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Material and Methods 

Sequencing  

For this study, 24 h composite wastewater samples were collected between weeks 10 – 13 of 

2021 (i.e. 10th to 30th March 2021) and shipped TU Darmstadt (Darmstadt, Germany), packed 

with icepacks (approximately at 6°C), for sequencing analysis. In Darmstadt, one litre of the 

untreated wastewater was filtered through a 0.45 μm electronegative membrane filter to 

concentrate the SARS-CoV-2 RNA, followed by extraction using the Fast RNA Blue Kit (MP 

Biomedicals) according to the manufacturer’s protocol. Another 500 ml of the untreated 

wastewater was concentrated by ultrafiltration in 100 kDa Centricon® Plus-70 centrifugal 

ultrafilters (Merck) and RNA was extracted using the Ultra Microbiome kit (Thermofisher 

Scientific) according to the manufacturer’s protocol. Both RNA extracts were pooled together 

for downstream analysis. From the pooled RNA, cDNA was synthesized using SuperScript™ 

VILO™ Master Mix (Thermofisher Scientific), followed by library preparation using the Ion 

AmpliSeq SARS-CoV-2 Research Panel (Thermofisher Scientific) according to 

manufacturer’s instructions. This panel consists of 237 primer pairs, resulting in an amplicon 

length range of 125–275 bp, which cover the near-full genome of SARS-CoV-2. We performed 

multiple sequencing runs to achieve a high number of reads per sample. For each sequencing 

run, eight libraries were multiplexed and sequenced using an Ion Torrent 530 chip on an Ion 

S5 sequencer (Thermofisher Scientific) according to manufacturer’s instructions.     

 

We used the SARS-CoV-2 Research Plug-in Package, which we installed in our Ion Torrent 

Suite software (v5.12.2) of Ion S5 sequence. We used the SARS_CoV_2_coverageAnalysis 

(v5.16) plugin, which maps the generated reads to a SARS-CoV-2 reference genome (Wuhan-

Hu-1-NC_045512/MN908947.3), using TMAP software included in the Torrent Suite. The 

summary of mapping of each sample is provided in S.Table 1. For mutation calls, additional 

Ion Torrent plugins were used, similar to our previous study (1). First, all single nucleotide 

variants (SNVs) were called using Variant Caller (v5.12.0.4) with “Generic - S5/S5XL 

(510/520/530) - Somatic - Low Stringency” default parameters. Then, for annotation and 

determination of the base substitution effect, COVID19AnnotateSnpEff (v1.3.0.2), a plugin 

developed explicitly for SARS-CoV-2, was used. The raw metagenomic sequence data were 

uploaded to the National Center for Biotechnology Information (NCBI) Sequence Read 

Archive (SRA) under Submission ID SUB9829162, BioProject number PRJNA736964. 
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S.Table 1: Summary of sequencing data for all samples. 

S.No. Country SampleID 

Total 

number of 

reads 

No. 

of  mapped 

reads 

Avg 

read 

identity 

to 

target 

(%)* 

S.No. Country SampleID 

Total 

number of 

reads 

No. 

of  mapped 

reads 

Avg 

read 

identity 

to target 

(%)* 

1 BELGIUM 21001_B 2,808,905 2,088,647 99.55 28 GREECE 21022_GR 2,786,455 1,788,408 99.48 

2 BELGIUM 21002_B 2,680,409 1,893,060 99.53 29 GREECE 21020_GR 2,468,367 1,110,096 99.32 

3 BOSNIA 

ERZEGOVINA 
21003_BA 2,508,512 1,766,499 99.51 30 ITALY 21023_IT 3,496,150 2,969,772 99.52 

4 CROATIA 21007_HR 2,552,070 1,870,713 99.64 31 ITALY 21024_IT 1,725,352 818,506 99.48 

5 CROATIA 21008_HR 2,111,859 1,273,558 99.55 32 ITALY 21046_IT 3,260,879 2,256,762 99.52 

6 CYPRUS 21004_CY 2,686,062 1,607,809 99.57 33 LATVIA 21026_LV 3,546,039 2,496,946 99.54 

7 CYPRUS 21005_CY 2,044,674 829,904 98.07 34 LATVIA 21025_LV 2,063,000 1,247,974 99.39 

8 CYPRUS 21006_CY 3,150,002 2,428,422 99.53 35 LITHUNIA 21027_LT 2,596,024 1,391,166 99.63 

9 CZECH 

REPUBLIC 
21009_CZ 3,290,470 2,840,707 99.21 36 LUXEMBOURG 21028_L 2,554,722 1,565,165 99.72 

10 CZECH 

REPUBLIC 
21010_CZ 3,754,585 2,804,456 99.55 37 POLAND 21030_PL 3,538,732 3,215,972 99.32 

11 CZECH 

REPUBLIC 
21048_CZ 3,436,877 2,688,684 99.57 38 POLAND 21029_PL 2,209,073 1,375,405 99.57 

12 DENMARK 21052_DK 3,273,309 763,257 99.37 39 ROMANIA 21031_RO 2,784,858 2,119,141 99.64 

13 DENMARK 
21053_DK 2,547,875 817,493 99.58 40 

SLOVAK 

REPLUBLIC 
21033_SK 3,345,138 2,507,501 99.58 

14 DENMARK 
21054_DK 2,608,811 809,437 98.17 41 

SLOVAK 

REPUBLIC 
21032_SK 2,589,970 1,469,732 98.66 

15 FINLAND 21015_FIN 2,539,762 1,135,620 99.49 42 SLOVENIA 21034_SI 2,838,240 1,941,543 99.52 

16 FINLAND 21017_FIN 2,831,785 1,852,350 99.60 43 SLOVENIA 21035_SI 2,470,338 1,544,585 99.63 

17 FINLAND 21016_FIN 1,918,714 776,343 99.55 44 SPAIN 21039_E 2,683,669 1,964,724 99.52 

18 FRANCE 21018_F 2,731,094 1,892,165 99.48 45 SPAIN 21040_E 2,284,844 1,014,470 99.54 

19 FRANCE 21019_F 2,485,475 1,568,069 99.52 46 SPAIN 21043_E 1,935,880 695,817 98.89 

20 GERMANY 21011_D 2,421,764 1,150,371 99.51 47 SPAIN 21047_S 2,280,905 1,133,647 99.45 

21 GERMANY 21013_D 2,204,439 1,523,263 99.51 48 SPAIN 21036_E 2,252,726 1,019,145 99.52 

22 GERMANY 21051_D 2,862,135 2,144,701 99.54 49 SPAIN 21041_E 2,484,336 1,410,983 99.21 

23 GERMANY 21012_D 1,788,643 810,402 99.52 50 SPAIN 21042_E 1,897,633 601,931 99.02 

24 GERMANY 21014_D 2,914,973 1,378,621 99.58 51 SPAIN 21037_E 2,913,114 1,747,719 99.50 

25 GERMANY 21050_D 3,253,048 1,638,447 99.52 52 SPAIN 21038_E 2,426,135 1,386,068 99.53 

26 GERMANY 21049_D 2,532,868 1,200,315 99.52 53 SWEDEN 21044_S 3,462,193 2,738,247 99.60 

27 GREECE 21021_GR 2,022,878 818,984 99.45 54 SWEDEN 21045_S 2,932,821 1,063,215 99.63 

*The target sequence was the SARS-CoV-2 reference genome (Wuhan-Hu-1 [GenBank accession numbers 

NC_045512 and MN908947.3]). 
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qPCR Methods  

Samples were received at the KWR laboratory and processed as previously described (2). The 

N2 assay targeting a fragment of the nucleocapsid gene, as published by US CDC (US-CDC 

2020), was used to quantify SARS-CoV-2 RNA in the sewage samples. All RT-PCR’s were 

run as technical duplicates on 5 µl extracted nucleic acid. RT-qPCR reactions on serial dilutions 

containing RT-ddPCR calibrated EURM-019 single stranded RNA (provided by the Joint 

Research Centre) were used to construct calibration curves that subsequently were used to 

quantify N2 in RNA extracted from the sewage samples. Reactions were considered positive 

if the cycle threshold was below 40 cycles.  

CrAssphage CPQ_064 specific PCR (3) was used to quantify this DNA-virus that is 

ubiquitously present exclusively occurs in human intestinal tracts in high concentrations. 

Assays were performed in duplicate on 5 µl 1:10 diluted extracted nucleic acid. Quantification 

was performed using PCR assays on dilution series of a synthetic quantified gBlock (obtained 

from IDT, Leuven, Belgium) containing the CPQ_064 gene fragment. 

 

Data Analysis 

We downloaded the variant surveillance data package from GISAID on 31th May 2021. This 

data package consists of information about the identified variants, the corresponding amino 

acid (AA) mutations and sample location. We filtered the dataset, limiting it to human samples 

with complete coverage. This dataset was used to determine associations between the amino 

acid (AA) mutations detected in wastewater samples and AA mutations, with their 

corresponding pangolin lineage, reported from clinical samples. From the GISAID data 

package, we also determined the fraction of clinical samples reporting the current variants of 

concern (VOC): (1) B.1.1.7, (2) P.1, (3) B.1.351, (4) and B.1.617.2 (4, 5). Data analysis was 

performed in R(v3.6.2) using the ggplot (v3.3.3) package for data visualization, and pheatmap 

(v1.0.12) for hierarchy clustering and heatmap construction.   
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Mutations in clinical samples 

We determined the abundance spike protein mutations, which are suggested by the European 

Centre for Disease Prevention and Control (ECDC) for the characterization of the current 

VOCs (5), reported for clinical human samples. We found that the abundance of the mutations 

varied for the respective country, though associated with the same VOC (S.fig.1). For example, 

four out of eight spike protein mutations for P.1 for sequences from Slovakia were not reported.    

 

SARS-CoV-2 RNA in wastewater samples  

qPCR results  

SARS-CoV-2 N2-gene RNA was detected in all 54 samples in concentrations ranging from 0.4 

- 735 gene copies/ml (S. fig 3). The concentration protocol for NGS provided sufficient read 

depth (S. Table 1), even with the low SARS-CoV-2 concentration samples. The crassphage 

concentration (S. fig 3) is an index of the dilution of human fecal input in wastewater. This 

varied between the cities; in INF_21002_B and INF_21003_BA the Crassphage concentrations 

were markedly low, indicating high dilution of human fecal input in these wastewaters. 

Normalizing the SARS-CoV-2 N2 concentration for this dilution would markedly change the 

ranking of the wastewaters, which implies that normalization of ‘raw’ SARS-CoV-2 

concentrations in wastewater for the level of dilution of human fecal input is necessary when 

linking these data to COVID-19 prevalence data. 

 

Fraction of variants of concern in wastewater samples  

We determined the relative abundance of the VOCs based on the abundance of reads associated 

with certain AA mutations. As there is quite an overlap between the AA mutations of different 

SARS-COV-2 variants, for better determination of the relative abundance of the VOCs, we 

specifically looked for the abundance of unique and shared AA mutations corresponding to 

each VOC (S.fig.5). Categorization of mutations as unique or shared was based on the 

percentage of sequences for associated mutations submitted in GISAID. We looked for 

percentage of sequences for each mutation for every lineage. Then for each VOC, mutations 

reported in more than 0.5% of total number of sequences for each VOC were selected. Among 

these selected mutations, mutations that are associated with more than one lineage were 

categorized as shared mutation otherwise they were associated with the respective VOC.  

The abundance of mutations associated with B.1.1.7 was highest among the samples ranging 

from 15 to 40%, followed by abundance of mutations associated with B.1.351, P.1, and B.1.617 

(S.fig.5), which is similar to the clinical sequencing data. The mutations associated with 

B.1.351 were detected in 33 samples, whereas for B.1.617 were detected in 21 samples and for 

P.1 in 15 samples. B.1.351 mutations were detected in all samples from Finland, Germany, and 

Sweden; however, the total relative abundance of these mutations varied from 2 to 8%. The 

relative abundance of the shared AA mutations accounted for 55 to 70% across all samples 

(S.fig.5). 
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S.fig. 1: Count (occurrence of mutation in number of genome sequences submitted in GISAID) 

of spike protein mutations, which are considered for characterization of VOC by ECDC (5,6), 

found in the variant surveillance data for clinical samples of GISAID dated 31st May 2021. The 

counts are presented in log10 scale. 
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S.fig. 2: Heatmap representing the top 20 abundant mutations in each country during different 

time period, based on the count (occurrence of mutation in genome sequences submitted in 

GISAID) of the mutations. 
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S.fig. 3: qPCR based analysis showing the concentration of SARS-CoV-2 N2 gene copies 

detected in each sample. 
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S.fig. 4: Scatter plot showing the distribution of the read abundance of each mutation against 

the allele frequency of each mutation. 
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S.fig. 5: Relative abundance of the variants of concern (VOC) and other variants, based on the 

abundance of the reads associated with each SNP, respectively. AA mutations shared among 

different SARS-CoV-2 VOCs are represented as “B.1.1.7_B.1.351_B.1.617_P.1”. 
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