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Materials and methods 

Description of the agent-based model 
The simulations performed in this study utilized an agent-based computational model (ABM). The 
ABM allowed us to simulate the spread of SARS-CoV-2 in the US, and evaluate pharmaceutical 
intervention strategies, while accounting for heterogeneity among agents. Details regarding model 
implementation are described in this section.  

Population generation and contact structure module 
The individual (agent)-level data were derived from American Community Survey census statistics. 
We used the latest available 5-year aggregated census results (2018), or the most recent data in cases 
where these were not available (input tables detailed in Table S1).  

We first derived countywide populations, stratified by age and sex, that resembled the US and then 
generated the following characteristics using empirical probability distributions provided by census 
data:  

1) Residency into grouped quarters (student housing, nursing home)  
2) Employment status and types of occupations 
3) School attendance 

An implicit assumption of our population generation process was that the age- and sex-stratified 
estimates sufficiently captured correlations among the characteristics of interest. After collecting 
individual-level characteristics, individuals not living in group quarters were grouped into households 
(Table S2) following the household structure from census data. Finally, individuals were allocated to 
the 3,143 counties and county-equivalents of the US based on US Census Table B01001, in terms of 
counties of residence and work, and according to the reported county-to-county commuting 
workflows. 

The generation process included (Fig. S1): 

1) Table B01001 (all table numbers are those listed in Table S1) was used to generate a 
population whose size was equal to the full US population, with age based on the multinomial 
distribution available from the input table (23 age groups). Within each age group, actual age 
was assumed to follow a uniform distribution. Sex was age-stratified and drawn from a 
binomial distribution using reported data from the same table. 

2) Table B14004 was used to identify individuals who were enrolled in higher education 
programs (college). This table stratified individuals into four age categories (15–17, 18–24, 
25–34, and >35 years of age), by sex.  

3) The National School Enrollment data were used to allocate type of schools for all individuals. 
Of note, these data were only available at the state level. Probabilities were first rescaled to 
account for discarding of individuals already enrolled in college. Agents could be enrolled in 
kindergarten, elementary school or high school. All sampling was performed using empirical 
multinomial distributions specific to age and sex. 

4) Table B14005 and B14004 were used to refine state-level school sampling from step 3) to 
county-level in the subset of individuals aged 16–19 years old. First, the probability of being 
enrolled in school was drawn using a binomial distribution based on Table B14005, then the 
type of school was determined using multinomial sampling, based on Table B14004. 

5) Table B14005 was used to derive probabilities of being part of the labor force for individuals 
enrolled in school and aged 16–19 years old. For each combination of sex, age group and 
school enrollment status, a temporary working status was drawn from a binomial distribution 
(employed or not employed). 
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6) Table B23001 was used to determine age- and-sex-specific probabilities of being allocated 
into different work categories. First, probabilities were normalized to one by discarding ages 
below 20 years old, to account for county-level work assignments sampled at step 5. Second, 
multinomial sampling was used to categorize agents into the following work groups: “Armed 
Forces”, “Employed Civilian”, “Unemployed Civilian” and “Not Part of Labor Force”. The 
latter two categories were subsequently regrouped. 

7) Table B23001 was used for agents aged 16–19 years old, marked as “working” at step 5, to 
draw work categories as described at step 6. Multinomial sampling from empirical data was 
used. 

8) Table B08006 the source for determining if workers were home-based, using binomial 
sampling.  

9) Table B24010 was used to refine work types. Individuals were categorized as working 
“Client” jobs, “Office” jobs (including the “Armed Forces”) or “Medical” jobs.  

The following procedure was used to generate a social network, i.e., clusters of individuals interacting 
closely with each other. 

1) Based on a scaling factor, individuals were sampled from the previously generated 
population. The scaling factor was used to achieve a sample of specified size, making the 
epidemic simulation computationally tractable while preserving representativeness of the 
agents’ characteristics of interest. Population diagnostics comparing the distribution of these 
characteristics were performed at the state and national level to assess validity of the synthetic 
population. The national-level diagnostics are provided in Fig. S2 through Fig. S5. 

2) County-level communities were generated as subsets of ~2000 agents.1 After the expected 
number of communities were obtained, uniform sampling was used to allocate community 
IDs to each individual. Within each community, 4 distinct neighborhoods were created, using 
uniform sampling, each of target size ~500.1 

3) Tables P42 and B26101 were used to randomly allocate residency to student housing for 
individuals enrolled in colleges. The target size of the student housing was 280, estimated 
from the housing data of Columbia University (https://housing.columbia.edu/, accessed on 20 
July 2020). After estimating student housing, multinomial sampling was used to allocate 
individuals into these student housing groups. 

4) Table B26101 was used to identify individuals residing in nursing homes in a process similar 
to step 3 for student housing. The target size for nursing homes was 100.2 

5) Table B11016 provided county-level estimates of household size distributions and was used 
to allocate agents to households. In this step, we also used Tables B09021 (proportion of 
young adults living with their parents) and B23008 (distribution of number of children living 
with a single adult). 

6) Schools were processed similarly with regard to how individuals were allocated into group 
quarters at steps 3 and 4. The target sizes of kindergarten, elementary, middle school, high 
school and college were 14, 79, 128, 155 and 155, respectively.1,3 

In the above, the actual size of the community groups varied around the target. For each type of 
group 𝑐𝑐𝑘𝑘, a number 𝑁𝑁𝑐𝑐𝑘𝑘of groups was calculated so that, on average, no group could have less 
than 30% of the target size 𝑁𝑁𝑎𝑎,𝑐𝑐𝑘𝑘

∗ , with 𝑁𝑁𝑎𝑎,𝑐𝑐𝑘𝑘representing the number of agents belonging to group 
𝑐𝑐𝑘𝑘: Equation (1) details the calculation of 𝑐𝑐𝑘𝑘. After 𝑁𝑁𝑎𝑎,𝑐𝑐𝑘𝑘 was calculated, agents were randomly 
assigned into each group with uniform sampling. 

https://housing.columbia.edu/
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(1) 

After inputting the population data into the C++ stochastic simulator, each individual had the 
following baseline characteristics: ID, age, sex, household, neighborhood, community, employment 
status, school status, workplace and school. Each individual also had one health status with respect to 
COVID-19. This status was updated at each simulation time step (1 day).  

As outlined above, individuals were associated through five contact contexts (i.e., household, 
workplace, school, neighborhood, and community), also called “mixing group”, and could be infected 
by other individuals in the same mixing group. The household, school and workplace were specified 
transmission pathways, with household as the primary pathway. Communities and neighborhoods 
represented places where people could have casual contact with others outside of the household, 
school or work (unspecified transmission pathways, e.g., during shopping or social interactions). The 
individuals and their associations formulated our base social network (Fig. S6) where daily activities 
occurred and SARS–CoV–2 virus spread.  

Movement module 
In addition to the regular daily activities occurring inside the base social network, individuals could 
have infrequent and irregular long-distance, short-term domestic travel. The long-distance travel 
component was required because we aimed to simulate the spread of epidemic throughout the US. 
The datasets used in the movement module are listed in Table S3. Implementation of long-distance, 
short-term trips was similar to other models in the literature.1,3 Each non-hospitalized individual had a 
daily and age-specific probability to start a new trip that could last between 1 and 12 days (Table S4 
and Table S5). The trip destination was a randomly selected household inside the destination state and 
was dependent on the household’s state; most trips occurred within the household’s state. As an 
example, Fig. S7 presents the destination states for individuals in Alabama.  

Virus transmission and disease progression module 
The probability that a susceptible individual (S) was infected per day P(t) was dependent on: (1) age 
of the S; (2) risk from imported cases; and (3) all infectious individuals in the same mixing groups as 
S. We calculated this probability based on the concept of person-to-person transmission.1,4 The 
formula for virus transmission is presented in Equation (2). 

P(t) = 1 −  �1 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)� ∗ ∏ �1 − 𝐶𝐶𝑖𝑖 ∗ 𝑉𝑉𝑉𝑉𝑖𝑖(𝑡𝑡) ∗ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)�𝑖𝑖 (2)  

𝐶𝐶𝑖𝑖 ∗ 𝑉𝑉𝑉𝑉𝑖𝑖(𝑡𝑡) ∗ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) represents the probability that one S individual was infected by one infectious, non-
hospitalized individual i who belonged to the same mixing group. 𝐶𝐶𝑖𝑖  represented the probability of a sufficient 
contact for transmission during one time step (name as “contact probability”), dependent on the age and the 
mixing groups of S. 𝑉𝑉𝑉𝑉𝑖𝑖(𝑡𝑡) represents the infectiousness of the infected agent, proportional to the decimal log of 
viral load in excess of 100 copies/mL. 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (t) was a scalar used to adjust the overall transmission probabilities 
𝐶𝐶𝑖𝑖 ∗ 𝑉𝑉𝑉𝑉𝑖𝑖(𝑡𝑡) to obtain a longitudinal mortality curve for target simulation scenarios as discussed in the main 
article text. Note that in all simulation scenarios, 𝐶𝐶𝑖𝑖 ∗ 𝑉𝑉𝑉𝑉𝑖𝑖(𝑡𝑡) ∗ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) did not exceed 1 (maximum value was 
0.1747896). 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) represents the probability that one S individual was infected due to the risk from 
imported cases (international passengers from outside the US). Since our analysis was not modeled on the initial 
phase of the pandemic, we focused on propagation of SARS–CoV–2 inside the US while assuming the risk from 
imported cases was negligible.  

After acquiring an infection, COVID-19 progressed as shown in Fig. S8. After an exposed state (E), 
the infected individual had a probability to develop to a pre-asymptomatic state (Incu, the infectious 
stage of the incubation period) from which they might develop symptoms at a later disease stage. The 
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time from infection to symptom onset was assumed to be 5 days,5 including 2 days as exposed and not 
infectious,6 and 3 days as pre-symptomatic and infectious. Two types of symptomatic infections (mild 
and severe) were modeled, and only severe state could lead to death (D) after passing the 
hospitalization state (Hosp). The parameters used in the disease progression module are described in 
Table S6 and Table S7. 

Vaccination module 
The vaccination module was implemented to mimic the US vaccination program to enable evaluation 
of the real-world effects of monoclonal antibody therapies. We modeled vaccines requiring two doses 
for full protection (the J&J single-dose vaccine was not authorized at the time the model was 
developed). Based on the recommendation of the Centers for Disease Control and Prevention (CDC), 
both susceptible (S) and recovered (R) agents could be vaccinated.  

The model assumed different vaccine effectiveness before and after the second dose, with another 
parameter modulating the days between the two doses. We assumed a 25-day gap between the two 
doses, with real world effectiveness (assuming effectiveness as measured in randomized controlled 
trials) as 52% for days 7–25 and 95% after day 25 (second dose).7 No assumption was imposed on the 
heterogeneity following a successful vaccination, thus individuals with successful vaccination were 
fully protected against all forms of the disease without loss of immunity (e.g., due to variants).  

The vaccine supply varied by week as shown in Table S8, derived from longitudinal vaccine data 
from the CDC. Since the vaccine doses were limited and taking the CDC recommendations 
(https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations.html) into consideration, by 
default, we prioritized the vaccination to agents who were either ≥65 years old, those living in nursing 
homes, or medical workers, and additional doses were distributed to agents ≥60 years of age or 
working in client-facing jobs (Table S9).  

Antiviral treatment module 
Antiviral treatment with anti-spike monoclonal antibodies could reduce both the duration of viral 
shedding, and the probability of disease progression.8  

The longitudinal viral load used to model the time-dependent infectiousness of each infectious 
individual (𝑉𝑉𝑉𝑉𝑖𝑖(𝑡𝑡) in Equation 2) was generated from a previously published target cell‐limited model 
of SARS-CoV-2 viral infection dynamics5 that used SARS-CoV-2 viral kinetics data pooled from 13 
published studies, since the clinical trial data were not available when the ABM was developed. 
Following availability of clinical trial data,8 the target cell-limited model5 was calibrated to 
incorporate antiviral effects that best predict SARS-CoV-2 viral kinetic data with monoclonal 
antibody treatment based on data derived from the clinical trial of the Regeneron monoclonal 
antibody combination, REGEN-COV treatment.8 The calibration process is described below. 

Initially, the target cell-limited model was used to simulate antiviral effects by modulating various 
components of the viral life-cycle, including inhibition or enhancement of one parameter or a 
combination of viral kinetic parameters. The following antiviral effects were tested, and were 
evaluated by overlaying preliminary viral load versus time data following monoclonal antibody 
administration: 

1) Inhibition of viral production rate by 70%, 90%, 95%, or 99% 
2) Enhancement of clearance of infected cells by 1.5-, 2.5-, 4-, or 5-fold 
3) Enhancement of free virus clearance by 1.5-, 2.5-, 4-, or 5-fold 
4) Inhibition of viral production rate by 70%, 90%, or 95%, plus enhancement of infected cell 

clearance by 1.5-, 2.5-, 4-, or 5-fold 

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations.html
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5) Inhibit viral production rate by 70%, 90%, or 95%, plus enhancement of free virus clearance 
by 1.5-, 2.5-, 4-, or 5-fold 

6) Inhibition of viral production rate by 70%, 90%, or 95%, plus enhancement of infected cell 
clearance by 1.5-, 2.5-, 4-, or 5-fold plus enhancement of free virus clearance by 1.5-, 2.5-, 4-, 
or 5-fold. 

Conducting these simulations determined that the combined effect of enhanced viral clearance of 
infected cells (by 1.5-fold) and reduced production (by 70%) provided predictions that broadly reflect 
the COVID-19 profile following monoclonal antibody administration.8 We used the well-modulated 
target cell-limited model to simulate 100 viral load profiles (in the absence or presence of treatment, 
with treatment initiated at various days post infection) in order to capture between-individual 
variability in viral load. In the ABM, each infected individual was randomly assigned one of the 100 
simulated viral load profiles. 

The control profile was used when modeling the default infectiousness without the antiviral treatment. 
From the 100 simulated control profiles, we found that the average infectious duration was 9 days (SD 
= 5 days), ranging from 2 to 18 days and that the cumulative infectiousness (area under the curve 
[AUC]) in the first 5 days (from infection to symptom onset) accounted for, on average, 54% of the 
total value (ranging from 17% to 100%). The cumulative infectiousness during the pre-symptomatic 
stage (3–5 days post infection) accounted for, on average, 38% of the total value (ranging from 14% 
to 58%). 

Once an individual received the antiviral treatment, the treatment profile was used to model their 
infectiousness. In the treatment profile, the viral load values that corresponded to the treatment 
administered from the third day post infection were directly used, while the viral load values of the 
treatment administered on the first 2 days post infection were generated from the control profile based 
on the assumptions of the treatment effects (Table S10). The reductions of the median infectious 
duration were calcuated from the simulated viral load profiles (Table S10). As an example, Fig. S9 
shows one full viral load profile used in the ABM (including both the control and the treatment 
profiles) to illustrate reduction of infectiousness and its duration by treatment. If the drug was 
administered to any susceptible agent, we made a conservative assumption that the drug could prevent 
infection for a duration of 30 days.   

Outpatient treatment could also reduce the probability of disease progression (Table S11), consistent 
with clinical trial data (under review at The New England Journal of Medicine). We assumed that the 
antiviral treatment only reduced the probability of progressing to the subsequent worse disease stage 
(Fig S8). For example, if an individual received the treatment with the health status as exposed (E), 
this individual would not progress to the incubation stage (Incu, also known as pre-symptomatic 
stage). Analogously, if an individual was treated at the severe stage, the probability of being 
hospitalized would be reduced by 70%.   

Estimation of the illness attack rate 
The illness attack rate, which was needed for model calibration and simulation initialization, was 
estimated from the cumulative death data (Fig. S10), death distribution by age (Fig. S11), and the 
infection fatality ratio (Table S12). Detailed data sources are listed in Table S13. The total number of 
previously infected individuals, specific to age group, was simply calculated by dividing the 
cumulative deaths by the infection fatality ratio. For example, the illness attack rate for June 1, 2021 
was calculated by dividing the cumulative deaths on June 23 by the infection fatality ratio. Table S14 
presents the estimated illness attack rates for June 1, 2020 and November 1, 2020.  
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Model calibration  
In the calibration process, various model parameters were modulated using an adapted gradient 
descent method, i.e., assuming a linear relationship between the parameters and the outcomes.1 

Calibration of the contact probabilities 𝑪𝑪𝒊𝒊 
Calibration of the contact probabilities 𝐶𝐶𝑖𝑖 was location- (household, workplace, school, neighborhood, 
and community) and age-specific (0–18, 19–64, and ≥65 years), and was the first step of the 
calibration process. The calibrated parameters 𝐶𝐶𝑖𝑖 were assumed to represent the base contact structure 
in the population and were modulated by 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) over time to represent the degree of 
aggressiveness of virus propagation. We calibrated 𝐶𝐶𝑖𝑖 using the illness attack rates for June 1 and 
November 1, 2020 (Table S14), since we considered that the behavior of individuals within the US 
had already adapted to the pandemic after strong non-pharmaceutical interventions (NPIs, e.g., shelter 
in-place and non-essential business closure) implemented between March and early June 2020, and 
that this time period reflected a mild and typical propagation of SARS–CoV–2 in the population.  

Initial calibration of the contact probabilities adjusted the 𝐶𝐶𝑖𝑖 of the household to match secondary 
household attack rates by age group. Since the household was the primary transmission pathway in 
our model setting, the household was considered the primary source of infection. The other four pre-
specified mixing groups (workplace, school, neighborhood and community) shared the remainder of 
infections. Table S15 presents the results of the calibration on the household secondary attack rate. 
Calibration results on the illness attack rates, shown in Table S16, are similar to those by age 
calculated from the cumulative death, death distribution by age and the infection fatality ratio by age 
(Table S14). The source of infection generated during the calibration process is shown in Table S17 
and calibrated parameters 𝐶𝐶𝑖𝑖 are listed in Table S18.  

Calibration of the disease progression parameters  
After calibrating the contact parameters 𝐶𝐶𝑖𝑖, we varied the parameters of disease progression to match 
the infection fatality ratio (Table S12). As shown in Table S19, after the calibration, the overall and 
age-specific infection fatality ratios simulated from the model were similar to real-world estimates 
(Table S12). The calibrated parameters that were used in the disease progression module are listed in 
Table S6. We also noted from the simulation of baseline scenario (without vaccine and antiviral 
treatment), that the hospitalization rate of total infected individuals over the simulation period was 
approximately 2%; and the death rate among those hospitalized was approximately 18%, similar to 
observation data.9,10  

Modulation of the contact probabilities over time 
The last step of model calibration was to modulate the parameters 𝐶𝐶𝑖𝑖 by varying 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) bi-weekly 
to match the longitudinal death observations as required by the target simulation scenarios. We 
calibrated ten 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)  to match longitudinal death data between November 16, 2020 and April 4, 
2021 (using current projection data from the Institute for Health Metrics and Evaluation [IHME], 
Fig. S12). The model was initialized to match the death and the illness attack rate on October 26, 
2020. The final ten 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) values obtained from the calibration process are listed in Table S20. 
Detailed data sources are listed in Table S21.  

Antiviral treatment strategies 
The active treatment, as a single dose, was provided to individuals with symptoms, on average 3 days 
post symptoms (SD = 1.4 day).  

Post-exposure prophylaxis (PEP) was provided to individuals with at least one confirmed case in the 
household (close contacts). Individuals receiving PEP (0.5 dose) were either susceptible or on average 
3 days (SD = 1 day) post-infection (without symptoms). The ratio of PEP used for non-infected to 
infected was approximately 3 (i.e., 25% of PEP was used on actually infected people; detailed results 
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from simulations are shown in Table S22). When rapid test was available, the PEP was only 
administered to confirmed cases (100% of PEP was used on actually infected people) to describe an 
intervention that mimicked early Treatment-as-Prevention (TasP). Those patients were identified 
through contact tracing (share the same household, workplace, or school with a confirmed case). We 
assumed any test approved by FDA would have reasonable performance and did not make 
assumptions around test sensitivity or specificity.  

Computing environment 
All data management (including population generation) was performed using R (version 3.6.3, 
https://cran.r-project.org/bin/windows/base/old/3.6.3/). The stochastic simulator, developed in C++ 
under the Eclipse environment (Eclipse for Parallel Application Developers, 
https://www.eclipse.org/downloads/packages/release/juno/sr2/eclipse-parallel-application-
developers), only loaded the well-prepared data and ran the simulations. OpenMP was used in the 
stochastic simulator to realize the parallel computing (multiprocessing programming) among 
simulation runs. The simulation scenarios were performed on an internal computing server of Certara 
(64-bit operation system, x64-based processor). There were 16 processors (Intel(R) Xeon(R) Gold 
6132 CPU @ 2.6GHz 2.59 GHz) and 96.00 GB installed RAM. For each simulation scenario, we 
reported the average values of 50 realizations as final outputs. It took approximately 1 hour to process 
one simulation scenario of 50 realizations (duration of each realization from October 26, 2020 to 
April 4, 2021).   

https://cran.r-project.org/bin/windows/base/old/3.6.3/
https://www.eclipse.org/downloads/packages/release/juno/sr2/eclipse-parallel-application-developers
https://www.eclipse.org/downloads/packages/release/juno/sr2/eclipse-parallel-application-developers
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Supplementary figures and tables 
 

Fig. S1 Flowchart of population and social network generation process 
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Fig. S2 Population diagnostics graph for age-and-gender stratification. 
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Fig. S3 Population diagnostics graph for age-and-gender-stratified employment rate. 
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Fig. S4 Population diagnostics for age-and-sex-stratified enrollment in schools. 
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Fig. S5 Population diagnostics for sex-stratified type of work in the employed population force. 

 

  



14 
 

Fig. S6 Base social network of the ABM. 

 

 

Fig. S7 Top ten destinations of the long-distance short-term domestic trips of people from Alabama. 
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Fig. S8 Disease progression after infection: (1) E: exposed and not infectious; (2) A: asymptomatic; 
(3) Incu: pre-symptomatic (the infectious stage of the incubation period); (4) Mild: symptomatic with 
mild symptoms; (5) Severe: symptomatic with severe symptoms; (6) Severe_rec: recovery period for 
patients with severe symptoms; (7) Hosp: hospitalization; (8) Hosp_rec: recovery period for 
hospitalized patients; (9) ICU: intensive care unit; (10) D: death; (11) R: recover from infection. 

 

 

 

Fig. S9 One of the 100 simulated viral load profiles. The control profile shows viral load values 
without antiviral treatment and other profiles show viral load values if treated on the infected day 
post-infection. 
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Fig. S10 Cumulative death over time (CDC data, accessed on January 22, 2021, 
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-
cb36).   

 

 

 

Fig. S11 The death distribution by age group used in the simulations (from CDC on November 23, 
2020, https://covid.cdc.gov/covid-data-tracker/#demographics). 

 

 

 

  

https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://covid.cdc.gov/covid-data-tracker/#demographics
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Fig. S12 Longitudinal death observations (CDC data accessed January 22, 2021 and IHME data 
accessed January 28, 2021; data sources are listed in Table S21). 
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Fig. S13 Sensitivity analysis of the impact of monoclonal antibody treatment and prophylaxis in 

combination with a 47% vaccine rollout. Simulations with the agent-based model were conducted 

under the same conditions as the main analysis but assuming a 47% vaccine rollout (vaccine doses 

were tripled in simulation scenarios) that was prioritized to those who are ≥65 years old, living in 

nursing homes, or are medical workers, with additional doses distributed to those ≥18 years old. 

Results are presented as the number of infections or deaths averted relative to a base case of an 

aggregate of non-pharmaceutical interventions (102,946,388 cumulative infections and 338,222 

cumulative deaths) based on monoclonal antibody supply from January 2021 of 300,000 doses/month 

(A) and 600,000 doses/month (B). The colored columns reflect distinct paradigms, with shading 

indicating different scenarios within the paradigm. The columns enclosed by broken lines additionally 

incorporate the use of rapid diagnostic tests.  
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Table S1 US Census Bureau tables used to derive agent-level characteristics to generate a population 
similar to that of the US. 

US Census 
Table 

Description Source 

Table 
B01001 

Population by County 
 
County-level data 

US Census Bureau (2018). SEX BY AGE, 2013-
2018 American Community Survey 5-year estimates. 
Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT5Y2018.B01001&hidePreview=true  

Table 
B14004 

Education by age for 
those ≥15 years old 
 
County-level data 

US Census Bureau (2018). SEX BY COLLEGE OR 
GRADUATE SCHOOL ENROLLMENT BY TYPE OF 
SCHOOL BY AGE FOR THE POPULATION 15 YEARS 
AND OVER, 2013–2018 American Community Survey 5-
year estimates. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT5Y2018.B14004&hidePreview=true  

Table 
B14005 

Education status and 
employment among 
those 16–19 years -old 
 
County-level data 

U.S. Census Bureau (2018). SEX BY SCHOOL 
ENROLLMENT BY EDUCATIONAL ATTAINMENT 
BY EMPLOYMENT STATUS FOR THE POPULATION 
16–19 YEARS, 2013–2018 American Community Survey 
5-year estimates. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT5Y2018.B14005&hidePreview=true  

Table 
B23001 

Employment status 
among those ≥ 16 
years old 
 
County-level data 

US Census Bureau (2018). SEX BY AGE BY 
EMPLOYMENT STATUS FOR THE POPULATION 16 
YEARS AND OVER, 2013–2018 American Community 
Survey 5-year estimates. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT5Y2018.B23001&hidePreview=true  

Table 
B24010 

Occupational status for 
employed civilians  ≥ 
16 years old 
 
County-level data 

U.S. Census Bureau (2018). SEX BY OCCUPATION FOR 
THE CIVILIAN EMPLOYED POPULATION 16 YEARS 
AND OVER, 2018 American Community Survey 1-year 
estimates. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT1Y2018.B24010&hidePreview=true  

Table 
B24010 

Occupational status for 
employed civilians  
≥16 years old 
 
State-level data 

U.S. Census Bureau (2018). SEX BY OCCUPATION FOR 
THE CIVILIAN EMPLOYED POPULATION 16 YEARS 
AND OVER, 2018 American Community Survey 1-year 
estimates. Retrieved from 
https://data.census.gov/cedsci/table?tid=ACSDT1Y2018.B2
4010&hidePreview=true  

Table 
B08006 

Types of 
transportation used by 
workers 
 
County-level data 

U.S. Census Bureau (2018). SEX OF WORKERS BY 
MEANS OF TRANSPORTATION TO WORK, 2013-
2018 American Community Survey 5-year estimates. 
Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT5Y2018.B08006&hidePreview=true  

Table 
B09021 

Living arrangements 
among adults ≥18 
years old 
 
County-level data 

U.S. Census Bureau (2018). LIVING ARRANGEMENTS 
OF ADULTS 18 YEARS AND OVER BY AGE, 2013–
2018 American Community Survey 5-year estimates. 
Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT5Y2018.B09021&hidePreview=true  

https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B01001&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B01001&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B14004&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B14004&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B14005&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B14005&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B23001&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B23001&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT1Y2018.B24010&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT1Y2018.B24010&hidePreview=true
https://data.census.gov/cedsci/table?tid=ACSDT1Y2018.B24010&hidePreview=true
https://data.census.gov/cedsci/table?tid=ACSDT1Y2018.B24010&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B08006&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B08006&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B09021&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B09021&hidePreview=true
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Table 
B11016 

Household type by 
household size 
 
County-level data 

U.S. Census Bureau (2018). HOUSEHOLD TYPE BY 
HOUSEHOLD SIZE, 2013–2018 American Community 
Survey 5-year estimates. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT5Y2018.B11016&hidePreview=true  

Table 
B23008 

Age of own children < 
18 years and 
subfamilies by living 
arrangements 
 
County-level data 

U.S. Census Bureau (2018). AGE OF OWN CHILDREN 
UNDER 18 YEARS IN FAMILIES AND SUBFAMILIES 
BY LIVING ARRANGEMENTS BY EMPLOYMENT 
STATUS OF PARENTS, 2013–2018 American 
Community Survey 5-year estimates. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=ACSDT5Y2018.B23008&hidePreview=true  

Table P42 Group quarters 
population by type of 
group quarters 
 
County-level data 

U.S. Census Bureau (2010). GROUP QUARTERS 
POPULATION BY GROUP QUARTERS TYPE, 2010 
Decennial Summary File 1. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.050000
&tid=DECENNIALSF12010.P42&hidePreview=true  

Table P42 Group quarters 
population by type of 
group quarters 
 
State-level data 

U.S. Census Bureau (2010). GROUP QUARTERS 
POPULATION BY GROUP QUARTERS TYPE, 2010 
Decennial Summary File 1. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.04000.0
01&tid=DECENNIALSF12010.P42&hidePreview=true  

Table 
B26101 

Age and sex 
population structure 
 
State-level data 

U.S. Census Bureau (2018). GROUP QUARTERS TYPE 
(3 TYPES) BY SEX BY AGE, 2013–2018 American 
Community Survey 5-year estimates. Retrieved from 
https://data.census.gov/cedsci/table?g=0100000US.04000.0
01&tid=ACSDT5Y2018.B26101&hidePreview=true  

National 
School 
Enrollment 

National school 
enrollment by type of 
school 

U.S. Census Bureau (2018). Enrollment Status of the 
Population 3 Years Old and Over, by Sex, Age, Race, 
Hispanic Origin, Foreign Born, and Foreign-Born 
Parentage: October 2018, 2018 National School 
Enrollment. Retrieved from 
https://www2.census.gov/programs-
surveys/demo/tables/school-enrollment/2018/2018-
cps/tab01-01.xlsx  

National 
Counties 
Gazetteer 

 US Census Bureau (2019). Gaz Counties National, 2019 
Gazetteer Files. Retrieved from 
https://www2.census.gov/geo/docs/maps-
data/data/gazetteer/2019_Gazetteer/2019_Gaz_counties_nat
ional.zip  

 

Table S2 Distribution of household composition in the US (source: US Census Bureau, 2018 
American Community Survey). 

Household size Proportion  
(%) 

1-person household 27.8 
2-person household 33.9 
3-person household 15.7 
4-person household 13.0 
5-person household 6.0 
6-person household 2.3 
7-person household 1.3 

 

https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B11016&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B11016&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B23008&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=ACSDT5Y2018.B23008&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=DECENNIALSF12010.P42&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.050000&tid=DECENNIALSF12010.P42&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.04000.001&tid=DECENNIALSF12010.P42&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.04000.001&tid=DECENNIALSF12010.P42&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.04000.001&tid=ACSDT5Y2018.B26101&hidePreview=true
https://data.census.gov/cedsci/table?g=0100000US.04000.001&tid=ACSDT5Y2018.B26101&hidePreview=true
https://www2.census.gov/programs-surveys/demo/tables/school-enrollment/2018/2018-cps/tab01-01.xlsx
https://www2.census.gov/programs-surveys/demo/tables/school-enrollment/2018/2018-cps/tab01-01.xlsx
https://www2.census.gov/programs-surveys/demo/tables/school-enrollment/2018/2018-cps/tab01-01.xlsx
https://www2.census.gov/geo/docs/maps-data/data/gazetteer/2019_Gazetteer/2019_Gaz_counties_national.zip
https://www2.census.gov/geo/docs/maps-data/data/gazetteer/2019_Gazetteer/2019_Gaz_counties_national.zip
https://www2.census.gov/geo/docs/maps-data/data/gazetteer/2019_Gazetteer/2019_Gaz_counties_national.zip
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Table S3 Data sources for populating the movement module. 

Description Source 
Data used to calculate the age-based daily 
probability of staring a new trip and the 
probability of trip duration as shown in Table S4 
and Table S5 
 

1. HolidayTravel.qxp (dot.gov) 
2. Cover.eps 

(workingcarsforworkingfamilies.org) 
3. https://www.census.gov/data/tables/time-

series/demo/popest/intercensal-2000-2010-
national.html 

4. TSA checkpoint travel numbers (current 
year(s) versus prior year/same weekday) | 
Transportation Security Administration 

5. https://www.arrivalist.com/daily-travel-
index/ 

Data used to calculate trip destination as shown 
in Fig. S7 

https://www.bts.gov/browse-statistical-
products-and-data/surveys/american-travel-
survey  

 

Table S4 Age-based daily probability of starting a new trip. 

Age (year) <25 25–64 ≥65 

Probability 0.0154 0.0266 0.0145 
aThe probabilities were reduced by 20% (average year-to-year reduction from June to December 2020) in the simulations to 
mimic the change of movement due to COVID-19 pandemic. 

 

Table S5 Probability of duration of each new trip. 

Duration(days) 1 2–4 5–8 9–12 

Probability  0.500 0.358 0.101 0.0407 
 

 

https://www.bts.dot.gov/sites/bts.dot.gov/files/legacy/publications/america_on_the_go/us_holiday_travel/pdf/entire.pdf
https://www.workingcarsforworkingfamilies.org/images/files/usdot_statistics_%20nhts_highlights_rpt.pdf
https://www.workingcarsforworkingfamilies.org/images/files/usdot_statistics_%20nhts_highlights_rpt.pdf
https://www.census.gov/data/tables/time-series/demo/popest/intercensal-2000-2010-national.html
https://www.census.gov/data/tables/time-series/demo/popest/intercensal-2000-2010-national.html
https://www.census.gov/data/tables/time-series/demo/popest/intercensal-2000-2010-national.html
https://www.tsa.gov/coronavirus/passenger-throughput
https://www.tsa.gov/coronavirus/passenger-throughput
https://www.tsa.gov/coronavirus/passenger-throughput
https://www.arrivalist.com/daily-travel-index/
https://www.arrivalist.com/daily-travel-index/
https://www.bts.gov/browse-statistical-products-and-data/surveys/american-travel-survey
https://www.bts.gov/browse-statistical-products-and-data/surveys/american-travel-survey
https://www.bts.gov/browse-statistical-products-and-data/surveys/american-travel-survey
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Table S6 Parameters calibrated and used in disease progression module as shown in Fig. S8.  

Parameter description  Valuesa  
Probability of asymptomatic infection by age 
group 

0–9 = 0.456; 10–19 = 0.412; ≥20 = 0.4 

Probability of mild infection by age group 0–9 = 0.73021; 10–19 = 0.77953; 20–29 = 
0.81789; 30–39 = 0.84118; 40–49 = 0.84392; 50–
59 = 0.82474; 60–69 = 0.78227; 70–79 = 
0.71651; ≥80 = 0.63157 

Probability of hospitalization by age group 0–9 = 0.001; 10–19 = 0.006; 20–29 = 0.015; 30–
39 = 0.069; 40–49 = 0.219; 50–59 = 0.279; 60–69 
= 0.37; 70-79 = 0.391; ≥80 = 0.379 

Probability of ICU needs by age group 0–9 = 0.000386363; 10–19 = 0.000386363; 20–
29 =0.00233248; 30–39 = 0.00233248; 40–49 
= 0.00233248; 50–59 = 0.10425; 60–69 = 
0.234135; 70–79 = 0.433395; ≥80 = 0.71129 

Probability of death in ICU by age group 0–9 = 0.2970; 10–19 = 0.2970; 20–29 = 0.3465; 
30–39 = 0.3465; 40–49 = 0.3780; 50–59 = 
0.6840; 60–69 = 0.7740; 70–79 = 0.8550;  
≥80 = 0.8910 

aThe initial values were from 11-13. Those parameters were finally obtained from model calibration, thus they were suitable 
for our model and the target simulation scenarios. A cautious approach should be used when comparing those parameters 
with epidemiological data or applying them to other models. 
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Table S7 Summary of main assumptions in simulation scenarios  

  Parameters    Sources 

Antiviral therapy   

Average time to treatment (day) of active 
treatment 

3 (SD = 1.4) days post 
symptom onset  

Assumption 

Average time to treatment (day) for post-
exposure prophylaxis  

3 (SD = 1) days post 
infection 

Assumption 

Dose of active treatment  
 

1 dose (2400mg) Clinical trial8 

Dose of post-exposure prophylaxis 0.5 dose (1200 mg) Clinical trial14 
Length of protection for prophylaxis 30 days Assumption 
Efficacy of post-exposure prophylaxis when 
administered to susceptible agent (probability of 
being completely immune to infection after 
treatment) 

100%a  Assumption 

Effectiveness of contact tracing (proportion of 
close contacts reached) 

100% for household 
members; 40% for 
colleagues and 
classmates  

Assumption 

Proportion of post-exposure prophylaxis 
administered to confirmed cases  

25% without rapid test; 
100% with rapid test 

Assumption 

Sensitivity and specificity of rapid test (rapid 
diagnostics)  

No assumption around test sensitivity or specificity 
(assume any test approved by FDA would have 
reasonable performance). 

Average time to rapid test (day) Assumed that the rapid test was administered the 
same day as drug administered as post-exposure 
prophylaxis. 

Reduction of infectiousness  Modulated via viral load values, dependent on time 
of treatment initiation as described in “Antiviral 
treatment module” 

Reduction of disease progression Modulated by reducing the probability of 
progressing to the following worse disease stage, 
consistent with clinical trial information As 
described in “Antiviral treatment module” 

Disease progression    

The time from infection to symptom onset (day) 5  5 

Duration of being exposed (E in Fig. S8) and 
not infectious (day)  

2 6 

Duration of being pre-symptomatic (Incu in 
Fig. S8) and infectious (day)  

3 Time from infection to 
symptom onset – duration 
of being exposed and not 
infectious 

Duration of being asymptomatic (A in Fig. S8) 7 Based on the simulated 
viral load values (100 
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control profiles as 
described in “Antiviral 
treatment module”) 
multiplied by a factor of 
75%  

Duration of being symptomatic with mild 
symptoms (day), Mild in Fig. S8 

6 15 

Duration of being symptomatic with severe 
symptoms before hospitalization (day), severe 
in Fig. S8 

5 11 

Time needed to recover from severe symptoms 
if not hospitalized (day), Severe_rec in Fig. S8 

2 Assumed as equal to 
hospital stay before ICU 

Duration of hospitalization if ICU not required 
(day) 

9 11 

Duration of hospitalization before critical care 
admission (day), Hosp in Fig. S8 

2 11 

Time needed to recover from hospitalization 
(day), Hosp_rec in Fig. S8 

7 Hospitalization duration if 
ICU not required – duration 
of hospitalization before 
ICU  

Duration of ICU stay (day), ICU in Fig. S8 10 15  

Probability of disease progression  Table S6 Results obtained from 
model calibration  

aThe basis for this assumption was an administrative assessment of 409 seronegative participants, which demonstrated 100% 
risk reduction in proportion of participants with symptomatic events with REGEN-COV. The primary analysis now available 
reports a risk reduction of 81%.16  
 

Table S8 Number of vaccine doses distributed each week in simulations. 

Time 
period  

Week of 
Dec 14, 
2020 

Week of 
Dec 21, 
2020 

Week of 
Dec 28, 
2020 

Week of 
Jan 4, 
2021 

Week 
of Jan 
11, 
2021 

Week of 
Jan 18, 
2021 

Week of 
Jan 25, 
2021 

After 
week of 
Jan 25, 
2021  

Doses  1134552 1762667 2785164 5122554  135583 7688936 8060280 Assume 
as 
8060280 

 

Table S9 Data used to populate the vaccine module. 

Description Source 
Data used to calculate the vaccine doses as 
shown in Table S8. Data were managed on 
February 3, 2021. 

https://covid.cdc.gov/covid-data-
tracker/#vaccination-trends 

  

https://covid.cdc.gov/covid-data-tracker/#vaccination-trends
https://covid.cdc.gov/covid-data-tracker/#vaccination-trends
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Table S10 Treatment effects on reduction of overall infectiousness and infectious duration.  

Day of treatment 
initiation post 
infection 

1 2 3 4 5 6 7 8  9 10 

Reduction of median 
infectiousness during 
the infectious days 
(AUC) 

Assume 
90% 

Assume 
80% 

54% 49% 37% 31% 20% 17% 8% 0% 

Reduction of median 
infectious duration 
(day) 

88% 63% 50% 50% 38% 38% 25% 25% 13% 0% 

 

Table S11 Illustration of treatment effects on the reduction of disease progression. 

Day of treatment 
initiation post infection 

1 2 3 4 5 6 7 8  9 10 

Reduction of the 
probability of disease 
progression 

100% 100% 80% 70% 70% 70% 70% 70%  70% 70% 

 

Table S12 Infection fatality ratio (Source, https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-
scenarios-archive/planning-ccenarios-2021-03-19.pdf). 

Age (year) 0–19  20–49 50–69 ≥70   

Infection fatality ratio 0.00003 
(0.00002, 
0.0001) 

0.0002 
(0.00007, 
0.0003) 

0.005  
(0.0025, 
0.010) 

0.054  
(0.028, 
0.093) 

 

Table S13 Data sources used to estimate the illness attack rate. 

Description Source 
Data used to estimate illness attack rate. 1. Cumulative death reported by CDC 

https://data.cdc.gov/Case-
Surveillance/United-States-COVID-19-
Cases-and-Deaths-by-State-o/9mfq-cb36 

2. The death distribution by age group used in 
the simulations (from  CDC on 23 Nov 
2020, https://covid.cdc.gov/covid-data-
tracker/#demographics 

3. Infection fatality ratio reported by CDC 
https://www.cdc.gov/coronavirus/2019-
ncov/hcp/planning-scenarios-
archive/planning-ccenarios-2021-03-19.pdf 

 

  

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-archive/planning-ccenarios-2021-03-19.pdf
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-archive/planning-ccenarios-2021-03-19.pdf
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://covid.cdc.gov/covid-data-tracker/#demographics
https://covid.cdc.gov/covid-data-tracker/#demographics
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-archive/planning-ccenarios-2021-03-19.pdf
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-archive/planning-ccenarios-2021-03-19.pdf
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios-archive/planning-ccenarios-2021-03-19.pdf
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Table S14 Illness attack rate by age calculated from the cumulative death, death distribution by age 
and infection fatality ratio by age. 

Date Overall  Children (0–18) Adults (19–64) Adults (≥65) 
June 1, 2020 9.5 % 3.3 % 13.4 % 3.4 % 
November 1, 2020 22.4 % 7.8 % 31.5 % 8.0 % 

 

Table S15 Results from model calibration, matching household secondary attack rates (Ptrans(t) = 
0.102). 

Data17  
Overall Children (0–19) Adults (20–59) Adults (≥60) 
17.2 % (14.1–20.6)  6.4 % (2.8–12.2) 18.5 % (14.4–23.2) 28.0 % (19.1–38.2) 
Model simulated results (results from simulation of 20,000 independent households) 
Overall Children (0–19) Adults (20–59) Adults (≥60) 
16.0 % 10.2 % 18.4% 22.6% 

 

Table S16 Results from model calibration, matching the illness attack rate between June 1 and 
November 1, 2020. 

Illness attack rate from June 1 to November 1 2020 
  Overall  Children  

(0–18) 
Adults  
(19–64) 

Adults (≥65) 

Status on June 1 according to 
the simulation of 1 million 
agents 

9.5% 3.3% 13.4% 3.4% 

Status on November 1 
according to the simulation of 
1 million agents 

21. 1% 7.5% 30.0% 8.5% 

 

Table S17 Simulated sources of infection during model calibration. 

Source of infection Share 
Household (primary) 36% 
Workplace 27% 
School 20% 
Neighborhood 11% 
Community 6% 
Total 100% 

 



28 
 

Table S18 Calibrated parameters Ci (i.e., the probability of a sufficient contact for transmission 
during one time step) on a population of 1 million agents. 

 
Exposed  
Child 0–4 Child 5–18 Adult 19–64 Adult ≥65 

Household  0.1615944 0.1615944 0.3635874 0.4543635 
Nursing home 

  
0.001  0.001 

Student housing 
 

0.001 0.001 0.000001 
Workplacea 

 
0.0002921366 0.02741823 0.00001033734 

Kindergarten 0.0006082194 0.0006082194 
  

Elementary school 
 

0.0006082194 
  

Middle school 
 

0.0035234794 0.003567523 
 

High school 
 

0.0042281738 0.004281026 0.00001756718 
University 

 
0.0042441738 0.016600752 0.0001430807 

Neighborhood 0.000066988 0.000066988 0.0007105086 0.0000001404329 
Community 0.00000650113 0.00000650113 0.0000971232 0.00000012490605 

aThe values shown were assumed as default values for the office jobs. For client-facing jobs and medical jobs, we multiply 
the default values by a factor 2.17 and 7.59.18, respectively. Note that, all those were included inside the model calibration      

 

Table S19 Calibrated infection fatality ratio. 

Age (years) 0–19  20–49 50–69 ≥70  
Results according to 
simulation of 1 million 
agents 

0.00005 0.0003 0.004 0.04 

 

Table S20 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) values obtained from model calibration. 

Time  Oct 26, 
2020 

Nov 9, 
2020 

Nov 23, 
2020 

Dec 7, 
2020 

Dec 21, 
2020 

Jan 4, 
2021 

Jan 18, 
2021 

Feb 1, 
2021  

Feb 15, 
2021 

Mar 1, 
2021a 

Ptrans(t) 
values 

0.152814 0.133563 0.15067 0.206261 0.2174 0.245275 0.274179 0.282587 0.306112 0.320576 

aThis value was used for simulating the 2 weeks between March 1 and March 15, 2021. Since we used death data up to 
April 4, 2021 for calibration and the time lag between infection to death was 22 days in the model, the Ptrans(t) values that 
were needed for running simulations after March 15 were assumed to be 0.320576. 

 

Table S21 Data sources for longitudinal death.  

Description Source 
Longitudinal daily death reported by 
CDC 

1. https://data.cdc.gov/Case-
Surveillance/United-States-COVID-19-
Cases-and-Deaths-by-State-o/9mfq-cb36 

Longitudinal daily death reported by 
IHME 

2. https://covid19.healthdata.org/united-states-
of-america?view=resource-
use&tab=trend&resource=all_resources  

 

  

https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://covid19.healthdata.org/united-states-of-america?view=resource-use&tab=trend&resource=all_resources
https://covid19.healthdata.org/united-states-of-america?view=resource-use&tab=trend&resource=all_resources
https://covid19.healthdata.org/united-states-of-america?view=resource-use&tab=trend&resource=all_resources
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Table S22 Dose allocation in post-exposure prophylaxis (PEP) as ratio of doses used for non-infected 
to infected individuals. 

Scenarios in Figure 3 (A) Ratio of doses used on non-
infected: infected for PEP without 
rapid testinga 

Baseline + vaccine + PEP  4.2 

Baseline + vaccine + PEP (≥ 65 years old)  3.1 

Baseline +vaccine + treatment + PEP 4.2 

Baseline + vaccine + treatment + PEP (≥65 years old) 2.7 
aThese values were derived from simulations to illustrate how many doses were actually administered to susceptible agents 
when the drug was consumed as PEP without rapid testing. 

 

Table S23 Impact of vaccines on burden of infections and deaths during the aggressive pandemic 

phase (October 26, 2020 to April 4, 2021). 

Efficacy after 
first dose 

Days 
between 2 

doses 

Total number 
of vaccine 

doses 

Proportion 
of population 
immunized 

(%) 

Cumulative 
population 

infected over 
simulation 
(percent 
change) 

Cumulative 
death over 
simulation 
(percent 
change) 

No 
pharmaceutical 
intervention 

- - - 102,946,388 338,221 

52%7 

25 106,343,166 15.7 96,954,689  
(-5.8%) 

295,217  
(-12.7%) 

60 106,370,393 16.3 96,611,411  
(-6.2%) 

301,159  
(-11.0%) 

90 106,295,150 16.1 96,426,659  
(-6.3%) 

301,805  
(-10.8%) 
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