A. Goodness of fit tests for regression analysis

This supplement describes the tests undertaken on the regression analysis shown in Figure 1A of the main paper.

In a valid multiple linear regression, it is expected that the residuals meet the following criteria:

• **Linearity**: The ε_i have mean of 0

• **Independence**: The ε_i are independent

• **Normality**: The ε_i are normally distributed

• Homogeneity of variances: The ε_i have the same variance σ^2

We primarily test using the Studentized residuals \mathcal{E}_i since raw residuals are not expected to be completely independent but provide some test results with the raw residuals

Linearity

	Mean
Raw Residuals	4.0 x 10 ⁻¹⁶

Expect zero. Pass

Independence

Durban-Watson Test

Test value negative autocorrelation	2.040
Test value postitive autocorrelation	1.574
Critical upper limit for $\alpha = 0.05$	1.753

Test values are both greater than the critical upper limit so no positive or negative autocorrelation is detected. Therefore there is no evidence for lack of independence.

Graphical display

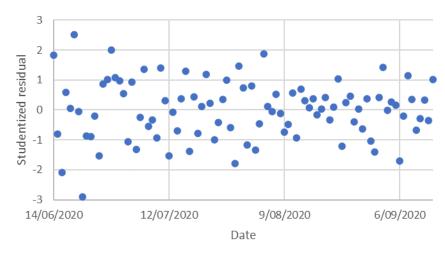


Fig. S1. Plot of Studentized residuals *versus* day of the study. The knot days were 11 July, 1 August and 12 August

Normality

Shapiro-Wilk test

residual W-stat 0.997 p-value 0.8321

Test passes for residuals (p>0.05)

Graphical QQ Plot

QQ Plot - Studentized Residual

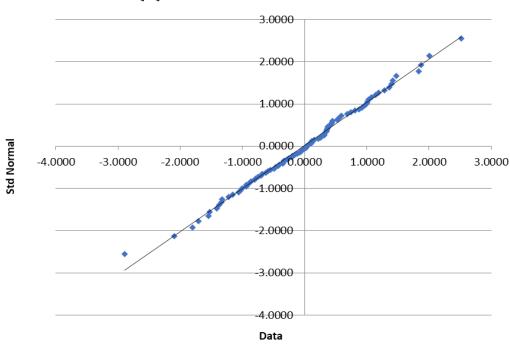


Fig. S2. QQ (Quantile-Quantile) plot of the ordered Studentized residuals vs a the corresponding quantiles of a normal distribution. Black line indicates the position of a perfectly normally distributed Studentized residuals.

Homogeneity of Variances

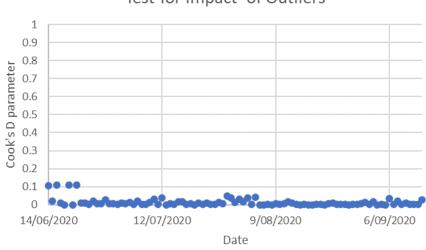
Test for Heteroskedasticity with Breusch-Pagan test over the range 14 June to 14 September (i.e pre-Stage 3 to the end of the analysis in Stage 4)

Number of Days	93
No. of Independent variables	4
LM statistic	17.81
Degrees of Freedom	2

p-value 0.0013

Pass criteria: p value >0.05. Fail

Test for Heteroskedasticity with Breusch-Pagan test over the range 11 July to 14 September (i.e just Stage 3 to the end of the analysis in Stage 4)


Number of Days	66
No. of Independent variables	4
LM statistic	7.57
Degrees of Freedom	2
p-value	0.11

Pass criteria: p value >0.05. pass

Also see Fig S1

Other test

Regression was tested for the infludence of outliers using Cook's D test. As shown below, the maximum Cook's D value was 0.109 on 16 June 2020 As this is much less than 1, there are no outliers with a significant impact on the regression

Test for impact of Outliers

B. Reference

All tests were performed using the Excel routines available from

Zaiontz, C. 2020 Real Statistics Using Excel. Version 7.3.3 https://www.real-statistics.com/