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S1 Appendix. Mathematical details, parameter estimation, and
additional results

A. Brief mathematical analysis

Briefly, we present routinely used mathematical analysis to show that the system is
positively invariant, that is, the solutions can never be negative. Dynamical systems theory
states that if we start in a positively invariant subset of the state space from which the
dynamics of the ODE are under consideration, then we are guaranteed to stay within the set no
matter how long (t→∞) we follow the dynamics of the ODE system.

Theorem 1. Assume all model parameters in Table ?? are positive. The system (1)-(15) is
positive invariant in R14

+ .

Proof. We want to show that, if initial conditions of the state variables in our model are greater
than 0, meaning, p(0) > 0, Ad(0) > 0, DI(0) > 0, DM (0) > 0, pE(0) > 0, ME(0) > 0,
pME(0) > 0, pM(0) > 0, M(0) > 0, NCD4(0) > 0, NCD8(0) > 0, ACD4(0) > 0, ACD8(0) > 0,
and T (0) > 0, then for all t > 0, solutions to each of the state variables stay in the positive
quadrant, meaning, p(t) > 0, Ad(t) > 0, DI(t) > 0, DM (t) > 0, pE(t) > 0, ME(t) > 0,
pME(t) > 0, pM(t) > 0, M(t) > 0, NCD4(t) > 0, NCD8(t) > 0, ACD4(t) > 0, ACD8(t) > 0,
and T (t) > 0.

Thus, for any p ≥ 0, Ad ≥ 0, DI ≥ 0, DM ≥ 0, pE ≥ 0, ME ≥ 0, pME ≥ 0, pM ≥ 0,
M ≥ 0, NCD4 ≥ 0, NCD8 ≥ 0, ACD4 ≥ 0, ACD8 ≥ 0, and T ≥ 0, whe have that
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This implies that due to the continuity of the system, it is impossible for any of these state
variable solutions to drop below 0.
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B. Parameter Estimation

B.1. Estimating peptide concentration in a vaccine from amino acid sequences
We extracted the amino acid sequence of the peptides used for each patient’s personalized

vaccine used in the melanoma study [1] from their supplementary material. First, using all
amino acid sequences of peptides in each vaccine, we calculated the protein molecular weight
(KDa) by using the online tool The Sequence Manipulation Suite: Protein Molecular Weight [2].
Then, in [1], it was stated that each peptide had a weight of 0.3 mg. We used the online tool [3]
to covert the weight concentration to pmol. In Table A1, we lay out each of the components
necessary to calculate the peptide concentration, Dosep in pmol for input in our model.

Table A1. Peptide dose conversion from mg to pmol by patient with melanoma in [1].

Patient
No. of

peptides
Weight
(mg)

Protein
molecular

weight (kDa)

Amount
(pmol)

1 13 3.9 32.68 119,340

2 17 5.1 42.49 120,030

3 14 4.2 38.33 109,570

4 14 4.2 36.03 116,570

5 20 6 54.12 110,860

6 20 6 53.66 111,820

B.2. Dendritic cells
Carrying capacity, KDC . To estimate the carrying capacity of immature dendritic cells in
the total volume of the subcutaneous tissue injection site, we used the total number of dendritic
cells in Figure 4A of [4]. Since this article shows the total number of DCs by gender, we use the
total number of DCs in females (approx. 27 number of cells/µL) as the lower bound of our
range and we use the total number of DCs in males (approx. 35 number of cells/µL) as the
upper bound. Estimating the number of DCs cells per volume we obtain:

27 to 35
cells

µL
· µL

1× 10−6 L
= 27 to 35× 106

cells

L

Now, to estimate the number of cells at the injection site, we multiply by the total volume of
the subcutaneous tissue (Vsc):

27 to 35× 106
cells

L
× 0.7676 L = 2.07252 to 2.6866× 107 cells.

Thus, we choose the median 2.38× 107 as the carrying capacity of immature dendritic cells.

Immature DCs maturation rate function: Half-maximum adjuvant effect constant,
Ka, and maximum differentiation rate, rD. To estimate parameters rD and Ka, we fitted
the analytical solution (see Eq. (1) below) of the second term in the equation of our model,
D′I(t), representing the maturation rate of immature DCs to data from Figure 6A in [5] using
Mathematica 12.0 [6] by looking for the best fit. The data from Figure 6A in [5] was extracted
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using WebPlotDigitizer [7]. Figure 6A in [5], shows how DCs mature as a function of poly(I:C)
adjuvant. In this figure, authors use CD83 since it is known that these are activation markers
for antigen presenting cells [8]. We re-scaled %CD83+ cells to proportion of matured DCs in the
y-axis and microgram per milliliter to milligram per liter in the x-axis of Figure 6A resulting in
Figure 1 (see below).

Using separation of variables method, we find the analytical solution required to estimate rD
and Ka,

dDI(t)

dt
= − rDAd

Ka +Ad
DI(t)

1

DI(t)
dDI(t) = − rDAd

Ka +Ad
dt

and integrate such that for all t ∈ [0, T ),∫ DI(T )

DI(0)

(
1

DI(t)

)
dDI(t) =

∫ T

0
− rDAd

Ka +Ad
dt

ln(DI(T ))− ln(DI(0)) = − rDAd

Ka +Ad
T

DI(T ) = DI(0) exp

(
− rDAd

Ka +Ad
T

)
Now, assuming DM (0) = 0 and DM (T ) = DI(0)−DI(T ) such that DM (T )

DI(0)
+ DI(T )

DI(0)
= 1 (i.e.,

proportion of immature and mature DCs at time T equals to 1), then

DM (T )

DI(0)
= 1− exp

(
− rDAd

Ka +Ad
T

)
According to the experiments done in [5], the cells were cultured for 24 hours before taking
measurements of maturation. Hence, we set T = 1 (1 day) and the function to be fitted is:

f(x) = 1− exp

(
− rDx

Ka + x

)
(1)
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Using the built-in function ‘NonlinearModelFit’ in Mathematica [6], we obtain the following
parameter estimates from equation 1:

model
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Figure 1. Estimation of parameters rD and Ka. Purple line represents the function:

f(x) = 1− exp
(
− rDx

Ka+x

)
, with point estimates rD = 2.48 (SE: 1.43; 90%CI[0, 6.66]*) and Ka = 6.64 (SE: 6.37;

90%CI:[0, 25.26]*), fitted to data extracted from Figure 6A in [5]. 90% confidence bands for mean predictions are
in blue. [90% CI]* denotes modified CI by replacing negative lower endpoint with zero as described in [9].

B.3. Estimation of parameters corresponding to the model equations that
represent näıve T-cell populations

Initial counts of näıve T-cells. In Ott et al. [1], eligible patients needed to have a
lymphocyte count of at least 800 cells per microliter. We use these number as a baseline to
estimate näıve T-cell counts at t = 0 in our simulations. The average adult weighting 58 to 80
kilograms has about 4.5-5.7 L of blood. If we assume that patients have an average of 5 L of
blood, then each patient has at least 4× 109 lymphocytes. On average, using standard methods
such as Ficoll-Paque density gradient centrifugation for PBMC yields 0.5-2×109 cells/L of
blood [10]. This will give us a range of (2.5, 10)× 109 cells, with a median of 6.25× 109 cells.

In Bittersohl et al. [10], authors provide percentages of different cells types which compose
the PBMCs in a healthy adult human as shown in Table 9.1 of [10] (see Table A2 below). From
this table, we obtain that 70% of PBMCs are lymphocytes for which 60 out of 70 percent
(about 86% of total lymphocytes) are T-cells and 10 out of the 70 percent (about 14% of total
lymphocytes) are B-cells. With these percentages, we obtain a T-cell range of (2.15, 8.6)× 109

with a median of 5.38× 109 T-cells. Since this median is larger than the baseline calculated
above, we assign 5.38× 109 cells as the initial näıve T-cell count in our simulations.

T-cell Carrying capacity. In order to have a one-to-one comparison of T-cell count from
extracted data and simulation, we first estimate the average number of PBMCs in a human.
Following [11], we assumed that a human has 1.22× 1012 lymphocytes. Using Table A2, we
estimate there are 1.43× 1012 PBMCs. Thus, we conclude that T-cells = 8.57× 1011 (60% of
PBMCs).
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Table A2. Table 9.1 from [10]

Cell Type %

T-cells (CD3+) 60

Helper T-cells (CD3+, CD4+) 70 of T-cells

Cytotoxic T-cells (CD3+, CD8+) 30 of T-cells

B cells (CD22+) 10

Monocytes/macrophages (CD14+) 15

Natural killer (NK) cells (CD56+)/CD16+ 15

B.4. IFN-γ ELISPOT of PBMCs data extraction
In Ott el al. Figure 2b [1], the authors provided longitudinal plots for ex-vivo assay

responses to peptide pools for each patient in the trial in units of per million PBMC. These
data points were obtained by using an IFN-γ ELISPOT assay. This method allows the
quantification of the number of CD4+ or CD8+ T-cells which secrete IFN-γ in response to a
stimulation with a specific antigen or peptide [12, 13]. Moreover, each spot within an ELISPOT
well identifies a single cell that has released a measurable amount of cytokine, i.e., the number
of spots is a direct measure of the frequency of cytokine-producing T-cells in the PBMC
population [12]. Thus, it is a reasonable assumption that the number of spots to number of cells
is a one-to-one conversion.

To extract data from plots and images, we used WebPlotDigitizer [7] and plotted the
extracted data (see Figure 2a) by patient. Each patient’s frame contains the data of the four
pools (Pool A - Pool D) which make up one vaccine dose and a baseline data (mock). Figure 2a
is plotted in the form of cell counts by multiplying each extracted data point by 1.43× 106 (see
section: T-cell Carrying capacity), since each data point is in spot-forming cells per 106 PBMCs.
Then, to plot the total cell count of ex-vivo assay responses to peptides vaccine for each patient,
we summed the data points of Pool A through D each subtracted by the Mock data at each
time point and arrive at the numbers shown in Figure 2b. Due to the stochastic nature of
ex-vivo assays, one caveat to subtracting the Mock data is that it may lead to negative cell
counts on the treatment initiation day for which we assigned a small (10−6) number of
activated cells. Additionally, we assumed there is a +/- 15% variation to the ELISPOT counts
presented by Ott et al., as it has been shown in [14] that the relative experimental error for
0-200 number of spots counted per well is between 0.1-0.2.
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Figure 2. Data transformation from ex-vivo IFN-γ ELISPOT responses for PBMCs in [1] to cell count. (a) Cell
count of T-cell response of each pool in a vaccine by patient. (b) Total cell count T-cell response of each patient’s
vaccine with melanoma.

CD4+ and CD8+ T-cell initial counts. The first data point at day 0 for each patient was
used to assign to each patient’s initial CD4+ and CD8+ counts. Given that these data only tell
us the T-cell count without making distinction between cell subtypes, based on Table A2, we
assume that T-cell counts on day 0 are distributed as 70% CD4+ T-cells and 30% CD8+ T-cells.

B.5. Parameters corresponding to the equation describing tumor cell popula-
tion

Estimating maximum cancer growth rate, r. In Liu et al. [15], authors studied the rate of
growth in melanomas, finding that one third of the melanomas grew at least 0.5 mm per month.
The median monthly growth rate for nodular melanomas was 0.49 mm in diameter, superficial
spreading melanomas at 0.12 mm in diameter, and lentigo melanomas at 0.13 mm/month [15].
The patients sample for our simulations in [1] were diagnosed at different stages of melanoma
cancer (see Table A4). Four of the patients who did not have recurrence after vaccine initiation
had nodular melanomas (i.e., the tumor has spread to nearby lymph nodes [16]). However, all
patients before initiating vaccine treatment, underwent surgery, thus, we assumed the growth
rate of any residual after surgery is 0.15 mm/month in diameter. That is, we are assuming the
best case scenario for these patients, regardless their initial tumor stage diagnosis.

To determine the number of cancer cells of a tumor in a spherical shape, we considered that
each cell is about 20 µm in diameter and a 1-mm cancer has about 100 thousand cells [17].
Therefore, to directly calculate the cell count in a tumor of diameter d, we used the formula of
the volume of a sphere modified to incorporate a 25.95% of void volume [18], and multiply by
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1× 105 cells:

Total cell count in a spherical tumor: Tc(d) =
4π

3

(
d

2

)3

(0.7405) · 106cells

mm3
, (2)

where d is the diameter in millimeters (mm).

The tumor growth rate is then calculated as follows:

1. Diameter per day:
0.15 mm

30 days
=

0.005mm

day

2. Tumor volume (void volume removed) per day:

4π

3

(
0.004 mm

2

)3

(0.7405) = 4.84× 10−8 mm3/day

3. Total tumor cell count per day:

4.84× 10−8 mm3/day · 105 = 0.004 cells/day

Estimating initial tumor cell count, T (0), by patient. To estimate the initial tumor cell
count on day 0 (t = 0), we used the information provided for each of the patients in the
‘Extended Data Table 1: Characteristics of patients’ along with the clinical event timeline from
surgery until time of data cut off in ‘Figure 1’, both in [1]. Then, following the guidelines from
the American Cancer Society [16] and Melanoma Research Alliance [19] for melanoma skin
cancer staging and using nodal staging and metastasis information on [20] and [21], respectively,
we made the following assumptions which are then summarized in Table A3:

(a) Given the tumor diameter ranges in [19] for each of the tumor thickness (T) in column 2
of Table A3, we make a definitive assumption for the tumor diameter.

(b) According to [20], lymph nodes are considered malignant if they measure more than 1 cm
in the short axis diameter. Though, the size threshold varies with anatomic site and
underlying tumour type. For example, in rectal cancer lymph nodes are considered
pathological when they measure more than 5 mm. Hence we assigned (column 5 of Table
A3) the number of tumor-involved nodes according to the code (N).

(c) If a patient has metastasis (M), then in [21] it was stated that lung metastasis ranges
between 3-7 cm. Hence, we assumed that patients with metastasis will have three 5-cm in
diameter lung metastasis (column 7).

As an example, we will walk you through the calculation to obtain the tumor cell count of
Patient 2 at the beginning of cancer treatment (column 6 in Table A4):
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Tumor
Stage

Tumor
thickness at
primary site

Assumption:
size before
surgery

Lymph nodes
involvement

Assumption:
no. of 5 mm
tumor-involve

nodes

Metastasis
Size: 3-7

cm

IIIC,
IV

T2 > 1-2 mm 2 mm
N0 (no regional

metastasis)
0 M0 0

T3 > 2-4 mm 4 mm N2 (2-3) 3
M1b 5cm (lung)

T4 > 4 mm 5 mm N3 (4 or more) 5

Table A3. Definition of tumor diameter according to the American Joint Committee on Cancer
(AJCC) TNM system [20].

• Patient 2 in [1] was diagnosed with T4N0M1b. Using Table A3, we conclude that T4
corresponds to a tumor diameter of 5 mm; N0 means there are no tumor-involved nodes;
M1b corresponds to one 50-mm lung metastasis. Then using equation (2), we compute
the tumor cell count for a tumor diameter of 5 mm, adding three times the tumor cell
count for a tumor of 50 mm in diameter,

Tc(5) + 3Tc(50).

Then, the tumor cell count after surgery is considered to be 5% of the tumor size before
surgery. Thus, we multiply column 3 by 0.05. Lastly, we use the equation for tumor cells
(Eq. (15) in the main text) without the second term which represents the intervention of
the immune system. This means, we assume the tumor cells continue to grow without any
mediation from the immune system.

dT

dτ
= 0.004

(
1− T (τ)

1.45× 1010

)
T (τ) (3)

In the equation above, we use 0.004 as the maximum growth rate estimated previously
and 1.45× 1010 as the tumor carrying capacity since this is the largest tumor cell count
before surgery among patients (see column 2 in Table A4).

Patient
Stage by
tumor

thickness

Tumor cell
count

BEFORE
surgery

Tumor cell
count

AFTER
surgery (5%)

Time lag
(days)

Tumor cell
count at the
beginning of
treatment

1 T3 (N3M0) 1.702× 107 851 056 120 1.375× 106

2 T4 (N0M1b) 1.454× 1010 7.272× 108 120 1.139× 109

3 T3 (N2M0) 1.217× 107 608 728 165 1.177× 106

4 T4 (N2M0) 1.453× 107 726 984 180 1.493× 106

5 T2 (N2M0) 1.0× 107 500 165 135 858 265

6 T2 (N0M1b) 1.454× 1010 7.27× 108 105 1.078× 109

Table A4. Estimation of initial tumor cell count by patient at the beginning of vaccine
treatment. Third column is estimated using Table A. Fourth column is estimated using equation (2). Fifth
column is the time lag between surgery and initiation of cancer vaccine treatment. Sixth column is estimated
using equation (3).
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B.6. On-rate for T-epitope-MHCII binding, kon,2
In [22], it is described that the maximum on-rate constant for binding is approximately 105

to 106 M−1s−1, i.e.,

(105 to 106)

M · s
· 10−12M

pM
· 86400s

day
= (8.64× 10−3 to 8.64× 10−2) pM−1 · s−1.

B.7. Detailed methodology for global sensitivity analysis
We chose N = 1000 as the number of LHS/PRC simulations. Following the approach and

algorithm described in [23], we constructed an LHS matrix of size N by K (N : no. of rows; K:
no. of columns). Hence, each row corresponds to one simulation and contains a randomly
selected and equally distributed value for each of the uncertain parameters of interest. Each of
these rows in the LHS matrix is then used to calculate each of the outcome variables of interest
producing N observations that are then used to assess the sensitivity of the outcome variables
to the uncertainty in the input parameters. Next, we calculate the PRCC value for each
outcome variable at specific time-points of interest (t = 24, 111, 146) following the approach
of [23]. Sensitivity analysis simulations were performed in Mathematica, Version 12.0 [6].

B.8. Additional uncertainty and sensitivity analysis for model outputs
We briefly present the results of the global sensitivity analysis performed for two model

variables of interest, activated T-cells and tumor cells, using parameters found in the literature
which may have associated uncertainty that could affect model outcome, such as error in
measurements or natural variations. It was found that both model variables of interest,
activated T-cells and tumor cells, are highly sensitive to parameters αp, Λ and δM
(internalization rate of peptides by DCs, maximum growth and death rate of mature DCs,
respectively). The sensitivity produced by these parameters are shown to decrease throughout
time. Individually, in addition to αp, Λ and δM , model variable for activated T-cell was found
to be highly sensitive to b4, σ4, µ4 and µ8 (maximum growth of näıve CD4+ T-cells, maximum
activation rate of CD4+ T-cells, and death rate of activated CD4+ and CD8+ T-cells,
respectively). The model variable for tumor cells, was found to be highly sensitive b8, σ8 and ρ8
(maximum growth of näıve CD8+ T-cells, maximum activation rate CD8+ T-cells, and
proliferation rate for activated CD8+ T-cells).
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Figure 3. Activated T-cells and Tumor cell population sensitivity. PRCC values for the estimated
parameters using the activated T-cells and tumor cell population as the output of interest.

B.9. Methods for the ‘Application’ section
Using all patient-specific parameters (Table 2 and parameters obtained from [1]), we created

six different patient profiles, and varied their initial tumor cell counts, which are assumed to be
contained in a spherical shaped tumor with diameter d (see Table A5). To create a wide range
of initial tumor cell counts corresponding to different tumor sizes (sample size: 2000), we used
the LHS technique to get a uniform and equal distribution of tumor cell counts ranging from
30,000 to 2× 1010 cells. Notice that this set of different initial conditions implicitly correspond
to a total number of cells x number of days (or months) after having resection surgery. Keep in
mind that there may be at least 5% tumor residue and may continue to grow post-surgery.
Therefore, the estimated tumor cell count (or diameter) in Table A5 is the tumor cell count at
day 0 of vaccine treatment.

Table A5. Tumor cell count in a spherical shaped tumor with diameter d.

Tumor cell count range Diameter d (mm)

(3× 104, 5× 104] ≤ 1

(5× 104, 5× 105] (1, 2.4]

(5× 105, 1× 107] (2.4, 6.4]

(1× 107, 5× 108] (6.4,23.45]

(5× 108, 2× 1010] (23.45, 89.2]
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