp < 10-16). Only one
other gene in either analysis exceeded the threshold expected once in the study by chance
(ATG4C, NonSynp = 3.3 x 10-6). This potentially novel signal in ATG4C was driven by three
distinct missense variants with individual p < 0.01 (N75S, R80H and C367Y) (Supplementary
Table 7) along with two others with p < 0.05 (K371R, R381X). The ATG4C gene burden signal
was examined in the Sanger data sets and replicated, with the meta-analysis reaching
exome-wide significance (p = 1.5 x 10-7) driven by several of the same variants. Further
examination of results from the single variant tests in ATG4C identified a frameshift variant with
frequency of 0.002 (1:62834058-TTG-T) - too high to be included in our burden test - that just
missed our threshold for testing in the follow-up cohorts (p = 0.0003, Beta = 0.55 in the Broad
meta-analysis). This variant also showed evidence of association in the meta-analysis of the
Sanger cohorts (p = 1.3 × 10-5), and also exceeded our study-wide significance threshold in the
five-way meta-analysis of all cohorts (p = 1.55 x 10-8). Of further note, an additional ATG4C
frameshift variant specifically enriched in Finland (1:62819215:C:CT) is associated with IBD (p =
6.91 x 10-8, Beta = 1.20) in the publicly released FinnGen resource (r5.finngen.fi). All variants in
burden and individual testing increase risk, and the inclusion of four truncating variants in these
analyses suggests that loss-of-function variants in ATG4C strongly increase CD risk.

Discussion

Here, we demonstrate that large-scale exome sequencing can complement GWAS by
pinpointing specific genes both indirectly implicated by GWAS as well as those not yet observed
in GWAS. With high sensitivity to directly test individual variants down to 0.01% minor allele
frequency, as well as assess burden of ultra-rare mutations, we begin to fill in the low-frequency
and rare-variant component of the genetic architecture of Crohn’s disease. This component was
not observable by earlier generations of CD GWAS meta-analyses, which have had more
limited coverage of low-frequency and rare variation.

Past findings in IBD5, and most other complex diseases, suggest that while coding variants are
vastly outnumbered by non-coding variation, they are highly enriched for associations to
common and rare disease. Furthermore, associated coding variants tend to have stronger
effects than their non-coding counterparts, often keeping them lower in frequency via natural
selection. While this alone validates the use of exome sequencing for efficiency’s sake, the
primary advantage of targeting coding regions for discovery is that coding variants uniquely
pinpoint genes, and often pathogenetic mechanisms, in a fashion that is at present far more
challenging to achieve routinely for non-coding associations. In the case of several of the new
findings (e.g., RELA, TAGAP), the coding variation here provides concrete evidence of genes
previously indirectly implicated by independent non-coding GWAS associations.  These identify
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the likely gene underlying these associations and build allelic series of natural perturbations at
these genes. Moreover, IL10RA and RELA are known to harbor mutations causing rare,
Mendelian, inflammatory GI disorders and this study extends the phenotypic spectrum resulting
from their genetic perturbation to more complex forms of  CD. From a functional perspective, the
novel genes identified in the current study reiterate the central role of innate and adaptive
immune cells as well as autophagy in CD pathogenesis. Moreover, the involvement of PDLIM5
as well as the CCR7/CCL19/CCL21 pathway highlights the emerging role of mesenchymal cells
in the development and maintenance of intestinal inflammation17.

We expect that, in the next year, expanded sequencing efforts underway in ulcerative colitis will
come to completion, enabling a more comprehensive survey of low-frequency and rare variation
in ulcerative colitis, and IBD in general. Integrated with a much larger GWAS spearheaded in
parallel by the IIBDGC, we expect a substantial number of conclusively linked genes and
informative allelic series to emerge.

Box 1. Genes newly implicated in Crohn’s disease risk.

DOK2 (Docking Protein 2, Downstream of Tyrosine Kinase 2) is a cytoplasmic signaling
protein highly expressed in macrophages and T-cells in the terminal ileum. Loss of Dok-2
in mice causes severe DSS-induced colitis with reduced IL-17A and IL-22 expression18,
and DOK2 is known to be differentially methylated in colonic tissue of IBD patients19.
DOK2 regulates both TLR2-induced inflammatory signaling and NK cell development,
and DOK2 loss-of-function is associated with increased IFN-ɣ production20,21. The P274L
variant has previously been implicated in atopic eczema where the rare allele was
significantly protective for atopic eczema likely by disturbing the RasGAP activation of
DOK2 and transcriptomic analyses also suggest that DOK2 is a central hub interacting
with CD200R1, IL6R, and STAT322.

TAGAP (T-Cell Activation RhoGTPase Activating Protein) has a pivotal role in TH17
development and modulates the risk of autoimmunity through influencing thymocyte
migration in thymic selection23,24. TAGAP expression is upregulated in rectal tissue in IBD
patients, and TAGAP is required for Dectin-induced anti-fungal signaling and
proinflammatory cytokine production in myeloid cells25,26.

PTAFR (Platelet Activating Factor Receptor), a hypoxia response gene, has an affinity
for bacterial phosphorylcholine (ChoP) moieties27 and influences development of
cigarette-induced Chronic Obstructive Pulmonary Disease (COPD) by inducing
neutrophil autophagic death in mice28. PTAFR regulates colitis-induced pulmonary
inflammation through the NLRP3 inflammasome29.

PDLIM5 (PDZ And LIM Domain 5) is a kidney anion exchanger and scaffolding protein.
Genetic variation in this gene is associated with prostate cancer, schizophrenia,
diverticular disease, diverticulosis, colorectal cancer, testicular cancer, and self-reported
angina30. PDLIM5 has been reported to be a STAT3 interaction partner involved in actin
binding31, with STAT3 previously being identified as an IBD gene32. PDLIM5 is highly
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expressed in myofibroblast cells, which are important mesenchymal cells of the intestinal
lamina propria17.

SDF2L1 (Stromal Cell Derived Factor 2 Like 1) has been recently identified in the ER
stress response in primary intestinal epithelial cells33. SDF2L1 is an ER resident protein
that functions within a large protein complex regulating the BiP and Erdj3 chaperone
cycle to promote protein folding and secretion34–36. Structurally, Sdf2l1 contains an
N-terminal signal peptide for entry into the ER lumen and a C-terminal ER retention
signal flanking 3 MIR domains that promote complex assembly. The CD risk variant
R161H is located in the third MIR domain. In murine models, deletion of SDF2L1 in the
liver resulted in prolonged ER stress and insulin resistance37. In the intestine, single cell
transcriptional profiling revealed that SDF2L1 is predominantly expressed in highly
secretory cell lineages, including mucin-secreting goblet cells and
immunoglobulin-secreting plasma cells38. Moreover, SDF2L1 expression is dynamically
regulated and specifically induced during the acute phase of the unfolded protein
response (UPR)33. Together, these observations suggest a critical role for SDF2L1 in
maintaining ER homeostasis and secretory capacity, which may promote barrier function
at the level of mucus integrity and/or neutralization of immunoglobulins and antimicrobial
peptides that collectively limit interactions between luminal microbes and the host
immune system.

CCR7 (chemokine receptor 7) and its ligands CCL19/CCL21 promote homing of T-cells
and dendritic cells to T-cell areas of lymphoid tissues where T-cell priming occurs. CCR7
also contributes to adaptive immune functions including thymocyte development,
secondary lymphoid organogenesis, high affinity antibody responses, regulatory and
memory T-cell function, and lymphocyte egress from tissues. CCR7 expression is
upregulated in an inflamed gut in CD39, and CCR7 regulates the intestinal
TH1/TH17/Treg balance during Crohn's-like murine ileitis40. Genetic variation in CCR7 is
associated with atopy, asthma, COPD, and IBD in African-Americans30. CCL19 and
CCL21 are highly expressed in a population of stromal cells (designated as S4) that are
expanded in IBD inflamed tissues and that continually produce proinflammatory factors
preventing the resolution phase of a wound-healing response17.

IL10RA (Interleukin 10 receptor A) is a potent regulator of innate and adaptive immune
responses, and IL10RA genetic variants are associated with Very-Early Onset IBD
(VEOIBD) cases; a subset of VEOIBD refractory patients respond to hematopoietic stem
cell transplantation41. IL10R1 knockout mice are susceptible to chemical-induced
colitis42.

RELA (Nuclear Factor NF-Kappa-B P65 Subunit). NFkB is a ubiquitous transcription
factor, and its most abundant form is NFKB1 complexed together with RELA. RELA
regulates the Th17 pathway in autoimmune disease models43, and the FOXO3-NF-κB
RelA protein complexes reduce proinflammatory cell signaling and function44. RELA
haploinsufficiency causes autosomal dominant chronic mucotaneous ulceration45, and
RELA is a master transcriptional regulator of epithelial-mesenchymal transition in
epithelial cells46. Genetic variation in RELA has been associated with SLE, type 2
diabetes, psoriasis, obesity, asthma, and atopic dermatitis30.
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ATG4C - (Autophagy-Related 4C Cysteine Peptidase) defective autophagy is
established as a mechanism contributing to CD risk. This gene encodes one of four Atg4
isoforms (Atg4A, B, C, and D) that prime pro-LC3 and GABARAP (orthologues of yeast
Atg8), essential proteins required for autophagosome biogenesis47,48. These Atg4
proteins, including Atg4C, are involved with proteolytic cleavage of Atg8’s C-terminus,
thus exposing a specific Atg8 glycine residue necessary for phospholipid covalent
binding to Atg8. Atg8 lipidation is necessary for autophagosome formation49.

HGFAC - Hepatocyte Growth Factor Activator is a serine endopeptidase that converts
Hepatocyte Growth Factor (HGF) to its active form in response to thrombin and kallikrein
endopeptidases. HGF contributes to neutrophil recruitment. HGF expression is
increased in active UC with animal models, suggesting that HGF-MET signaling
exacerbates intestinal inflammation50,51. Furthermore, HGF promotes colonic epithelial
regeneration and mucosal repair52,53. HGFAC variation is also associated with
tuberculosis susceptibility54.

Supplementary Material / Methods

Broad Institute sequencing pipeline

Sample processing. Exome sequencing was performed at the Broad Institute.  The
sequencing process includes sample prep (Illumina Nextera, IIlumina TruSeq, and Kapa
Hyperprep), hybrid capture (Illumina Rapid Capture Enrichment (Nextera) - 37Mb target, and
TWIST Custom Capture - 37Mb target), and sequencing (Illumina HiSeq2000, Illumina
HiSeq2500, Illumina HiSeq4000, Illumina HiSeqX, Illumina NovaSeq6000 - 76bp and 150bp
paired reads).  Sequencing was performed at a median depth of 85% targeted bases at >20X.
Sequencing reads were mapped by BWA-MEM to the hg38 reference using a ‘functional
equivalence’ pipeline. The mapped reads were then marked for duplicates, and base quality
scores were recalibrated. They were then converted to CRAMs using Picard and GATK. The
CRAMs were then further compressed using ref-blocking to generate gVCFs. These CRAMs
and gVCFs were then used as inputs for joint calling. To perform joint calling, the single-sample
gVCFs were hierarchically merged (separately for samples using Nextera and Twist exome
capture).

Quality control. Quality control (QC) analyses were conducted in Hail v0.2.47 (Supplementary
Figure 1). We first split multiallelic sites and code genotypes with genotype quality (GQ) lower
than 20 as missing. Variants not annotated as frameshift, inframe deletion, inframe insertion,
stop lost, stop gained, start lost, splice acceptor, splice donor, splice region, missense, or
synonymous were removed from the following analysis. We also removed variants that have
known quality issues (have a non-empty QUAL column) in the gnomAD dataset. Sample QC:
poor-quality samples that met the following criteria were identified and removed: 1) samples with
an extremely large number of singletons (≥ 500); 2) samples with mean GQ < 40; and 3)
samples with missingness rates > 10%. Variant QC: low-quality variants that met the following
criteria were identified and removed: 1) variants with missingness rate > 5%; 2) variants with
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mean read depth (DP) < 10; 3) variants that failed the Hardy-Weinberg Equilibrium (HWE) test
for controls with p < 1 x 10-4; and 4) variants with > 10% samples that were heterozygous and
with an allelic balance ratio < 0.3 or > 0.7. Variants with different genotypes in WES and WGS in
gnomAD were also removed. For Twist exome capture samples, we additionally removed 1)
samples that had a significantly high or low inbreeding coefficient (> 0.2 or < -0.2); 2) samples
that had a high heterozygosity away from mean (± 5 standard deviations); and 3) related
samples, which were removed sequentially by removing the individual with the largest number
of related samples (in PLINK, the individual with PI_HAT > 0.2 when using the --genome option)
until no related samples remained. For Nextera capture samples, we additionally removed
variants showing a significant heterogeneous effect across Ashkenazi Jewish (AJ), Lithuanian
(LIT), Finnish (FIN), and non-Finnish European (NFE) samples (see “Population Assignment”
below).

Population assignment. We projected all samples onto principal component (PC) axes
generated from the 1000 Genomes Project Phase 3 common variants, and classified their
ancestry using a random forest method to the European (CEU, TSI, FIN, GBR, IBS), African
(YRI, LWK, GWD, MSL, ESN, ASW, ACB), East Asian (CHB, JPT, CHS, CDX, KHV), South
Asian (GIH, PJL, BEB, STU, ITU) and American (MXL, PUR, CLM, PEL) samples. We kept
samples that were classified as European with prediction probability greater than 80%. For
Nextera samples, we used a second random forest classifier to assign EUR samples to AJ, LIT,
FIN, or NFE, and a third random forest classifier to clean the AJ/NFE split.

Meta-analysis. We used METAL55 with the inverse variance weighted (IVW) fixed-effect model
to meta-analyse the SAIGE association statistics from Nextera and Twist samples (Table 1).
The heterogeneity test was performed using Cochran’s Q with one degree of freedom.

Sanger Institute sequencing pipeline

Sample processing. Genome sequencing was performed at the Sanger Institute using the
Illumina HiSeq X platform with a combination of PCR (n=4751, controls only) and PCR-free
library preparation protocols. Sequencing was performed at a median depth of 18.6X. Exome
sequencing of cases was performed at the Sanger Institute using the Illumina NovaSeq 6000
and the Agilent SureSelect Human All Exon V5 capture set. Controls from the UK Biobank were
sequenced separately as a part of the UKBB WES50K release using Illumina NovaSeq and the
IDT xGen Exome Research Panel v1.0 capture set (including supplemental probes). 33,704
UKBB participants were selected for use as controls, excluding participants with recorded or
self-reported CD, UC, unspecified noninfective gastroenteritis or colitis, any other
immune-mediated disorders, or a history of being prescribed any drugs used to treat IBD.
Exome and genome datasets were analysed separately but followed a similar analysis protocol.

Reads were mapped to hg38 reference using BWA-MEM. Variant calls were performed using a
GATK 4 Best Practices-like pipeline; per-sample intermediate variant calling was followed by
joint genotyping across the individual genome and exome cohorts. For the exome cohort,
variant calling was limited to Agilent extended target regions. Per-region VCF shards were
imported into the Hail software and combined. Multi-allelic sites were split. For the exome
cohort, we subsetted the calls to the intersection of Agilent and IDT exome captures, further
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excluding regions recommended for exclusion by the UKBB due to an error in read mapping
that results in no variant calls made.

Population assignment. We selected a set of ~14,000 well-genotyped common variants to
identify the genetic ancestry of individual participants through the projection of 1000 Genomes
Project cohort-derived principal components. For genomes, due to primarily European genetic
ancestry of the controls, we excluded samples outside of four median absolute deviations from
the median point of the European ancestry cluster of 1000G. For exomes, we implemented a
Random Forest technique that classified samples based on principal components into broad
genetic ancestry groups (EUR, AFR, SAS, EAS, admixed), with self-reported ancestry as
training labels. For these analyses, we only retained the EUR samples, as the number of cases
for other groups was too small for robust association analysis.

Quality control. A combination of hard-cutoff filters and per-ancestry/per-batch outlier filters
were used to identify low-quality samples. We applied hard-filters for sample depth (> 12x
genomes, > 15x exomes), call rate (> 0.95), chimerism < 0.5 (WGS) and FREEMIX < 0.02
(WGS). We excluded genotype calls with an allelic imbalance (for hets, (ab < 0.20) | (ab >
0.80)), low depth (< 2x), and low GQ (< 20). We then performed per-ancestry and
per-sequencing protocol (AGILENT vs IDT for WES, PCR vs PCR-free for WES) filtering of
samples falling outside 4 MAD from the median per-batch heterozygosity rate, Ti/Tv rate,
number of called SNPs and INTELs, and insertion and deletion counts/ratio.

An ancestry-aware relatedness calculation (pc-relate method in Hail56) was used to identify
related samples. As our association approach (logistic mixed-models) can control for residual
relatedness, we only excluded duplicates or MZ twins from within the cohorts and excluded
second and third degree relatives when the kinship was across the cohorts (e.g., parent in
WGS, child in WES; kinship metric > 0.1 calculated via PC-Relate method using 10 principal
components). In addition, we removed samples that were also present in the Broad Institute’s
cohorts.

Association testing. Association analysis was performed using a logistic mixed-model
implemented in the REGENIE software. A set of high-confidence variants (> 1% MAF, 99% call
rate, and in Hardy-Weinberg Equilibrium) was used for t-fitting. To control for case-control
imbalance, Firth correction was applied to p-values < 0.05. To control for residual ancestry and
sequencing heterogeneity, we calculated 10 principal components on a set of well-genotyped
common SNPs, excluding regions with known long-range LD. These were used as covariates
for association analyses. Only variants with call-rate above 90% after filtering poor calls were
included in the association analysis. For WES, we verified that the > 90% call-rate condition
holds true in both AGILENT and IDT samples. Association analysis was performed on
QC-passing calls.

Kiel/Regeneron sequencing pipeline

Sample Preparation and Sequencing. The DNA samples were normalized and 100ng of
genomic DNA was prepared for exome capture with custom reagents from New England
Biolabs, Roche/Kapa, and IDT using a fully-automated approach developed at the Regeneron
Genetics Center. Unique, asymmetric 10 base pair barcodes were added to each side of the
DNA fragment during library preparation to facilitate multiplexed exome capture and
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sequencing. Equal amounts of sample were pooled prior to exome capture with a slightly
modified version of IDT’s xGen v1 probes; supplemental probes were added to capture regions
of the genome well-covered by a previous capture reagent (NimbleGen VCRome) but poorly
covered by the standard xGen probes. Captured fragments were bound to
streptavidin-conjugated beads and non-specific DNA fragments were removed by a series of
stringent washes according to the manufacturer’s recommended protocol (IDT). The captured
DNA was PCR amplified and quantified by qRT-PCR (Kapa Biosystems). The multiplexed
samples were pooled and then sequenced using 75 bp paired-end reads with two index reads
on the Illumina NovaSeq 6000 platform using S2 flow cells.

Variant calling and quality control. Sample read mapping and variant calling, aggregation and
quality control were performed via the SPB protocol described in Van Hout et al. 57. Briefly, for
each sample, NovaSeq WES reads are mapped with BWA MEM to the hg38 reference genome.
Small variants are identified with WeCall and reported as per-sample gVCFs. These gVCFs are
aggregated with GLnexus into a joint-genotyped, multi-sample VCF (pVCF). SNV genotypes
with read depth (DP) less than seven and indel genotypes with read depth less than ten are
changed to no-call genotypes. After the application of the DP genotype filter, a variant-level
allele balance filter is applied, retaining only variants that meet either of the following criteria: (i)
at least one homozygous variant carrier or (ii) at least one heterozygous variant carrier with an
allele balance (AB) greater than the cutoff.

Analysis. We combined the gvcf files with bcftools 1.11 using the “merge” command, then
imported the joint vcf into Hail. We then split the multiallelic variants and removed variants with
“<NON_REF>” alternative alleles. We applied the QC steps and assigned populations as in the
Broad Institute sequencing pipeline.

Cross-cohort meta-analysis. We used the Cochran–Mantel–Haenszel (CMH) test to combine
association summary statistics between the Broad Institute, Sanger Institute and
Kiel/Regeneron cohorts.

Relation to known IBD causal variants. We assigned study-wide significant variants to one of
four categories (Supplementary Table 4): 1) Known causal candidates: variants in a
fine-mapping credible set5 with posterior inclusion probability (PIP) > 5%, or reported in the
earlier sequencing studies6,8. 2) New locus: variants implicating a genetic locus for the first time.
3) Tagging variants: tagging variants with the best PIP in fine-mapping credible sets using
conditional analysis (see “Conditional analysis” below). 4) New variants in known locus:
variants in known GWAS loci but either have MAF < 0.5% (and thus, no LD to evaluate tagging)
or remain study-wide significant after conditional analysis using the LD from gnomAD.

Conditional analysis. For study-wide significant variants not in a previously reported credible
set5, we performed a conditional analysis to test whether they are independent from or tagging
the known causal variants5. We first classified variants as “tagging” if they had r2 > 0.8 with any
variants in the reported credible sets5. For other variants, we performed a conditional analysis
using 1) the p-value estimates from previous fine-mapping studies for credible set variants and
2) the LD calculated from gnomAD. We were unable to directly fit a multivariate model or use
the LD from study subjects, because exome sequencing does not cover the non-coding putative
causal variants, and the ImmunoChip does not have good quality for rare coding variants. The
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conditional statistic, , for a variant with marginal statistic of from our study, was𝑧 𝑧'
𝑆𝑒𝑞

𝑧
𝑆𝑒𝑞

calculated as follows:
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in which is the statistic of the variant with the best PIP in the credible set i from the𝑧
𝐹𝑀

𝑖

𝑧

fine-mapping study, is the LD between the two variants, and and are the effective𝑟
𝑖

𝑁
𝑆𝑒𝑞

𝑁
𝐹𝑀

sample sizes for our study and the fine-mapping study respectively. We used the absolute value
in this equation because of the challenges to align the alleles across sequencing, the
fine-mapping study, and the gnomAD reference panel. Taking the absolute value is a
conservative approximation (less likely to declare a variant as novel association) because it
assumes that the putative causal variants from fine-mapping have the same direction of effect
as the variant being tested when they are in LD. This is very likely to be correct. The effective
sample size was calculated as , in which and are the4/ 1/𝑁

𝑐𝑎𝑠𝑒
+ 1/𝑁

𝑐𝑜𝑛𝑡𝑟𝑜𝑙( ) 𝑁
𝑐𝑎𝑠𝑒

𝑁
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

sample sizes for cases and controls respectively. For each variant, we summed the effective
sample sizes across all cohorts in which the variant is observed (thus, can differ from variant𝑁

𝑆𝑒𝑞

to variant). We calculated the conditional p-value of under the standard Gaussian𝑧'
𝑆𝑒𝑞

distribution. A variant was classified as “tagging” if the conditional p-value failed to reach
study-wide significance at 3 x 10-7.

Exceptions and notes: HGFAC: despite this locus having been reported in an earlier GWAS2,
the coding variant we identify was missed and is reported in this study for the first time as
directly implicating this gene (r2 = 0.35 with the previously reported GWAS SNP, rs2073505). We
thus assign this variant as “New variant in known locus”. RELA: similarly to HGFAC, this locus
has been reported in an earlier GWAS2, but the coding variant we identify was missed and is
reported in this study for the first time as directly implicating this gene (r2 = 0.002 with the
previously reported GWAS SNP, rs568617). We thus assign this variant as “New variant in
known locus”. SDF2L1: this variant has marginal p-value = 2 x 10-7 and conditional p = 3.4 x
10-4. The r2 between this variant and the non-coding variant with the best PIP from fine-mapping
is 0.045. We manually assigned this variant to “New variants in known locus,” as this is a
missense variant. SLC39A8: the SLC39A8 A391T variant was not reported in the fine-mapping
paper, as its genetic region was not included in the ImmunoChip design. Because this variant
has been published in several papers as an IBD variant with genetic and functional
evidence58–60, we assign this variant as “Known causal candidate”. TYK2: the TYK2 A928V was
not reported in the fine-mapping paper5, likely due to a lack of power. Because this variant has
been known to be a causal variant for several autoimmune disorders61 and in another IBD
study62, we assign this variant as “Known causal candidate”. NOD2: a) Previous studies5–7 have
shown evidence that the NOD2 S431L variant tags the NOD2 V793M variant, with the latter
more likely to be the CD causal variant. In this study, however, S431L reached study-wide
significance, but V793M failed to meet the significance cutoff. We therefore retained S431L in
Figure 1 for the purpose of keeping this association signal. b) Due to the complexity of the
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NOD2 locus, we conducted a haplotype analysis using the Twist subjects and additionally
classified signed variants that share the same haplotype with known IBD variants as “tagging”.
We found that for the NOD2 S47L variant, 18 out of 19 copies of the T allele are on the same
haplotype as the fs1007insC variant. We therefore classify S47L as “tagging”. c) The NOD2
A755V variant is in LD with rs184788345, the best PIP variant from fine-mapping (r2 = 0.85). The
marginal p-value for A755V is one order of magnitude less significant than rs184788345.
Considering A755V is a missense variant while none of the variants in the credible set defined
by rs184788345 are coding, we assign A755V as a likely ROse“Known causal candidate”.

Data availability

Sequence data has been made publicly available in dbGaP Study Accession: phs001642.v1.p1
- Center for Common Disease Genomics [CCDG] - Autoimmune: Inflammatory Bowel Disease
(IBD) Exomes and Genomes
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001642.v1.p1).

The summary statistics of Nextera and TWIST meta-analysis have been deposited on GitHub
(https://github.com/yorkklause/Crohn-s-Disease-WES-meta).
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SUPPLEMENTARY MATERIALS

Supplementary Table 1. Sample Cohorts.

Supplementary Table 2. Heterogeneity test between samples sequenced using Nextera
and Twist capture kits.

Supplementary Table 3. 116 variants advanced for replication with the Sanger and
Regeneron subjects.

Supplementary Table 4. 43 exome-wide significant variants assigned to known/novel
categories.

Supplementary Table 5. Variants significantly associated with CD in NOD2.

Supplementary Table 6. SAIGE-GENE results.

Supplementary Table 7. Individual rare variants driving the ATG4C association in four
cohorts.

Supplementary Figure 1. Quality control procedures applied in the Broad sequencing
pipeline.
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Supplementary Figure 2. QQ plot of all variants with 0.0001 < MAF < 0.10 passing QC &
heterogeneity test from combined Nextera+TWIST. N.b., figure is capped at -log10 p = 30; the
top four variants (the three common NOD2 and one IL23R) have -log10 p > 100.
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