Supplementary material

SARS-CoV-2 in wastewater from Mexico City used for irrigation in the Mezquital Valley: quantification and modelling of geographic dispersion

Authors

Yaxk'in Coronado¹, Roberto Navarro², Carlos Mosqueda^{2,3}, Valeria Valenzuela^{2,4}, Juan Pablo Perez², Víctor González-Mendoza¹, Mayra de la Torre², Jorge Rocha^{1*}.

¹Conacyt-Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo.
Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín
Tlaxiaca, Hidalgo, México, 42163
²Unidad Regional Hidalgo. Centro de Investigación en Alimentación y Desarrollo. Ciudad del
Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo,

México, 42163.

³Instituto Tecnológico de Celaya. Antonio García Cubas 600, Fovissste, Celaya, Gto., 38010.

⁴Universidad Tecnológica de Querétaro. Av. Pie de la Cuesta 2501, Nacional, Santiago de Querétaro, Qro., 76148.

*Corresponding author: jorge.rocha@ciad.mx

Supplementary file 1. Code details, boundary conditions and description of the process for adjusting the transport model of virus in interfaces to an ordinary differential equation that describes the dispersion of SARS-CoV-2 in the Tula River.

https://nbviewer.jupyter.org/github/yaxastro3000/COVID_CIAD_URH/blob/c65ac45af1473602 3e94eb087aea8d541a7dac68/MODEL_COVID_CIAD_URH.ipynb

Supplementary tables

Sample	Date	Municipality	Coordinates	Days since irrigation
S1	29/09/2020	El Salto	19.963483, - 99.301255	14
S2	29/09/2020	Tlaxcoapan	20.090066, - 99.215945	10
S3	29/09/2020	Tetepango	20.102991, - 99.149837	14
S4	23/09/2020	Mangas	20.1909989, - 99.2430968	4
S5	23/09/2020	Palmillas	20.215935, - 99.203465	7
S6	06/10/2020	Debodhé	20.521108, - 99.133735	4
S7	06/10/2020	Debodhé - Cerro	20.526567, - 99.110138	4

Supplementary Table S1. Soil samples collected for this study.

Sampla		PMMV		
Sample	N1-FAM	N2-HEX	N3-TexasRed	(Ct)
S1	ND	ND	ND	30.264921
S2	ND	ND	ND	31.091442
S3	ND	ND	ND	26.787857
S4	ND	ND	ND	29.487373
S5	ND	ND	ND	28.38734
S6	ND	ND	ND	31.776516
S7	ND	ND	ND	31.768978
Milpa	ND	ND	ND	37.909
Natural landscape	ND	ND	ND	ND
Coriander 3	ND	ND	ND	38.9628
Lettuce 6	ND	ND	ND	36.6487
Lettuce 7	ND	ND	ND	36.3314
Broccoli M	ND	ND	ND	32.7974
Cauliflower M	ND	ND	ND	26.0486
Squash M	ND	ND	ND	30.8299
Positive control	23.8252	21.9638	27.3536	NA
Negative control	ND	ND	ND	ND

Supplementary Table S2. Ct values obtained from RT-qPCR detection of SARS-CoV-2 and PMMV in viral nucleic acids from soil and produce samples

ND, not detected; NA, not determined. Numbers in produce samples correspond to locations of fields from Figure 1. M, samples collected at the Ixmiquilpan market.

Sample	ROD	COD (mg/L)		TDS	SS (ml/L)	TSS	TS
			рН				(mg/mL
	(mg/L)			(mg/L)		(mg/L))
RW1	5.5	122	8.1	345.3	0	1.8	347.1
RW 2	19.9	244	7.9	693	1	41	734
RW 3	21.8	219.6	8.1	580	1	41	621
RW 4	21.5	146.4	8.1	524	1	126	650
RW 5	8.4	30	8.6	858.6	0	15	873.2
RW 6	12	105	8.1	823.7	0.1	44.25	863
RW 7	13	60	8.6	967.8	0	8,4	976.2
RW8	12.9	27.1	8.6	1,016.00	0.1	10.6	1,027.00
CW1	35.9	120	7.7	735	0	49.6	784.6
CW2	34	210	7.7	711.4	0.8	91.5	802.9
CW3	19	255	8.1	1039.3	0.3	145.5	1184.8
CW4	20.6	195.2	8.3	765.3	0.6	67	832.3
CW4-II	22.7	219.6	8.3	770	0.4	25	795
CW5	21.5	60	8.2	734.6	0	16.53	751.1
CW6	42.6	10.2	9	1189	0	4	1193
CW7	15.5	4.5	9	1252.4	0	4.7	1257.2

Supplementary Table S3. Physicochemical parameters of water samples from Tula river (RW) and irrigation canals (CW)

BOD, Biochemical oxigen demand; COD, chemical oxigen demand; pH, Hydrogen potential, TDS, total dissolved solids; SS, suspended solids, total suspended solids; TSS, total suspended solids; TS, total solids.

Samula	Salmonell	ТС	FC	E. coli
Sample	a spp.*	(NMP/100mL)	(NMP/100mL)	(NMP/100mL)
RW1*	Detected	>110 000	110 000**	110 000
RW2*	Detected	408 000 000	99 500 000**	99 500 000
RW3*	Detected	>11 500 000	11 500 000**	11 500 000
RW4*	Detected	>11 500 000	171 000**	171 000
RW5	Detected	>11 000	360	360
RW6	Detected	>11 000	300	300
RW7*	Detected	>11 000	>11 000**	>11 000
RW8	Detected	46 000	1 500	1 500
CW1*	Detected	9 200 000	9 200 000**	9 200 000
CW2*	Detected	23 000 000	3 600 000**	3 600 000
CW3	Detected	9 200 000	<300 000**	<300 000
CW4*	Detected	>11 500 000	11 500 000**	11 500 000
CW4-II*	Detected	11 500 000	11 500 000**	4 080 000
CW5*	Detected	>11 000	>11 000**	>11 000
CW6	Detected	2 700	740	740
CW7	Detected	15 000	740	740

Supplementary Table S4. Microbiological analyses of water and soil samples

TC, total coliforms; FC, fecal coliforms; MPN, most probable number.

*PCR detection from 25 g or 25 ml of sample

**Above the limits of (fecal coliforms) stablished in NOM-001-ECOL-1996.

Supplementary figures

Supplementary Figure S1. Statistically significant correlations found between SARS-CoV-2 and physicochemical variables (top) and between SARS-CoV-2 and microbiological variables (bottom) in water samples from the Tula River.

Supplementary Figure S2. Biodegradability index (COD/BOD) measured in Tula River, Tepeji River and Salado River, shows trends similar to those od SARS-CoV-2 concentration. Each label represents the sample location indicated in figure 1c.

