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1 Computation of reproduction number R0

Assuming uniform contacts across all age groups using the infectivity parameter β and efficiency parameters εi, the F matrix [1,
2] can be written as:

F =


0 βεa(t) βεp(t) βεm(t) βεs(t)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (1)

Here a, p,m, s correspond to asymptomatic, pre-symptomatic, mild and severe compartments respectively.
And theV matrix is obtained as,

V =


γ 0 0 0 0
−αγ λa 0 0 0

−1(1 − α)γ 0 λp 0 0
0 0 −µλp λm 0
0 0 −(1 − µ)λp 0 λs

 (2)

Here we have used the fractions and rates as defined in the main article.

V−1 =



1
γ

0 0 0 0
α
λa

1
λa

0 0 0
1−α
λp

0 1
λp

0 0
µ−αµ
λm

0 µ
λm

1
λm

0
(α−1)(µ−1)

λs
0 1−µ

λs
0 1

λs


(3)

The next generation matrix:

FV−1 =


β
(
αεa(t)
λa
−

(α−1)µεm(t)
λm

−
(α−1)εp(t)

λp
+

(α−1)(µ−1)εs(t)
λs

)
βεa(t)
λa

β
(
µεm(t)
λm

+
εp(t)
λp
−

(µ−1)εs(t)
λs

)
βεm(t)
λm

βεs(t)
λs

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(4)

The dominant eigenvalue of the next generation matrix is R0.

R0 = β

(
αεa(t)
λa

+ (α − 1)
(
−
µεm(t)
λm

−
εp(t)
λp

+
(µ − 1)εs(t)

λs

))
(5)

Since INDSCI-SIM model is age stratified and uses contact matrices, the F and V matrices are generalized according
to the model. Given N age groups and M equations determining the Exposed and infected compartments we will have F
and V matrices of order NM × NM. In our model we have 9 age compartments and 5 equations for exposed and 4 infected
compartments. Therefore the F andV are of order 45 × 45.

The modified F matrix can be written as:

F =


[0] [Bi(t)] . . .
...

. . .

[0] . . . [0]

 (6)

Here [0] represents N × N matrix with all entries as 0. [Bi(t)] represents the time dependent effective infectivity matrix
(order N × N) for different infected compartments and is defined as follows:

[Bi(t)] = εiβ̃ exp[−t/τi][C], (7)

2



where the m, n’th element of the matix [C] are defined with the contact matrix Cmn and the population fraction fm as Cmn fm/ fn.
Here τi parameter represents the characteristic time-scale describing the increased effectiveness of non-pharmaceutical inter-
ventions, as introduced in the main paper. Note that β in the unifrom contact case and β̃ in the differential contacts are different.
In the uniform contact β represents the infectivity averaged over all contacts while in this case β̃ represents the infectivity per
contact. Note that the contact matrix changes during lockdown and therefore changes the effective infectivity matrix.

GeneralizedV matrix is now denoted as,

V =


[Γ] [0] [0] [0] [0]
−[AΓ] [Λa] [0] [0] [0]

−[(1 − A)Γ] [0] [Λp] [0] [0]
[0] [0] −[MΛp] [Λm] [0]
[0] [0] −[(1 − M)Λp] [0] [Λs]

 (8)

In the above NM × NM matrix each entry in square brackets represents a N × N matrix. In our model M = 5. For models
with more infected compartments, M will increase for both F and V matrices. Γ, Λi’s represent diagonal matrices with the
transition rates as the diagonal terms. In our case, we have assumed the rates of transfer between compartments are same for
all age groups. In a more general model, where the rates are different, the diagonal entries will change. The asymptomatic
fractions and mild fractions are also represented by diagonal matrices, A and M respectively. Note that our fractions are age
dependent and therefore, the diagonal terms contain the fractions for 9 age groups.

With the F and V matrices prepared, we follow the same procedure as in the uniform contact case and the dominated
eigenvalue of FV−1 is estimated as R0.

At any point in time, while the basic reproduction number R0 can be obtained using the relations above, the effective repro-
duction number R(t) takes into account the susceptible population remaining at time t w.r.t. the initial susceptible population.
Thus, R(t) = S (t = t)R0/S (t = 0) where the susceptible population at t = 0 and t = t are given by S (t = 0) and S (t = 0)
respectively.

2 Contact matrices between stratified age-groups
Mixing between different age groups is determined by age-specific contact matrices. To compute these, we use contact matrices
provided by [3], estimated for the Indian population, for 16 age groups ranging between 0-80 years, tabulated at 5 year intervals.

We reduce the matrix to further coarse-grained age brackets as follows: Let the number of contacts of the i-th individual in
the age category j with any individual belonging to the age category k be Ck j(i). The mean number of contacts for age category
j with age category k is thus C̄k j =

∑N j

i=1 Ck j(i)/N j, where N j is the population size in age category j. Suppose now that k is
subdivided into 2 finer categories k1 and k2, and we are given the entries C̄k1k1 , C̄k1k2 , C̄k2k1 and C̄k2k2 , as well as, C̄ jk1 , C̄ jk2 , C̄k1 j

and C̄k2 j. We then have
Ckk = [Nk1C̄k1k1 + Nk1C̄k2k1 + Nk2C̄k1k2 + Nk2C̄k2k2 ]/(Nk1 + Nk2 ) (9)

with the off diagonal terms defined as C jk = [Nk1C̄ jk1 + Nk2C̄ jk2 ]/(Nk1 + Nk2 ), and Ck j = C̄k1 j + C̄k2 j. We use this reduced matrix
[C] in our analysis. We plot the contact matrices in Figure 1.

3 Posterior distributions and correlations between parameters
Using getdist we compute the posterior distributions of the parameters for different regions and they are presented in triangle
plots. We also tabulate the 2σ bounds on the parameters in the following tables.

4 Plots for cumulative infection and deaths
The timeseries of daily infection and deaths generate cumulative infection and deaths. In the following plots we plot the bounds
on cumulative infection and deaths. Note that since we fit the daily infection and death reports, the error parameters correspond
to those values and not the cumulative values.

5 Brief discussion on Nested Sampling
Since the posterior probabilities are expected to be multi-modal Markov Chain Monte Carlo can not be used. Therefore we use
nested sampling with PolyChord that is effective for higher dimensional parameter spaces [4, 5]. This algorithm uses live
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Figure 1: The coarse-grained contact matrices for India during (top) and without lockdown (bottom).

points that are updated in each iteration shrinking the n-dimensional parameter spaces. We use 500-1000 live points according
to the dimension of the parameter space for the model. Polychord starts with the live points and the points are sequentially
updated in each iteration. Point with the lowest live point is discarded (termed as dead point) and replaced by a new point
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Figure 2: Marginalized posteriors of the parameters in the adaptive parametrization in the INDSCI-SIM model against the Bengaluru Urban data.

with a likelihood higher than that of the dead point. It can be shown [4] that the prior volume shrinks exponentially with each
iteration. The evidence or the marginal likelihood is computed from the integral of likelihood and prior over the prior volume.

6 Flowchart of our analysis
In Figure 16 we plot the logical flow of the analysis. Centrally, we use 2 codes. For simulation, we have developed ELiXSIR
– Extended, zone Linked IX-compartmental SIR model: a code to simulate COVID19 infection [6]. For sampling we use
PolyChord [4], a widely used code for nested sampling. Both codes are available publicly.

Given a set of parameters we set up the system for ELiXSIR. In this set-up we provide the population, number of age
groups and fraction of population in these age groups. We fix the fraction and rates of transition between compartments that
are runtime constants. Lockdown dates are mentioned based on which the code switches from lockdown to unlock modes
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Parameter 95% limits
Einitial 9805+6000

−5000
β1 0.0170+0.0063

−0.0066
β2 0.0711+0.0034

−0.0036
β3 0.1294+0.0090

−0.0098
β4 > 0.218
τ1 173+30

−20
Node1 15.6+1.8

−3.9
Node2 141.9+3.1

−3.3
Node3 214.8+6.1

−6.8
∆IFR < 33.1
DIFR 95.9+7.4

−8.1
b 88+10

−10
∆b 127+20

−20
σ1 0.510+0.046

−0.039
σ2 0.586+0.051

−0.049

Table 1: Bengaluru Urban: Constraints on parameters. Corresponding to Figure 2 the 95% constraints and bounds are provided.

Parameter 95% limits
Einitial 178+50

−50
β1 0.0688+0.0023

−0.0024
β2 0.0429+0.0027

−0.0025
β3 0.0671+0.0088

−0.0075
β4 0.091+0.016

−0.015
β5 < 0.158
τ1 > 516
Node1 66.9+3.6

−3.6
Node2 148.6+6.6

−6.2
Node3 228.8+8.7

−8.7
Node4 305+29

−23
∆IFR 93+30

−20
DIFR 85+20

−20
b 45+5

−5
∆b > 379
σ1 0.350+0.030

−0.029
σ2 0.474+0.040

−0.037

Table 2: Chennai: Constraints on parameters. Corresponding to Figure 3 the 95% constraints and bounds are provided.

switching contact matrices. We use the coarse grained contact matrices for each region using the population fractions within
the age groups of base contact matrix and the coarse grained age groups [3].

After the initial set up, the priors, initial starting value of all parameter and widths are provided. Daily data of reported
infection and deaths are supplied to the code with the dates.

The CosmoChord integrated with ELiXSIR is then run in several processors (MPI) in the cluster. The samples within
the parameter volume are drawn and sent to ELiXSIR for the time-series. Daily infection and deaths are computed from
the compartments. Bias evolution is generated according to the parametric form and the values of b,∆b from the samples.
After scaling the theoretically obtained daily infection numbers by the bias, the prediction of daily infected is then compared
with the reported daily infection. Predicted daily deaths however is directly compared with the daily deaths data. If the death
undercounting factor is included in the analysis then the daily deaths prediction is compared with the death data scaled by the
undercounting factor. During the runtime, live points are generated and updated sequentially that reduces the prior volume, as
discussed in the last section.

After termination of the PolyChord sampling, we use getdist [7] to generate posterior distributions. The samples are then
supplied to ELiXSIR directly to generate the bounds on the timeseries.
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Figure 3: Marginalized posteriors of the parameters in the adaptive parametrization in the INDSCI-SIM model against the Chennai data.
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Parameter 95% limits
Einitial 3199+1000

−900
β1 0.0574+0.0021

−0.0021
β2 0.0319+0.0026

−0.0028
β3 0.0653+0.0066

−0.0057
β4 0.129+0.020

−0.018
β5 0.208+0.040

−0.034
τ1 > 439
Node1 78.3+4.7

−4.0
Node2 135.0+3.3

−3.8
Node3 204.7+2.3

−2.1
Node4 293+13

−15
∆IFR 120+30

−30
DIFR < 102
b 74+8

−9
∆b 288+90

−70
σ1 0.329+0.030

−0.027
σ2 0.522+0.048

−0.043

Table 3: Delhi: Constraints on parameters. Corresponding to Figure 4 the 95% constraints and bounds are provided.

Parameter 95% limits
Einitial 674+200

−200
β1 0.0692+0.0035

−0.0030
β2 0.0440+0.0038

−0.0032
β3 0.085+0.013

−0.012
β4 0.150+0.033

−0.030
τ1 > 388
Node1 60.9+5.2

−5.7
Node2 153.5+2.9

−3.1
Node3 < 254
∆IFR 53+10

−10
DIFR < 94.3
b 156+15

−14
∆b 208+20

−20
σ1 0.470+0.040

−0.037
σ2 0.339+0.033

−0.029

Table 4: Mumbai: Constraints on parameters. Corresponding to Figure 5 the 95% constraints and bounds are provided.

Parameter 95% limits
Einitial 6670+1000

−1000
β1 0.0477+0.0013

−0.0012
β2 0.0735+0.0080

−0.0069
β3 0.167+0.033

−0.030
β4 0.214+0.058

−0.050
τ1 > 540
Node1 > 119
Node2 195.2+3.5

−4.3
Node3 252+17

−12
∆IFR < 55.9
DIFR 138+12

−12
b 49.9+4.4

−4.1
∆b 429+200

−100
σ1 0.393+0.034

−0.030
σ2 0.643+0.055

−0.051

Table 5: Pune: Constraints on parameters. Corresponding to Figure 6 the 95% constraints and bounds are provided.
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Figure 5: Marginalized posteriors of the parameters in the adaptive parametrization in the INDSCI-SIM model against the Mumbai data.
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Figure 6: Marginalized posteriors of the parameters in the adaptive parametrization in the INDSCI-SIM model against the Pune data.
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Figure 7: Marginalized posteriors of the parameters in the adaptive parametrization in the INDSCI-SIM model against the Karnataka data. We have plotted
the constraints obtained assuming and without assuming death multiplier for undercounting.
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Parameter 95% limits
Without multiplier With multiplier

Einitial 757+200
−200 939+200

−200
β1 0.0534+0.0016

−0.0013 0.05201+0.00081
−0.00075

β2 0.0402+0.0031
−0.0027 0.0454+0.0015

−0.0014
β3 0.0486+0.0059

−0.0053 0.0597+0.0043
−0.0041

β4 — —
τ1 > 501 > 631
Node1 123.5+5.0

−4.8 112.3+6.3
−6.3

Node2 263+15
−12 250.8+7.8

−7.9
Node3 > 322 > 321
∆IFR 82+20

−20 < 46.4
DIFR < 92.2 164.3+8.2

−8.1
b 103+20

−20 109+10
−10

∆b 144+20
−20 221+30

−30
σ1 0.394+0.035

−0.029 0.380+0.029
−0.027

σ2 0.503+0.044
−0.039 0.491+0.042

−0.039

Table 6: Karnataka: Constraints on parameters. Corresponding to Figure 7 the 95% constraints and bounds are provided.
Two columns on constraints represent the results when we use reported death data without and with undercounting multiplier
respectively.

Figure 8: Bengaluru Urban: Bounds on cumulative infection [a: left] and deaths [b: right] from our analysis plotted with reported data.

Figure 9: Chennai: Bounds on cumulative infection [a: left] and deaths [b: right] from our analysis plotted with reported data.
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Figure 10: Delhi: Bounds on cumulative infection [a: left] and deaths [b: right] from our analysis plotted with reported data.

Figure 11: Mumbai: Bounds on cumulative infection [a: left] and deaths [b: right] from our analysis plotted with reported data.

Figure 12: Pune: Bounds on cumulative infection [a: left] and deaths [b: right] from our analysis plotted with reported data.
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Figure 13: Karnataka: Bounds on cumulative infection [a: left] and deaths [b: right] from our analysis plotted with reported data.

Figure 14: Karnataka: Bounds on cumulative infection [a: left] and deaths [b: right] from our analysis plotted with reported data. Note that here death
multiplier 2.2 is used to take into account possible death undercounting.

Figure 15: India: Bounds on cumulative infection [a: left] and deaths [b: right] from our analysis plotted with reported data. Note that here death multiplier
2.2 is used to take into account possible death undercounting.
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Figure 16: Schematic diagram of our analysis.
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