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 7 
Abstract 8 
Three SARS-CoV-2 variants classified as variants of concern – B.1.1.7, B.1.351, and P.1 – have 9 
spread globally.  To characterize their viral and epidemiological properties in support of public 10 
health planning, we develop and apply a model-inference system to estimate the changes in 11 
transmissibility and immune escape for each variant, based on case and mortality data from the 12 
country where each variant emerged. Accounting for under-detection of infection, disease 13 
seasonality, concurrent non-pharmaceutical interventions, and mass-vaccination, we estimate 14 
that B.1.1.7 has a 46.6% (95% CI: 32.3 – 54.6%) increase in transmissibility but nominal immune 15 
escape from protection induced by prior wild-type infection; B.1.351 has a 32.4% (95% CI: 14.6 16 
– 48.0%) increase in transmissibility and 61.3% (95% CI: 42.6 – 85.8%) immune escape; and P.1 17 
has a 43.3% (95% CI: 30.3 – 65.3%) increase in transmissibility and 52.5% (95% CI: 0 – 75.8%) 18 
immune escape. Model simulations indicate that B.1.351 and P.1 could supplant B.1.1.7 19 
dominance and lead to increased infections. Our findings highlight the importance of 20 
preventing the spread of B.1.351 and P.1, in addition to B.1.1.7, via continued preventive 21 
measures, prompt mass-vaccination of all populations, continued monitoring of vaccine 22 
efficacy, and possible updating of vaccine formulations to ensure high efficacy.   23 
 24 
Main text 25 
Multiple SARS-CoV-2 variants have been identified since summer 2020.  Among these, three 26 
variants – namely, B.1.1.7, B.1.351, and P.1 – have been classified as variants of concern (VOCs), 27 
per evidence indicating these genotypes are substantially more transmissible, evade prior 28 
immunity (either vaccine-induced or conferred by natural infection with wild-type virus), 29 
increase disease severity, reduce the effectiveness of treatments or vaccines, or cause 30 
diagnostic detection failures.1,2  Multiple lines of evidence indicate the B.1.1.7 variant is roughly 31 
50% more transmissible than wild-type virus but does not produce antigenic escape.3-6 Further, 32 
several studies have shown that both the B.1.351 and P.1 variants are resistant to 33 
neutralization by convalescent plasma from individuals previously infected by wild-type SARS-34 
CoV-2 viruses and sera from vaccinated individuals;5-9 however, changes to the transmissibility 35 
of these latter two variants are less well resolved.  A better understanding of the 36 
transmissibility and immune escape properties of VOCs – in particular, B.1.351 and P.1 at 37 
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present – is needed to anticipate future COVID-19 pandemic outcomes and support public 38 
health planning.   39 
 40 
In this study, we develop a model-inference system to estimate the relative change in 41 
transmissibility and level of immune evasion for different SARS-CoV-2 variants, while 42 
accounting for under-detection of infection, delays of reporting, disease seasonality, non-43 
pharmaceutical interventions (NPIs), and vaccination. Testing using model-generated synthetic 44 
incidence and mortality data indicates this inference system is able to accurately identify shifts 45 
in transmissibility and immune evasion.  We then apply the validated inference system in 46 
conjunction with incidence and mortality data from the UK, South Africa, and Brazil – the three 47 
countries where VOCs B.1.1.7, B.1.351, and P.1 were first identified, respectively – to estimate 48 
the change of transmissibility and immune evasion for the three VOCs, separately. We further 49 
use these inferred findings in a multi-variant, age-structured model to simulate epidemic 50 
outcomes in a municipality like New York City (NYC) where multiple variants, including B.1.1.7, 51 
B.1.351, and P.1, have been detected.  52 
 53 
The model-inference system and validation 54 
We first tested our model-inference system using 10 model-generated synthetic datasets, 55 
depicting different combinations of population susceptibility prior to the emergence of a new 56 
variant, changes in transmissibility and immune evasion for the new variant, and infection-57 
detection rate. As population susceptibility, interventions, and disease seasonality can all affect 58 
apparent transmissibility at a given time and in order to focus on variant-specific properties, 59 
here we defined transmissibility as the average number of secondary infections per primary 60 
infection, after removing the effects of these three factors (see Methods). We then quantified 61 
the change in transmissibility as its relative increase once the new variant becomes dominant. 62 
Similarly, we quantify the level of immune evasion as the increase in susceptibility after the 63 
new variant becomes dominant, relative to prior population immunity from wild-type infection.  64 
 65 
Fig. 1 shows example test results comparing model-inference system estimates with model-66 
generated ‘true’ values of transmissibility and susceptibility using an infection-detection rate of 67 
20%. Across a range of epidemic dynamics, the model-inference system is able to fit both 68 
weekly incidence and mortality data (Fig. 1A) and estimate the transmissibility and 69 
susceptibility over time for both the initial pandemic wave and the subsequent pandemic wave 70 
caused by a new variant (Fig. 1B). In addition, when aggregated over both pandemic waves, the 71 
model-inference system is able to estimate the relative changes in transmissibility and immune 72 
evasion due to a new variant (Fig. 1C). When the system is less well constrained (e.g., an 73 
infection-detection rate of 10%), model estimates, albeit less accurate, still closely track true 74 
values in most instances (Fig S1).  75 
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 76 
Reconstructed pandemic dynamics in the three countries 77 
Following the initial emergence of SARS-CoV-2 in early 2020, the UK, South Africa, and Brazil 78 
experienced very different epidemics (Fig. 2). The model-inference system is able to recreate 79 
the observed incidence and mortality epidemic curves for all three countries (Fig 2 A, C, and E). 80 
Further, cross-validation using independent data shows that the model estimates closely match 81 
measured SARS-CoV-2 prevalence in the UK10,11 and serology measures of cumulative infection 82 
rates in South Africa12,13 and Brazil,14 respectively (Fig 2 B, D, and F). These results indicate the 83 
model-inference system accurately estimates the underlying transmission dynamics for all 84 
three countries.  85 
 86 
In the UK, a prompt lockdown allowed the country to contain the first pandemic wave (Fig. 3).  87 
The real-time effective reproduction number (Rt), which measures the average number of 88 
secondary infections at a given point in time, dropped from 2.2 (95% CrI: 1.0 – 3.9) during the 89 
week of 3/1/2020 to below 1 during the week of 3/22/2020, the first week of the lockdown (Fig 90 
3A).  By the week of 6/28/2020 (the week with the lowest incidence following the first 91 
pandemic wave), 6.4% (95% CrI: 3.6 – 12.3%) of the UK population are estimated to have been 92 
infected. However, with the relaxation of intervention measures during the summer, 93 
transmission gradually increased again (as indicated by the estimated Rt >1), leading to a large 94 
surge of infections in the autumn of 2020 (Figs 2A-B and 3A). A second lockdown implemented 95 
in Nov 2020 reduced transmission transiently (Rt was below 1 during the 4-week lockdown 96 
period; Fig 3A).  Shortly thereafter widespread transmission of the B.1.1.7 variant led to a 97 
further increase of cases before this activity was curtailed by a third lockdown and mass-98 
vaccination.   99 
 100 
In South Africa, initial transmission was low likely due to a strong public health response (a 101 
lockdown was implemented from 3/26/20 to 4/16/20) and less conducive conditions for 102 
transmission during southern hemisphere summer and autumn (Figs 2C, 3D, and S2B). 103 
However, as the country relaxed intervention measures and entered the winter, transmission 104 
increased substantially from May 2020 onwards, leading to a large pandemic wave during May 105 
– Sep 2020. After accounting for under-detection of infection (Fig S3C), consistent with serology 106 
data,12,13 the model-inference system estimates that 30.0% (95% CrI: 18.0 – 47.1%) of the 107 
population had been infected by the week of 9/20/2020 (i.e., the week with the lowest 108 
incidence following the first pandemic wave; Fig 2D). After two months with relatively low 109 
incidence, the emergence of the B.1.351 variant led to a resurgence of infections in late 2020 110 
and a larger second pandemic wave (Fig 3D). By the week of 4/11/21, another 38.6% (95% CrI: 111 
24.1 – 61.1%) of the population are estimated to have been infected, including re-infections. 112 
 113 
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In Brazil, no national lockdown was implemented during the pandemic. A large first pandemic 114 
wave occurred during Mar – Oct 2020 (Figs 2E and 3G). By the week of 11/1/2020 (i.e., the 115 
week with the lowest incidence following the first wave), 45.7% (95% CrI: 28.4 – 69.0%) of the 116 
population are estimated to have been infected (Fig 3F). This estimate includes all infections 117 
and thus is much higher than the reported number of cases (3.77% of the population; see 118 
estimated infection-detection rates in Fig S3E). In addition, unlike the UK and South Africa 119 
where the pandemic wave rose and fell quickly, pandemic activity – based on national 120 
incidence and mortality curves – remained at high levels for a much longer duration (Fig. 2E). 121 
This may be due to the larger geographical area of Brazil, the aggregative nature of country-122 
level incidence and mortality data combining multiple outbreak waves from different sub-123 
regions of the country, and the lack of national restrictions to curb the pandemic.  Despite this 124 
large first pandemic wave, the emergence of the P.1 variant led to a second large pandemic 125 
wave from Dec 2020 onwards. Similar traveling waves through the country were evident from 126 
the incidence curve (Fig 2E).  By the week of 4/11/21, an additional 60.7% (95% CrI: 40.5 – 127 
92.0%) of the population are estimated to have been infected, including re-infections. 128 
 129 
Estimated increased transmissibility and immune evasion  130 
Accounting for concurrent NPIs, vaccination and seasonal transmission trends (Fig S2), model-131 
inference system estimates also enable assessment of key properties specific to the three 132 
variants. Estimated transmissibility increased in conjunction with the widespread presence of 133 
the new variant in each country (Fig 3B for B.1.1.7, 3E for B.1.351, and 3H for P.1). Overall, 134 
estimated viral transmissibility increased by 46.6% (95% CI: 32.3 – 54.5%) for the B.1.1.7 135 
variant, 32.4% (95% CI: 14.6 – 48.0%) for the B.1.351 variant, and 43.3% (95% CI: 30.3 – 65.3%) 136 
for the P.1 variant, compared to the wild-type virus (Table 1).  In addition, the model-inference 137 
system also detects large increases of population susceptibility for the B.1.351 and P.1 variants, 138 
but not the B.1.1.7 variant (Fig. 3F and 3I vs. 3C; and Table 1).  Specifically, the model estimates 139 
immune evasion for the B.1.351 variant among 61.3% (95% CI: 42.6 – 85.8%) of the population 140 
infected with the wild-type virus during the first wave in South Africa and for the P.1 variant 141 
among 52.5% (95% CI: 0 – 75.8%) of the population infected with the wild-type virus during the 142 
first wave in Brazil. 143 
 144 
Competition among variants and potential future outcomes.   145 
As many places have now detected one or more of the three VOCs locally, it is important to 146 
understand the potential pandemic outcomes given the characteristics of and competition 147 
among variants, interactions with ongoing NPIs, and mass-vaccination.  We thus use a multi-148 
variant, age-structured model to simulate potential pandemic outcomes for the period from 149 
May 2021 to Aug 2021 under scenarios with different variant prevalence, NPIs, and vaccine 150 
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efficacy.  We focus on NYC for which detailed data and estimates (e.g., contact patterns, variant 151 
prevalence, and vaccination rates) are available.  152 
 153 
Fig 4A and Fig S4 show example projections of infections and mortality assuming a best-case 154 
scenario in which vaccine-induced immunity is as effective against all three VOCs as for the 155 
wild-type virus.  At the time of these simulations (i.e., end of April 2021), the B.1.1.7 variant 156 
was the predominant VOC in NYC; however, given their estimated propensity for immune 157 
escape, both B.1.351 and P.1 could outcompete B.1.1.7 and become predominant in the 158 
coming months (Fig 4A, top panel). The relative prevalence of B.1.351 and P.1 depends largely 159 
on their initial introduction and establishment in the population. These two variants would 160 
arise at similar rates and co-dominate, if they are introduced and established in the population 161 
simultaneously (Fig 4A, left panel). However, should either be established in the population 162 
ahead of the other, it would become dominant and suppress but not preclude the rise of the 163 
other variant (Fig 4A, middle and right panels). In addition, the B.1.351 variant would be slightly 164 
more competitive if the vaccines are less effective against it than the P.1. variant (Fig 4B and 165 
Table S1), as has been shown in laboratory studies7,9.  166 
 167 
Tallies of model-projected infections (Fig 4B) and deaths (Fig S4) reveal four key determinants 168 
of future pandemic outcomes. First, simultaneous introduction of both the B.1.351 and P.1 169 
variants would lead to larger increases of infections and mortality than sole introduction of 170 
either variant (Fig 4B and Fig S4B). This result indicates the importance of limiting the 171 
introduction of multiple VOCs.  Second, maintaining very high vaccine efficacies against all 172 
variants is critical for mitigating the risk of a large resurgence in populations with relatively high 173 
vaccination coverage (e.g., compare the first three subplots in Fig 4B).  Third, continued non-174 
pharmaceutical preventive measures will reduce infection resurgence as municipalities reopen 175 
economies. For instance, even with high vaccine efficacy, a rapid, full reopening before a very 176 
large proportion of the population are fully vaccinated could lead to approximately three times 177 
as many infections as when reopening occurs more slowly (Fig 4A and Fig 4B first subplot). Four, 178 
reassuringly, while projected trends for COVID-19-related mortality are in general similar to 179 
those for infection (Fig S4A vs. Fig 4A), lower proportions of COVID-19-related deaths would 180 
occur due to the increased transmission of B.1.351 and/or P.1 (Fig S4B vs. Fig 4B; note the 181 
larger proportion of deaths due to B.1.1.7 than infections). This is due to the currently higher 182 
vaccination coverage among older adults who have been prioritized for vaccination in NYC 183 
similar to many other municipalities (see Table S4 for vaccination coverage by age group). This 184 
finding emphasizes the importance of vaccine effectiveness against VOCs and of prioritizing 185 
vulnerable populations for vaccination in order to prevent severe outcomes of COVID-19.    186 
 187 
DISCUSSION 188 
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Despite vaccine availability, the future trajectory of the COVID-19 pandemic remains uncertain 189 
due to the potential additional emergence and continued spread of multiple VOCs. To improve 190 
understanding of future pandemic dynamics, here we have developed and applied a 191 
comprehensive model-inference system to quantify key viral properties for three VOCs: B.1.1.7, 192 
B.1.351, and P.1.  Our estimates for the B.1.1.7 variant are consistent with detailed 193 
epidemiological evidence (32.5 – 54.6% increase in transmissibility and minimal immune 194 
evasion estimated here vs. 30 – 50% increase in secondary attack rate based on contact tracing 195 
data3,4 and little immune evasion based on laboratory and real-world vaccination data5,6,15). Our 196 
estimates of the level of immune evasion for the B.1.351 and P.1 variants are also consistent 197 
with antibody neutralization data suggesting both variants can evade prior immunity induced 198 
by infection and vaccination, though to a larger extent for the B.1.351 variant.7,9  Here we 199 
provide joint quantification of immune escape and the change in transmissibility for both 200 
variants.   Overall, the model-inference system estimates and model simulations suggest that 201 
both B.1.351 and P.1 are likely more competitive than the B.1.1.7 variant due to their greater 202 
propensity for immune escape. These estimates are consistent with observations from Qatar15 203 
and Canada16 showing that the proportion of infections caused by B.1.351 and/or P.1 increased 204 
despite earlier introduction and dominance of B.1.1.7 in these populations.  Therefore, in spite 205 
of the current widespread prevalence of B.1.1.7 in Europe and North America, importation of 206 
B.1.351 and/or P.1 to these regions could replace B.1.1.7 dominance and lead to a further 207 
increase of infections by either B.1.351, P.1 or both variants. Mass-vaccination with highly 208 
effective vaccines is thus crucial for mitigating the risk of future SARS-CoV-2 resurgence, 209 
particularly as economies re-open.  210 
 211 
Our model-inference system estimates substantial immune escape for both P.1 and B.1.351.  212 
For P.1, the mean estimate is bounded by a very broad confidence interval; however, for 213 
B.1.351 the uncertainty is more constrained and indicates greater confidence that a substantial 214 
level of immune escape occurs. These latter findings are supported by vaccine clinical trial and 215 
real-world data. In particular, Shinde et al.13 found a similar likelihood of COVID-19, mostly due 216 
to B.1.351, among trial participants who were seropositive at enrollment (i.e., after the first 217 
wave) compared to those seronegative. Although potential differences in risk of exposure 218 
among the two comparison groups may have somewhat biased this finding, substantial repeat 219 
and breakthrough infection occurred due to B.1.351.  Further, recent data from Qatar15 indicate 220 
that individuals receiving the full dosing regimen of the Pfizer BNT162b2 mRNA vaccine are at 221 
greater risk of breakthrough infection with the B.1.351 variant than B.1.1.7. Continued 222 
monitoring of the severity of both repeat and breakthrough infections is needed to more fully 223 
understand ongoing risks of VOCs to both health and economy. In addition, the Qatar study15 224 
highlights the importance of full vaccination (i.e., administration of both doses for mRNA 225 
vaccines), as participants gained little protection against severe illness after the first vaccine 226 
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dose (vs. ~50% efficacy for B.1.1.7), even though full protection against severe illness was 227 
retained after two vaccine doses.  It is thus likely critical that best vaccination protocols are 228 
followed in order to confer protection against variants with immune escape properties and that 229 
potential waning of vaccine-induced immunity over time is monitored. 230 
 231 
In light of the spatial expansion of B.1.1.7, B.1.351, and P.1 and the potential emergence of 232 
other new variants, vaccination is paramount for controlling the COVID-19 pandemic. It is 233 
imperative that vaccine production, distribution, and administration proceed expeditiously, 234 
particularly in resource-limited settings. Without effective global control of the pandemic, 235 
continued transmission of SARS-CoV-2 will give rise to additional new variants and pose new 236 
threats to all. As vaccines are distributed and administered, a continuation of non-237 
pharmaceutical preventive measures is needed to minimize infections among the unvaccinated. 238 
As shown in our simulations, despite the relatively high vaccine coverage obtained to date in a 239 
place like NYC, COVID-19 infections could resurge if such locations lift preventive measures 240 
prematurely.  241 
 242 
Due to a lack of sub-regional data, we used aggregated country-level data to estimate the 243 
properties for the three VOCs. Our model-inference system also did not account for differences 244 
of disease severity and infection-detection rate among age groups, which may vary 245 
substantially.17  This model simplification may introduce uncertainty and bias to our estimates, 246 
particularly for Brazil where country-level data may mask more intense transmission in 247 
subpopulations and may have led to underestimation of the transmissibility of P.1.  248 
Nevertheless, validation using independent data, including for Brazil, indicates that the model-249 
inference system is able to closely capture pandemic dynamics and accurately estimate 250 
cumulative infection rates (Fig 2). Further, because the model-inference system simultaneously 251 
accounts for population susceptibility, disease seasonality, NPIs, and vaccination, it is able to 252 
specifically estimate changes related to a given new variant and closely matches available 253 
epidemiological data (e.g., for B.1.1.7). The model simulations using these estimated 254 
characteristics further illustrate the relative competitiveness of the three VOCs and delineate 255 
key determinants of future infection outcomes. Overall, our findings point to the importance of 256 
preventing the spread of the B.1.351 and P.1 variants, in addition to B.1.1.7, via continued NPIs, 257 
prompt mass-vaccination of all populations, continued monitoring of vaccine efficacy, and 258 
potentially updating vaccine formulations to ensure high efficacy.   259 
 260 
METHODS 261 
Data sources and processing 262 
The model-inference system uses reported COVID-19 case and mortality data to capture 263 
transmission dynamics, weather data to estimate disease seasonality, mobility data to 264 
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represent concurrent NPIs, and vaccination data to account for changes in population 265 
susceptibility due to vaccination, for each of the three countries (i.e., the UK, South Africa, and 266 
Brazil). Country-level daily COVID-19 case and mortality data came from COVID-19 Data 267 
Repository of the Center for Systems Science and Engineering (CSSE) at Johns Hopkins 268 
University;18,19 we aggregated the data to weekly intervals until the week of 4/11/2021 but 269 
excluded initial weeks with low case rates (<2 per million population). Hourly surface station 270 
temperature and relative humidity came from the Integrated Surface Dataset (ISD) maintained 271 
by the National Oceanic and Atmospheric Administration (NOAA) and are accessible using the 272 
“stationaRy” R package.20,21 We computed specific humidity using temperature and relative 273 
humidity per the Clausius-Clapeyron equation.22  We then aggregated these data for all 274 
weather stations in each country with measurements since 2000 and calculated the average for 275 
each week of the year during 2000-2020. To compute the seasonal trend, we used a method 276 
developed by Yuan et al.23,24 which estimates the relative reproduction number based on 277 
temperature and specific humidity (see details in Supplemental Information).  Daily mobility 278 
data were derived from Google Community Mobility Reports;25 we aggregated all business-279 
related categories (i.e., retail and recreational, transit stations, and workplaces) in all locations 280 
in each country to weekly intervals. Daily vaccination data (for 1st and 2nd dose if applied) for 281 
the UK were sourced from Public Health England;26 and data for South Africa and Brazil were 282 
obtained from Our World in Data.27,28 283 
 284 
Model-inference system  285 
Contact tracing data capturing chains of transmission can be used to compute the secondary 286 
attack rate and quantify changes in transmissibility due to a given new variant. Surveillance 287 
data and laboratory viral characterization can be used to document and quantify levels of 288 
immune evasion.  Yet such detailed data are often not available, particularly for resource-289 
limited settings.  Given these circumstances, mathematical modeling that assimilates epidemic 290 
surveillance data provides an attractive alternate means for estimating key epidemiological 291 
properties of novel variants, including the transmission rate. However, joint estimation of the 292 
transmission rate and population susceptibility, which is related to immune evasion, is 293 
challenging, as both quantities can change for a new variant. This problem arises 294 
mathematically because the product of these two quantities, rather than either individually, 295 
determines disease incidence – i.e., at any point in time, given the incidence, transmissibility 296 
and susceptibility are not individually identifiable. Nevertheless, we posit that transmissibility 297 
and susceptibility affect epidemic dynamics differentially over time, and, as such, data at 298 
multiple time points can enable joint estimation. We thus design a model-inference system to 299 
estimate the most plausible joint changes in these two quantities using commonly available 300 
incidence and mortality time series.   301 
 302 
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The model-inference system is comprised of an epidemic model for simulating the transmission 303 
dynamics of SARS-CoV-2 and a statistical inference method for estimating the model state 304 
variables and parameters. The epidemic model is a susceptible-exposed-infectious-recovered-305 
susceptible (SEIRS) construct that further accounts for two-dose vaccination. In addition, to 306 
include the effects of public health interventions and disease seasonality, it further adjusts the 307 
transmission rate each week using mobility data and the estimated seasonal trend based on 308 
climate conditions (see Eqn S3 in the Supplemental Information). The system then combines 309 
the model-simulated (prior) estimates and observed case and mortality data to compute 310 
posterior estimates using the ensemble Kalman adjustment filter (EAKF).29 We also apply a 311 
technique termed space re-probing30 that accommodates possible large changes mid-pandemic 312 
to transmissibility and population susceptibility.  Further, due to the challenge identifying these 313 
two quantities individually, we ran the model-inference system, repeatedly and in turn, in order 314 
to test 14 major combinations of changes in transmissibility and susceptibility (see details in 315 
Supplemental Information). Briefly, depending on the hypothesized change, we restricted the 316 
EAKF update to a given related set of parameters or variables. For instance, for the hypothesis 317 
that the new variant changes the transmissibility but does not evade immunity, the system only 318 
allows major adjustment to the transmission rate and the infectious period; for the hypothesis 319 
that the new variant induces both changes, the system allows major adjustment to the 320 
transmission rate, the infectious period, and population susceptibility.  The system then selects 321 
the run with the best performance based on the accuracy of model-fit, one-step ahead 322 
prediction, and magnitude of changes to key state variables to identify the most plausible 323 
combination of changes in transmissibility and level of immune evasion (see Supplemental 324 
Information).  To approximate the distribution of the system (including all model state variables 325 
and parameters), we employed an ensemble of model replica (n = 500 here) and updated the 326 
ensemble posterior each week using the EAKF.  In addition, to account for model stochasticity, 327 
we repeated each model-inference simulation 100 times for each dataset, each with initial 328 
parameters and variables randomly drawn from prior distributions (Table S2). Consequently, 329 
model estimates are aggregated from 50,000 model runs in total.  330 
 331 
Estimation of variant-specific changes in transmissibility and level of immune evasion 332 
The model decouples the impact of concurrent NPIs and disease seasonality from the 333 
transmission rate and infectious period (Eqn S3); as such, estimates for the latter two 334 
parameters are variant-specific.  We thus compute transmissibility as the product of the 335 
transmission rate and infectious period. To reduce uncertainty, we average transmissibility 336 
estimates over the first pandemic wave (excluding the first three weeks when model estimates 337 
are less accurate) for the wild-type SARS-CoV-2 virus; similarly, we average the transmissibility 338 
estimates over the period when the new variant is dominant. We identify this latter time period 339 
based on the transmissibility estimates: 1) For the UK (B.1.1.7) and South Africa (B.1.351), the 340 
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estimated transmissibility increased and plateaued within 10 weeks (see Fig 3); we thus used 341 
the period from the week with the maximal transmissibility during the 10 weeks following its 342 
initial increase to the end of our study period (i.e., the week of 4/11/2021).  However, for the 343 
UK, we excluded the 3rd lockdown period when estimated transmissibility is lower, potentially 344 
due to better awareness of B.1.1.7 and preventive measures taken at the time not fully 345 
captured by the model. Of note, contact tracing data also indicate a lower increase of the 346 
secondary attack rate around that time: 25-40% during 11/30/20 – 1/10/21 (among 1,364,301 347 
cases for this expanded analysis)4 vs. 30-50% during 11/30 – 12/20/20 (among 386,805 cases).3 348 
2) For Brazil (P.1), the estimated transmissibility increased more gradually (see Fig 3), we thus 349 
instead used either the weeks identified per 1) or the last 8 weeks of our study period, 350 
whichever with a longer time period, to ensure the robustness of estimation.  We then 351 
compute the average change in transmissibility due to a new variant as the ratio of the two 352 
averaged estimates (i.e., after: before the rise of the new variant).   353 
 354 
To quantify immune evasion, we record all time points inducing major EAKF adjustments to 355 
posterior estimates of susceptibility, compute the change in immunity as ΔImm = St+1 – St + it 356 
(with St as the susceptibility at time-t and it as the new infections occurring at time-t), and sum 357 
over all ΔImm estimates to compute the total change in immunity due to the new variant. We 358 
then compute the level of immune evasion as the ratio of the total change in immunity during 359 
the second wave to the model-estimated population immunity at the end of the first wave. This 360 
ratio provides an estimate of the fraction of individuals previously infected who are susceptible 361 
to re-infection with the new variant. 362 
 363 
For both quantities, we report the mean and 95% CI based on the mean estimates from 100 364 
repeated model-inference runs. 365 
 366 
Model validation using model-generated synthetic data 367 
To test the accuracy of the model-inference system, we generated 10 synthetic datasets using a 368 
two-variant SEIRS model (see Eqn. S4) and different scenarios of changing transmissibility and 369 
immune evasion (Table S3). In each scenario, a new variant was introduced at week 21 of the 370 
simulation. We then combined the incidence and mortality due to both variants and added 371 
noise drawn from a Poisson distribution to represent observational error. We then applied the 372 
model-inference system to estimate the model variables and parameters for each synthetic 373 
dataset, per the procedure described above for real data.  For comparison with model-374 
inference system estimates, we computed the true values of population susceptibility and 375 
transmissibility over time as the weighted average of the two variants based on the relative 376 
prevalence at each time point (i.e., each week).  377 
 378 
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Model validation using independent data 379 
To compare model estimates with independent observations not assimilated into the model-380 
inference system, we identified four relevant datasets: 1) the REACT study, which measures the 381 
prevalence of SARS-CoV-2 using PCR-testing of volunteers from the general public living in the 382 
UK. At the time of this study, the REACT study has conducted 10 rounds of testing during 383 
5/1/2020 – 3/30/2021 (n = 1,572,951 tests in total)10,11; Fig 2B plots our estimates of prevalence 384 
of SARS-CoV-2 each week, overlaying all 10 measures from the REACT study for corresponding 385 
time periods; 2) a serosurvey of workers in Cape Town, South Africa, conducted  386 
during 8/17 – 9/4/2020 (n = 405 participants);12 3) serology tests among participants enrolled 387 
during 8/17 – 11/25/2020 in the Novavax NVX-CoV2373 vaccine phase 2a-b trial in South Africa 388 
(n=1324).13 Given this long enrollment period, we used the centered 2-week window (9/29 – 389 
10/13/20) to match with our model estimates. and 4) two nationwide random household 390 
serosurveys conducted in Brazil during 5/14 – 5/21/2020 (n = 25,025 participants) and 6/4 – 391 
6/7/2020 (n = 31,165 participants).14 To account for the delay in antibody generation, we 392 
shifted the timing of each serosurvey 14 days when comparing to model-inference system 393 
estimates of cumulative infection rates in Fig 2 D and E.  394 
 395 
Model simulations testing the relative competitiveness of VOCs and projecting future 396 
transmission dynamics.  397 
Here we modified a multi-variant model previously developed for influenza virus31 to include 398 
age structure and interactions (Eqn. S5). The multi-variant model accounts for: 1) competition 399 
between each pair of SARS-CoV-2 variants (e.g. wild-type and B.1.1.7) via cross-protective 400 
immunity; 2) variant-specific transmissibility and population susceptibility, based on estimates 401 
derived in this study; 3) variant-specific vaccine efficacy under different scenarios (see Table 402 
S5); 4) age-specific differences in vaccination coverage at the start of simulation and 403 
vaccination uptake rates for the simulation period (see Table S4); 5) seasonality; and 6) changes 404 
in NPIs under different scenarios (see Table S5). We used data from NYC for baseline 405 
vaccination coverage32 and initial prevalence of different variants,33 as well as key model 406 
estimates (e.g., transmission rates and infection fatality risk by age group; see Table S5)17,34,35. 407 
As in previous work,17,34,35 we included 8 age-groups (i.e. <1, 1-4, 5-14, 15-24, 25-44, 45-64, 65-408 
74, and 75+ year-olds) in the model to account for age-specific differences.  To focus on the 409 
three VOCs, we only included the B.1.1.7, B.1.351, and P.1 variants and attributed all other 410 
variants as “wild-type” virus, even though at the start of the simulations, the B.1.526 variant 411 
made up approximately one third of sequenced infections (N.b., the B.1.526 variant likely 412 
emerged locally in NYC; we estimated a ~20% increase in transmissibility and nominal immune 413 
evasion for this variant; based on these estimates the impact of this variant is expected to be 414 
relatively minor). We did not account for potential differences in infection fatality risk by 415 
variant, as such information is not available; therefore, the simulated mortality under different 416 
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scenarios only reflect the relative infection rate by age group, for which we apply age-specific 417 
infection-fatality risk (see Table S5). In addition, due to uncertainty vis-à-vis the severity and 418 
infection fatality risk among breakthrough infections (i.e., those who have been vaccinated), we 419 
only show mortality-related simulations for the “Same VE” scenario which assumes no 420 
reduction in VE. 421 
 422 
Data Availability: All data used in this study are publicly available as described in the “Data 423 
sources and processing” section.  424 
 425 
Code availability: All source code and data necessary for the replication of our results and 426 
figures will be made publicly available. 427 
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Table and figure captions 
Table 1. Estimated changes in transmissibility and level of immune evasion.  Numbers show 
model estimated mean (95% CI) from 100 model-inference runs.  
 
Fig 1. Model-inference system validation using model-generated synthetic data with an 
infection-detection rate of 20%. (A) 5 sets of synthetic data (dots) and model-fits to each 
dataset; lines show mean estimates and surrounding areas show 50% (dark) and 95% (light) 
CrIs.  (B) weekly model estimated transmissibility and population susceptibility; lines show 
mean estimates and surrounding areas show 50% (dark) and 95% (light) CrIs, compared to the 
true values (dots).  (C) overall estimates of the change in transmissibility and immune evasion 
(boxes and whiskers show model estimated median, interquartile range, and 95% CI from 100 
model-inference simulations) compared to the true values (dots). 
 
Fig 2. Model-inference system fit to data for the three countries and validation using 
independent datasets. The left column shows the model fit to reported weekly case and 
mortality data for the UK (A), South Africa (C), and Brazil (D). Dots show the weekly number of 
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cases (in blue) and deaths (in red) per 1 million persons; boxes and whiskers show 
corresponding model estimates (mean, 50% and 95% CrIs).  Grey shaded boxes indicate the 
timing of lockdowns or key periods of restricted activity; horizontal arrows indicate the timing 
of variant identification and vaccination rollout.  The right column compares available, 
independent measurements to corresponding model estimates. Red dots and error bars show 
measured prevalence over 10 periods of time from the REACT study for the UK (B), cumulative 
infection rates from two serology studies in South Africa (D), and cumulative infection rates 
from two nationwide household serosurveys in Brazil (F). Blue lines and surrounding areas show 
model estimated mean, 50% (dark) and 95% (light) CrIs.  
 
Fig 3. Key model-inference system estimates. Left column shows estimated real-time 
reproduction number Rt, middle column shows estimated transmissibility, and right column 
shows estimated population susceptibility for each week during the study period, for the three 
countries. For comparison, estimated weekly infection rates are superimposed in each plot 
(right y-axis).  Blue lines and surrounding areas show the estimated mean, 50% (dark) and 95% 
(light) CrIs.  Boxes and whiskers show the estimated weekly infection rates (mean, 50% and 95% 
CrIs).  Grey shaded areas indicate the timing of lockdowns or key periods of restricted activity; 
horizontal arrows indicate the timing of variant identification and vaccination rollout.  Note that 
the transmissibility estimates (middle column) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt; left column) and reflect changes in variant-specific properties.   
 
Fig 4. Model projections of infection, under different scenarios of VOC co-circulation, NPIs, and 
vaccine efficacy (VE). (A) Example projected epidemic trajectories for each variant assuming the 
VE is as high as for the wild-type virus.  Lines and surrounding areas show model projected 
median and interquartile range (color-coded for each variant as indicated by the legend).  (B) 
Tallies over the entire simulation period (May – Aug 2021) for different scenarios of seeding, VE 
(as indicated in the subtitles), and NPIs (as indicated by the x-axis labels). All numbers are scaled 
for 1 million people. For the projected percentages for each variant and uncertainty bounds, 
see Table S1. 
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Table 
Table 1. Estimated changes in transmissibility and level of immune evasion.  Numbers show 
model estimated mean (95% CI) from 100 model-inference runs.  

Location Variant 
Changes in 
Transmissibility (%) Immune evasion (%) 

United Kingdom B.1.1.7 46.6 (32.3, 54.6) 3.9 (0, 36.2) 
South Africa B.1.351 32.4 (14.6, 48) 61.3 (42.6, 85.8) 
Brazil P.1 43.3 (30.3, 65.3) 52.5 (0, 75.8) 
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Fig 1. Model-inference system validation using model-generated synthetic data with an 
infection-detection rate of 20%. (A) 5 sets of synthetic data (dots) and model-fits to each 
dataset; lines show mean estimates and surrounding areas show 50% (dark) and 95% (light) 
CrIs.  (B) weekly model estimated transmissibility and population susceptibility; lines show 
mean estimates and surrounding areas show 50% (dark) and 95% (light) CrIs, compared to the 
true values (dots).  (C) overall estimates of the change in transmissibility and immune evasion 
(boxes and whiskers show model estimated median, interquartile range, and 95% CI from 100 
model-inference simulations) compared to the true values (dots). 
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Fig 2. Model-inference system fit to data for the three countries and validation using 
independent datasets. The left column shows the model fit to reported weekly case and 
mortality data for the UK (A), South Africa (C), and Brazil (D). Dots show the weekly number of 
cases (in blue) and deaths (in red) per 1 million persons; boxes and whiskers show 
corresponding model estimates (mean, 50% and 95% CrIs).  Grey shaded boxes indicate the 
timing of lockdowns or key periods of restricted activity; horizontal arrows indicate the timing 
of variant identification and vaccination rollout.  The right column compares available, 
independent measurements to corresponding model estimates. Red dots and error bars show 
measured prevalence over 10 periods of time from the REACT study for the UK (B), cumulative 
infection rates from two serology studies in South Africa (D), and cumulative infection rates 
from two nationwide household serosurveys in Brazil (F). Blue lines and surrounding areas show 
model estimated mean, 50% (dark) and 95% (light) CrIs.  
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Fig 3. Key model-inference system estimates. Left column shows estimated real-time 
reproduction number Rt, middle column shows estimated transmissibility, and right column 
shows estimated population susceptibility for each week during the study period, for the three 
countries. For comparison, estimated weekly infection rates are superimposed in each plot 
(right y-axis).  Blue lines and surrounding areas show the estimated mean, 50% (dark) and 95% 
(light) CrIs.  Boxes and whiskers show the estimated weekly infection rates (mean, 50% and 95% 
CrIs).  Grey shaded areas indicate the timing of lockdowns or key periods of restricted activity; 
horizontal arrows indicate the timing of variant identification and vaccination rollout.  Note that 
the transmissibility estimates (middle column) have removed the effects of changing population 
susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than the 
reproduction number (Rt; left column) and reflect changes in variant-specific properties.   
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Fig 4. Model projections of infection, under different scenarios of VOC co-circulation, NPIs, and 
vaccine efficacy (VE). (A) Example projected epidemic trajectories for each variant assuming the 
VE is as high as for the wild-type virus.  Lines and surrounding areas show model projected 
median and interquartile range (color-coded for each variant as indicated by the legend).  (B) 
Tallies over the entire simulation period (May – Aug 2021) for different scenarios of seeding, VE 
(as indicated in the subtitles), and NPIs (as indicated by the x-axis labels). All numbers are scaled 
for 1 million people. For the projected percentages for each variant and uncertainty bounds, 
see Table S1. 
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Supplemental Information 1 
for 2 

Epidemiological characteristics of three SARS-CoV-2 variants of concern and implications for 3 
future COVID-19 pandemic outcomes 4 

Wan Yang and Jeffrey Shaman 5 
 6 
1. Estimating seasonal trends 7 
Many respiratory infections tend to occur seasonally and are predominantly prevalent during 8 
certain months of the year (e.g., cold months in temperate climates).1 This seasonal pattern has 9 
been documented for influenza viruses,2 respiratory syncytial viruses,3 and endemic human 10 
coronaviruses.4 In addition, studies have showed that this seasonality may be associated with 11 
climate conditions – particularly, temperature and humidity – as they may modulate the 12 
survival and transmission of respiratory viruses.5-8 For the SARS-CoV-2 virus, our work has also 13 
shown that a winter-time seasonality exists, similar to endemic human coronaviruses in New 14 
York City (NYC), and that models accounting for this seasonality enable more accurate 15 
projection of COVID-19 pandemic dynamics than those do not.9,10  However, to date, no 16 
mechanistic models exist that quantify the response of the SARS-CoV-2 virus to temperature 17 
and humidity and in turn the seasonality of COVID-19. In addition, seasonal trends may differ by 18 
climate. For instance, epidemics of influenza can occur any time of the year in subtropical and 19 
tropical climates; it is thus more difficult to characterize the seasonality of respiratory infections 20 
in these climates.  To address these challenges, we recently developed a flexible climate-forced 21 
model of epidemic dynamics for subtropical and tropical climates; results with this model also 22 
describe the response to temperature and humidity conditions common in temperate 23 
climates.11,12   Thus, to account for the potentially diverse seasonal trends of COVID-19 in the 24 
UK (temperate climates), South Africa (mostly temperate climates), and Brazil (mostly tropical 25 
climates), we applied this climate-forcing to temperature and humidity data for each country 26 
and computed the relative seasonal trend for each country.  27 
 28 
Specifically, the climate-forcing takes the following form: 29 

 !"($) = [()*($) + ,)($) + -][
/0
/($)]

1234 [S1] 

where R0(t) is the basic reproduction number at time t; q(t) is specific humidity (i.e. a measure 30 
of absolute humidity) at time t; and T(t) is temperature at time t.  In essence, the forcing 31 
function assumes that specific humidity has a bimodal effect on R0, with both low and high 32 
humidity conditions favoring transmission; in addition, this effect is moderated by temperature, 33 
where low temperatures promote transmission and temperatures above a certain threshold 34 
(i.e., Tc in Eqn. S1) limit transmission. Further, to link the coefficients a, b, and c to humidity q 35 
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 2 

and R0, Yuan et al.11,12 reparametrized the forcing function by solving the parabola with a nadir 36 
at (qmid, R0max -R0diff) and maxima at both (qmin, R0max) and (qmax, R0max), such that:  37 
 38 
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 39 
Yuan et al.11,12 estimated the parameters R0max (i.e., the maximum R0), R0diff (i.e., the difference 40 
between the maximum and minimum R0), qmin, qmid, and qmax (i.e., the minimum, median, and 41 
maximum specific humidity for the response), Tc (the threshold temperature) and Texp (the 42 
exponent in Eqn S1) for influenza in Hong Kong, a subtropical city, based on long-term epidemic 43 
data collected therein during 1998 - 2018.  Here we use their mean estimates for these 44 
parameters and temperature and humidity data for each country (see main text and Fig S5) to 45 
compute the seasonal trend for each country using Eqns. S1-2.  However, as these parameters 46 
were estimated for influenza, the outputs do not represent the actual R0 for the SARS-CoV-2 47 
virus. Thus, we instead compute the relative seasonal trend, by scaling the weekly country 48 
output from Eqn S1 by the country mean output, such that this scaled output provides a 49 
relative, seasonality-related transmissibility for each week of the year (see results in Fig S2). 50 
These relative estimates also decouple the seasonality-related and variant-specific 51 
transmissibility (assuming no interaction; see below).  52 
 53 
2. Model-inference system  54 
The model-inference system developed for this study consists of an SEIRSV model to simulate 55 
the transmission dynamics of SARS-CoV-2 and the ensemble Kalman adjustment filter (EAKF)13 56 
to estimate the model state variables and parameters, based on case and mortality data. Here 57 
we describe the model and the filtering method in detail.  58 
 59 
2.1. Epidemic model.  60 
The SEIRSV (susceptible-exposed-infectious-recovered-susceptible-vaccination) model uses the 61 
following set of equations to simulate the transition of sub-populations between different 62 
disease stages, while accounting for disease seasonality, concurrent non-pharmaceutical 63 
interventions (NPIs), and vaccination:  64 
 65 
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 66 
where S, E, I, R are the number of susceptible, exposed (but not yet infectious), infectious, and 67 
recovered/deceased individuals, respectively; N is the population size. The parameter ε 68 
represents travel-related importation of infections (nominally set to 1 per 20 days per 1 million 69 
population, unless specified otherwise). To account for local seasonality, bt, the estimated 70 
relative seasonal trend for each country (see Section 1 above and Fig S2) is used to adjust the 71 
relative transmission rate at time t.  To account for concurrent NPIs, the term mt, the relative 72 
population mobility at time t (in this study, we use data from Google Community Mobility 73 
Reports;14 see main text and Fig S2), is used to adjust the transmission rate. In addition, as the 74 
effectiveness of NPIs is unknown and variable, the model further includes a parameter, et, to 75 
scale NPI effectiveness at time t.  For virus-specific characterization, NK  is the variant-specific 76 
transmission rate at time t, Z is the latency period, D is the infectious period, and L is the 77 
immunity period. Note that the parameters et, NK, Z, D, and L are estimated by the model-78 
inference system as described below.  79 
 80 
To incorporate changes in population susceptibility due to vaccination, the model accounts for 81 
two-dose vaccination via v1(t) and v2(t). Specifically, v1(t) is the number of individuals 82 
successfully immunized after the first dose of the vaccine and is computed using vaccination 83 
data and vaccine efficacy for 1st dose (see detailed settings in Table S2). Similarly, v2(t) is the 84 
additional number of individuals successfully immunized after the second vaccine dose 85 
(excluding those successfully immunized after the first dose).   86 
 87 
2.2. Observation model.  88 
We compute the model-simulated number of cases and deaths for each week using the model-89 
simulated infection rate, as done in Yang et al.10 Specifically, we include 1) a time-lag from 90 
infectiousness to detection (i.e., an infection being diagnosed as a case) – drawn from a gamma 91 
distribution with a mean of Tm and standard deviation (SD) of Tsd days – to account for delays in 92 
diagnosis and detection; 2) an infection-detection rate (r), i.e. the fraction of infections 93 
(including subclinical or asymptomatic infections) reported as cases, to account for under-94 
detection; 3) a time-lag from infectiousness to death, drawn from a gamma distribution with a 95 
mean of 14 days and a standard deviation of 10 days, empirically based on mortality data; and 96 
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 4 

4) an infection-fatality risk (IFR), i.e., the fraction of infections that die from COVID-19.  To 97 
compute the model-simulated number of new cases per week, we multiply the model-98 
simulated number of new infections per day by the infection-detection rate, and further 99 
distribute these simulated cases in time per the distribution of time-from-infectiousness-to-100 
detection. We then aggregate the daily lagged, simulated cases to weekly totals for model 101 
inference (see below). Similarly, to compute the model-simulated deaths per week and account 102 
for delays in time to death, we multiply the simulated-infections by the IFR and then distribute 103 
these simulated deaths in time per the distribution of time-from-infectiousness-to-death, and 104 
aggregate these daily numbers to weekly totals.  For each week, the infection detection rate (r), 105 
the mean (Tm) and standard deviation (Tsd) of time-from-infectiousness-to-detection, and the 106 
IFR are estimated based on weekly case and mortality data, along with other model 107 
parameters.  108 
 109 
2.3. Inference using the EAKF 110 
At the end of each week, the inference system uses the EAKF to update the state variables and 111 
parameters based on model-generated prior estimates and case and mortality data.  Briefly, the 112 
EAKF uses an ensemble of model realizations (n=500 here), each with initial parameters and 113 
variables randomly drawn from a prior range (see Table S2). After model initialization, the 114 
system integrates the model ensemble forward in time for a week (per Eqn S3) stochastically to 115 
compute the prior distribution for each model state variable or parameter, as well as the 116 
model-simulated number of cases and deaths for that week as described in Section 2.2.  The 117 
system then combines the prior estimates with the observed case and death data for the same 118 
week to compute the posterior per Bayes' theorem.13 During this filtering process, the system 119 
updates the posterior distribution of all model parameters and variables for each week.13 As 120 
such, it is able to capture the time-varying changes in transmission dynamics including the 121 
variant-specific transmission rate (NK) and infectious period (D) – the two parameters that we 122 
use to compute variant-specific transmissibility over time. 123 
 124 
However, unlike previous studies using similar model-inference approaches, here we further 125 
modify the EAKF filtering process to test different potential combinations of changes in 126 
transmissibility and immune escape.  To enable this exploration of systemic changes (e.g. due 127 
to the emergence of a new variant), we randomly replace a small fraction of ensemble 128 
members (3-10%) using values randomly drawn from specified ranges. This technique, termed 129 
space reprobing (SR), was developed in order to explore state space without corrupting 130 
performance of the filter.15  Specifically for this application, we apply SR to a given related set of 131 
parameters/variables and restrict the EAKF update of non-related parameters/variables, for 14 132 
different hypothesized behaviors.  These hypothesized changes are as follows: 133 
 134 
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 5 

1) Hypothesis 1 (minor changes in transmissibility, no immune escape): Large updates are 135 
only allowed for the two transmissibility-related parameters NK  and D; to explore the 136 
changes, the system applies SR to these two parameters using values drawn from prior 137 
ranges 10-20% higher than the initial priors.  138 

2) Hypothesis 2 (major changes in transmissibility only, no immune escape): Similar to 1); 139 
but to explore the changes, the system applies SR to NK  and D using values drawn from 140 
prior ranges 30-40% higher than the initial priors.  141 

3) Hypothesis 3 (minor immune escape only, no changes to transmissibility): Large updates 142 
are only allowed for S, the population susceptibility, up to a total loss of 50% of the prior 143 
immunity.  144 

4) Hypothesis 4 (major immune escape only, no changes to transmissibility): Large updates 145 
are only allowed for S, the population susceptibility, up to a total loss of 95% of the prior 146 
immunity.  147 

5) Hypothesis 5 (minor changes in transmissibility + minor immune escape): combining 1) 148 
and 3) above. 149 

6) Hypothesis 6 (major changes in transmissibility + major immune escape): combining 2) 150 
and 4) above. 151 

7) Hypothesis 7 (minor changes in transmissibility + major immune escape): combining 1) 152 
and 4) above. 153 

8) Hypothesis 8 (major changes in transmissibility + minor immune escape): combining 2) 154 
and 3) above. 155 

9) Hypothesis 9 (changes in both transmissibility and immune escape, no restriction on 156 
magnitude of change): Large updates are allowed for NK  and D as well as S. To explore 157 
the changes, initial SR uses values drawn from prior ranges 10-20% higher than the 158 
initial priors, and values up to 30-40% higher than the initial priors if the inference 159 
system detects the prior continues to underestimate the observed cases and deaths 160 
with the 10-20% initial increase in SR values. In addition, SR allows updates of S up to 161 
95% of the prior immunity.  162 

 163 
To account for slower changes in overall population immunity (i.e., in the entire country) as the 164 
new variant gradually spreads to different sub-regions across a large geographic space, such as 165 
in Brazil, we also explore the fitting using the following five additional settings:   166 
 167 

10) Hypothesis 10 (immune escape only and changes to overall population immunity occur 168 
slowly over time): Large updates are only allowed for S, up to a total loss of 95% of the 169 
prior immunity; however, SR is applied to a smaller fraction of ensemble members than 170 
in 1)-9) such that changes in S occur gradually.  171 
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11) Hypothesis 11 (minor changes in transmissibility + minor immune escape; both occur 172 
slowly over time): Large updates are allowed for NK  and D as well as S.  Adjustment to S 173 
is allowed as in 10) but up to only 50% of prior immunity.  In addition, for 174 
transmissibility, the system applies SR to NK  and D using values drawn from prior ranges 175 
10-20% higher than the initial priors.  176 

12) Hypothesis 12 (major changes in transmissibility + minor immune escape; both occur 177 
slowly over time): Similar to 11); however, for NK  and D, initial SR uses values drawn 178 
from prior ranges 10-20% higher than the initial priors, and values up to 30-40% higher 179 
than the initial priors if the inference system detects the prior continues to 180 
underestimate the observed cases and deaths with the 10-20% initial increase in SR 181 
values.  182 

13) Hypothesis 13 (minor changes in transmissibility + major immune escape; both occur 183 
slowly over time): Similar to the settings specified in 11) but adjustment to S is allowed 184 
up to 95% of prior immunity. 185 

14) Hypothesis 14 (major changes in transmissibility + major immune escape; both occur 186 
slowly over time): Similar to settings specified in 12) but adjustment to S is allowed up 187 
to 95% of the prior immunity. 188 

 189 
We carry out the model-inference process for each of the 14 settings described above and for 190 
each country dataset. We then select the most plausible hypothesis for each country based on 191 
the following criteria: 1) model fitting to case and mortality data, as indicated by the relative 192 
root-mean-squared-error (RRMSE) between the posterior estimates for the corresponding 193 
variable (i.e. case rate or mortality rate) and data; 2) the accuracy of one-step ahead prediction, 194 
as indicated by the RRMSE between the prior estimates for the corresponding variable (i.e. case 195 
rate or mortality rate) and data; 3) the level of adjustment needed for two key variables, i.e., 196 
infection rate and case rate, as indicated by the RRMSE between the prior and posterior 197 
estimates for each variable; 4) a penalty on the number of variables needing SR adjustment; 198 
and 5) a penalty on the frequency of SR adjustment. We combine all these metrics by weighting 199 
them heuristically using the following set of weights: 0.27 for the two metrics in 1); 0.13 for the 200 
two metrics in 2), 0.03 for the two metrics in 3), and 0.07 for both 4) and 5). We also tested 201 
other sets of weights and found that higher weights should be given to 1) and 2) based on 202 
results from the synthetic testing where the ‘true’ values of the state variables and parameters 203 
are known; however, in general, the final results are similar if there are minor changes to these 204 
weights.  205 
 206 
To account for model stochasticity, we repeat each model-inference 100 times for each 207 
dataset, each with initial parameters and variables randomly drawn from the prior distributions 208 
(Table S2). Each model-inference tests the 14 hypotheses described above, selects the one with 209 
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 7 

the best performance (i.e. minimizing the combined metric described above), and outputs the 210 
estimates of the best-performing run. That is, the model estimates reported in the main text 211 
are aggregated from 100 best-performing model runs (each with 500 ensemble members and 212 
totaling 50,000 individual model realizations).  213 
 214 
3. Model validation using model-generated synthetic data 215 
To test the accuracy of our model-inference system, we generate 10 synthetic datasets using a 216 
separate multi-variant SEIRS model, similar to models developed in Yang et al.16 and Gog & 217 
Grenfell.17   Within this model, variants can interact via cross-immunity, which protects a 218 
portion of individuals with prior infection (i.e. polarized immunity) by reducing transmission. 219 
Specifically, the model takes the following form: 220 
 221 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
HI=
H$ =

!=
J=
−W

,KLKMK-=XNXIXOX
P − Q

X
HT=
H$ =

,KLKMKN=I=O=
P −

T=
U=
+ Q

HO=
H$ =

T=
U=
−
O=
V=

H!=
H$ =

O=
V=
−
!=
J=

 [S4] 

 222 
where N is the population size; Si, Ei, Ii, and Ri, are, respectively, the numbers of susceptible, 223 
exposed-but-not-yet infectious, infectious, and recovered individuals, with respect to variant-i 224 
(here, the wild-type SARS-CoV-2 virus or a new variant); N=, Di, and Li are, respectively, the 225 
transmission rate, mean infectious period, and mean immunity period, for variant-i; and cij 226 
measures the strength of cross-immunity to variant-i conferred by infection with variant-j (e.g., 227 
close to 0 if it is weak and cii=1 for infection by the same variant). The parameter ε represents 228 
travel-related importation of infections; to generate the synthetic data (i.e., “truths”), we set ε 229 
to 1 per week for the first 5 weeks and 1 every 3 days for the rest of the first wave (here weeks 230 
1-20); for the second wave, as transmission has been established locally, we set ε to 0 for 231 
simplicity. The terms bt, mt, and et are the same as in Eqn S3 and account for seasonality and 232 
NPIs over time.  For simplicity, we omit birth, death, and vaccination. 233 
 234 
To generate the synthetic data (i.e., “truths”), we seed the Eq. S4 model with 2 infections of 235 
wild-type virus at the start of each simulation and 50 infections of a new variant at the start of 236 
Week 21, for N = 1 million people; we run the model stochastically with a daily time-step from 237 
the week starting 3/1/2020 to the week starting 2/21/2021 (i.e. 52 weeks in total) using the 238 
parameters listed in Table S3. To compute the weekly number of cases and deaths, we use the 239 
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 8 

same procedure as described in Section 2.2 above for each variant. We then combine the 240 
case/mortality estimates for both variants, add random noises drawn from a Poisson 241 
distribution to mimic observational error. The final noise-added weekly case and mortality time 242 
series are then used as synthetic data for testing the model-inference system (described in 243 
Section 2 above). To compare the posterior estimates of key parameters and variables (e.g. 244 
transmissibility and population susceptibility) from the model-inference system, we compute 245 
the true values of population susceptibility and transmissibility over time as the weighted 246 
average of the two variants based on the relative prevalence during each week. Fig 1 and Fig S1 247 
show the 10 model-generated truths including cases, deaths, and the computed “true” values 248 
of population susceptibility and transmissibility for each week of the simulation.  249 
 250 
4. Multi-variant, age-structured model for simulation to test the relative competitiveness of 251 
VOCs and project future SARS-CoV-2 dynamics.  252 
We modify the multi-variant model in Eqn S4 to further include age structure and vaccination. 253 
The inclusion of age structure here allows incorporation of age-specific parameters (e.g., 254 
transmission rate and infection-fatality risk) as well as age-specific vaccination coverage and 255 
rates. Specifically, this multi-variant, age-structured SEIRSV model takes the following form: 256 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧HI=

Y

H$ =
!=Y

J=Y
−W,KLKMK-=XW

NXY;IXYOX;

P;
;

− Q= − R=,SY ($) − R=,*Y ($)
X

HT=Y

H$ =W,KLKMK-=XW
NXY;IXYOX;

P;
;X

−
T=Y

U=Y
+ Q=

HO=Y

H$ =
T=Y

U=Y
−
O=Y

V=Y

H!=Y

H$ =
O=Y

V=Y
−
!=Y

J=Y
+ R=,SY ($) + R=,*Y ($)

 [S5] 

 257 
Model parameters in Eqn S5 are similar to those in Eqn S4, expect for those related to age, 258 
which are indicated by the superscripts.  The vaccination model component is also similar to 259 
Eqn S3, but with age-stratification. However, the terms R=,SY ($) and R=,*Y ($) are variant-specific, 260 
as indicated by the additional subscript i; that is, they additionally account for the reduction in 261 
vaccine efficacy against the new variants, based on scenario assumptions specified in Table S5.  262 
 263 
As an example, we simulate the transmission dynamics under different scenarios of variant 264 
prevalence, vaccine efficacy, and NPIs for a city like NYC, from the week of 4/25/2021 to the 265 
week of 8/22/2021 (i.e., approximately May - August 2021). We use data or estimates available 266 
for NYC to initialize the parameters and state variables needed for model simulations. In 267 
addition, we use our model-inference estimates for the VOCs for related parameters and 268 
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 9 

variables.  Specifically, as in previous work,9,10,18 we include 8 age-groups (i.e. <1, 1-4, 5-14, 15-269 
24, 25-44, 45-64, 65-74, and 75+ year-olds) to account for age-specific differences.  To focus on 270 
the three VOCs, here we only include the B.1.1.7, B.1.351, and P.1 variants and attribute the 271 
rest as “wildtype” virus. NYC data on variant prevalence among tested infections during the 272 
weeks of March – April 2021 are used to inform the initial range of seeding for each variant 273 
(Table S5). Initial conditions for the state variables (e.g., susceptibility and SARS-CoV-2 274 
prevalence) for each age group are taken from estimates9,10,18 made for the week of 4/18/2021, 275 
using detailed data (including case, mortality, COVID-19-related emergency visit, mobility, and 276 
vaccination) during 3/1/2020 – 4/24/2021.  For each age group, to compute the initial variant-277 
specific population susceptibility (Si) at the start of a simulation, we move the estimated 278 
proportion with immune escape for variant i among those who have had prior infection with 279 
the wild-type virus but have not been vaccinated back to the susceptible compartment.  The 280 
number of people losing vaccine-induced immunity is computed based on scenario assumptions 281 
determining the reduction in vaccine efficacy (see scenarios in Table S5).  282 
 283 
The cross-immunity settings, i.e., values of cij’s in Eqn S5, come from our posterior model-284 
inference estimates of immune escape and are used for all age groups. To reduce uncertainty, 285 
here we use the 80% CI estimates (see Table S5).  For instance, as our model-inference estimate 286 
of immune escape for B.1.351 has an 80% CI of 40.1 – 82.8%, we set c(B.1.351←wildtype), the 287 
cross-immune protection against B.1.351 conferred by prior infection of the wildtype virus 288 
relative to variant-specific immunity, to values drawn from a uniform distribution ranging from 289 
0.172 to 0.599 (i.e. cross-immunity is set to the complement of estimated immune escape). We 290 
set all c(wildtype←new variant) to 1 – that is, we assume full cross-immune protection against 291 
the wild-type virus conferred by infection due to any VOC.  292 
 293 
Similarly, the variant-specific transmission rates, i.e. N=’s, come from our posterior model-294 
inference estimates of the relative transmissibility for each variant. For instance, as our model-295 
inference estimate of transmissibility for B.1.351 is 18.5 – 45.7% (80% CI) higher than that of 296 
the wildtype virus, we set NB.1.351 to 1.185 – 1.457 times of the estimate for Nwildtype. The same 297 
scaling is applied to all age groups. 298 
 299 
Due to a lack of information, we do not account for potential differences in infection fatality 300 
risk by variant; therefore, the simulated mortality under different scenarios only reflect the 301 
relative infection rate by age group, for which we apply age-specific infection-fatality risk (see 302 
Table S5).  In addition, due to the uncertainty of the infection fatality risk among breakthrough 303 
infections (i.e., those who have been vaccinated), we only show mortality-related simulations 304 
for the “Same VE” scenario which assumes no reduction in VE. 305 
 306 
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 10 

We run the model for each scenario 1000 times stochastically, with the parameters and initial 307 
conditions randomly drawn from uniform distributions with ranges specified in Table S5. 308 
Results are summarized from the 1000 model runs for each scenario.   309 
 310 
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 12 

Fig S1. Model validation using model-generated synthetic data with an infection-detection rate 
set to 10%. (A) 5 sets of synthetic data (dots) and model-fits to each dataset; lines show mean 
estimates and surrounding areas show 50% (dark) and 95% (light) CrIs.  (B) weekly model 
estimated transmissibility and population susceptibility; lines show mean estimates and 
surrounding areas show 50% (dark) and 95% (light) CrIs, compared to the true values (dots).  (C) 
overall estimates of the change in transmissibility and immune evasion (boxes and whiskers 
show model estimated median, interquartile range, and 95% CI from 100 model-inference 
simulations) compared to the true values (dots).
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Fig S2. Pandemic dynamics, mobility, and estimated seasonal trends in the three countries. 
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Fig S3. Other model estimates. Left panel shows the estimated infection-detection rate and 
right panel shows the estimated infection-fatality risk for each week during the study period for 
the three countries. For comparison, estimated weekly infection rates are superimposed in 
each plot (right y-axis).  Blue lines and surrounding areas show model estimated mean, 50% and 
95% CrIs.  Boxes and whiskers show model-estimated weekly infection rates (mean, 50% and 
95% CrIs).  Grey shaded boxes indicate the timing of lockdowns or key period of restrictions; 
horizontal arrows indicate the timing of variant identification and vaccination rollout.   
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Fig S4. Model projections of COVID-19 related mortality under different scenarios of VOC co-
circulation and NPI. Due to the uncertainty on the infection fatality risk among breakthrough 
infections (i.e., those who have been vaccinated), all simulations shown here assume no 
reduction in vaccine efficacy (VE). All numbers are scaled for 1 million people. 
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Fig S5. Weekly average temperature and specific humidity for the three countries.  
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Table S1. Model-simulated prevalence of different variants under different scenarios. Numbers show the median (and interquartile 
range; all in percentage) of tallies over the entire simulation period (i.e. the week of 4/25/2021 to 8/22/2021) for each scenario, as 
specified in columns 1 (seeding of the B.1.351 and P.1 variant), 2 (NPI), and 3 (reduction on vaccine efficacy).  
Seeding NPI VE Wildtype B.1.1.7 B.1.351 P.1 
Equal seeding Current NPI Same VE 8.7 (8.1, 9.4) 65.4 (62.1, 67.9) 11.9 (9.8, 15) 13.2 (11.5, 15.2) 
Equal seeding Current NPI High VE 7.7 (7.1, 8.3) 63.9 (60.2, 67) 13.3 (10.5, 17) 14.3 (12.4, 16.6) 
Equal seeding Current NPI Median VE 7.6 (6.9, 8.3) 63.1 (59.5, 66.3) 13.7 (10.8, 17.6) 14.6 (12.6, 17) 
Equal seeding 25% less Same VE 5.7 (4.9, 6.5) 57.1 (51.4, 62.3) 15.9 (11.3, 21.8) 19.5 (15.9, 23.8) 
Equal seeding 25% less High VE 4.5 (3.8, 5.4) 52.6 (47, 59) 19 (12.8, 26.6) 20.9 (16.9, 26.4) 
Equal seeding 25% less Median VE 4.3 (3.5, 5.1) 50.2 (43.1, 56.8) 20.5 (13.9, 30) 22.2 (17.6, 27.2) 
Equal seeding 50% less Same VE 3.8 (3, 4.7) 48.2 (39.9, 54.8) 19.5 (12.5, 29.3) 25.5 (19.7, 32.3) 
Equal seeding 50% less High VE 2.8 (2.1, 3.5) 40.7 (32.2, 49.1) 24.3 (14.7, 37.4) 27.6 (21.4, 36) 
Equal seeding 50% less Median VE 2.5 (1.9, 3.3) 36.6 (28.2, 45) 27.8 (16.2, 41.2) 28.7 (21.5, 37.5) 
Equal seeding Fully open, slow Same VE 2.9 (2.2, 3.7) 40.5 (32.4, 49.8) 20.9 (13.1, 35.3) 28.9 (21.8, 38) 
Equal seeding Fully open, slow High VE 2 (1.5, 2.7) 33.9 (25.5, 43.7) 24.8 (15.1, 41.5) 32.5 (24, 42.2) 
Equal seeding Fully open, slow Median VE 1.8 (1.3, 2.4) 30.6 (22.6, 40) 30.6 (17, 46.3) 32.5 (23.1, 42.3) 
Equal seeding Fully open, fast Same VE 1 (0.9, 1.3) 26.8 (20.4, 35.4) 30.1 (17.2, 45.5) 36.7 (26.3, 48) 
Equal seeding Fully open, fast High VE 0.8 (0.6, 0.9) 22.4 (16.7, 30) 33.7 (20.4, 50.8) 38.3 (26.7, 50.1) 
Equal seeding Fully open, fast Median VE 0.7 (0.6, 0.8) 19.5 (15, 26) 39.9 (24.1, 56.1) 36.8 (24.9, 48.9) 
More P.1 Current NPI Same VE 11.9 (11.1, 12.8) 71.5 (69.4, 73.5) 1.6 (1.2, 2.1) 14.6 (12.9, 16.7) 
More P.1 Current NPI High VE 10.8 (9.9, 11.6) 70.9 (68.5, 73.3) 1.7 (1.3, 2.4) 16.1 (13.9, 18.6) 
More P.1 Current NPI Median VE 10.6 (9.8, 11.5) 70.9 (68.1, 73.1) 1.9 (1.4, 2.5) 16.3 (14.1, 18.9) 
More P.1 25% less Same VE 8.2 (7.1, 9.4) 66 (61.6, 69.9) 2.4 (1.6, 3.5) 22.4 (18.4, 27.5) 
More P.1 25% less High VE 6.9 (5.8, 7.9) 63.6 (57.7, 68.2) 2.7 (1.7, 4.4) 26 (21.2, 31.9) 
More P.1 25% less Median VE 6.6 (5.6, 7.5) 62 (56.4, 66.5) 3.1 (1.9, 5.1) 27.3 (22.6, 33) 
More P.1 50% less Same VE 5.7 (4.6, 7) 58.6 (50.8, 64.8) 3 (1.7, 5) 31.1 (24.6, 39.6) 
More P.1 50% less High VE 4.4 (3.4, 5.4) 52.5 (44.6, 59.7) 3.9 (2, 7.5) 36.5 (29.2, 45.7) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.19.21257476doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.19.21257476


 18 

More P.1 50% less Median VE 4.1 (3.2, 5.1) 49.7 (42.3, 56.9) 4.5 (2.3, 8.5) 39.3 (32.1, 47.4) 
More P.1 Fully open, slow Same VE 4.4 (3.4, 5.8) 53.3 (44.5, 60.5) 3.5 (1.8, 6.8) 36.8 (28.8, 46.1) 
More P.1 Fully open, slow High VE 3.2 (2.5, 4.2) 45 (36.8, 53.6) 4.4 (2.3, 8.8) 45 (35.7, 53.9) 
More P.1 Fully open, slow Median VE 3 (2.3, 3.9) 43 (34.3, 50.8) 4.9 (2.5, 10.3) 45.6 (36.1, 55.6) 
More P.1 Fully open, fast Same VE 1.6 (1.3, 2) 36.1 (28.6, 45.2) 5.1 (2.3, 10.8) 53.2 (43.8, 63.2) 
More P.1 Fully open, fast High VE 1.2 (1, 1.4) 30.9 (24.3, 39.2) 6.9 (3, 14.2) 56.7 (47.8, 66.2) 
More P.1 Fully open, fast Median VE 1 (0.9, 1.3) 27.8 (21.9, 35.4) 8.4 (3.9, 17.1) 58.8 (47.7, 67.4) 
More B.1.351 Current NPI Same VE 12.1 (11.3, 12.9) 72.5 (69.8, 74.8) 13.2 (10.9, 16.6) 1.8 (1.5, 2.2) 
More B.1.351 Current NPI High VE 10.9 (10, 11.8) 72.2 (68.7, 74.9) 14.6 (11.5, 18.6) 1.9 (1.5, 2.4) 
More B.1.351 Current NPI Median VE 10.6 (9.8, 11.5) 71.5 (67.6, 74.6) 15.5 (12.3, 19.8) 2 (1.6, 2.5) 
More B.1.351 25% less Same VE 8.4 (7.2, 9.6) 68.9 (62, 73.6) 19.3 (13.7, 27) 2.8 (2, 3.8) 
More B.1.351 25% less High VE 7 (5.9, 8.1) 66.9 (58.1, 72.6) 22.3 (15.6, 32.3) 3.2 (2.3, 4.5) 
More B.1.351 25% less Median VE 6.5 (5.4, 7.8) 62.9 (53.8, 70.5) 26.3 (17.5, 36.5) 3.3 (2.4, 4.7) 
More B.1.351 50% less Same VE 5.9 (4.7, 7.3) 62.7 (51.1, 70.5) 26.4 (17.1, 39.2) 4.1 (2.7, 6) 
More B.1.351 50% less High VE 4.5 (3.5, 5.8) 56.6 (43.7, 67.4) 32.4 (20.1, 46.9) 4.9 (3.3, 7.3) 
More B.1.351 50% less Median VE 4.1 (3, 5.3) 53 (39.6, 63.4) 36.8 (24.3, 52.5) 5 (3.2, 7.6) 
More B.1.351 Fully open, slow Same VE 4.7 (3.5, 6.2) 58.2 (43.8, 68.5) 30.7 (18, 47) 4.9 (3.2, 7.6) 
More B.1.351 Fully open, slow High VE 3.4 (2.4, 4.6) 50 (35.9, 62.4) 38.5 (23.5, 56.1) 5.7 (3.5, 8.9) 
More B.1.351 Fully open, slow Median VE 3.1 (2.2, 4.2) 44.7 (30.9, 57.4) 43.6 (28.2, 61) 5.9 (3.3, 9.5) 
More B.1.351 Fully open, fast Same VE 1.7 (1.3, 2.3) 42.2 (28.6, 55.5) 44.4 (28.7, 63.1) 7.5 (4.4, 13.1) 
More B.1.351 Fully open, fast High VE 1.2 (1, 1.6) 34.4 (23, 48.2) 53.4 (35.1, 69.1) 8.2 (4.7, 13.7) 
More B.1.351 Fully open, fast Median VE 1.1 (0.8, 1.4) 29.2 (19.9, 41.9) 59.7 (42.1, 72.6) 7.7 (4.3, 13.2) 
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Table S2. Prior ranges for the parameters used in the model-inference system for the three countries. 

Parameter/ 
variable 

Symbol Prior range Source/rationale 

Initial exposed E(t=0) 5 – 50 times (for the UK), 1 – 10 times (for South Africa), or 
2.5 – 25 times (for Brazil) of the reported number of cases 
on the first week of simulation 

Low infection-detection rate in first weeks; 
likely higher initial introduction for the UK 
due to more international travel per capita. 

Initial infectious I(t=0) Same as for E(t=0)  

Initial 
susceptible 

S(t=0) 99 – 100% of the population Almost everyone is susceptible initially 

Population size  N N/A Based on data 

Variant-specific 
transmission 
rate 

β [0.5, 0.8] for the UK; [0.4, 0.7] for South Africa; [0.4, 0.8] 
for Brazil 

Based on R0 estimates of around 1.5-4 for 
SARS-CoV-2.1-3  Slightly lower ranges are 
used for South Africa and Brazil, as initial 
testing showed that the priors tend to 
overestimate the observations.  

Scaling of 
effectiveness of 
NPI 

e  [0.5, 1.5] Around 1, with a large bound to be flexible. 
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Latency period Z [2, 5] days Incubation period: 5.2 days (95% CI: 4.1, 
7)1; latency period is likely shorter than the 
incubation period 

Infectious 
period 

D [2, 5] days Time from symptom onset to 
hospitalization: 3.8 days (95% CI: 0, 12.0) in 
China,4 plus 1-2 days viral shedding before 
symptom onset. We did not distinguish 
symptomatic/asymptomatic infections. 

Immunity 
period 

L [730, 1095] days  Assuming immunity lasts for 2-3 years 

Mean of time 
from viral 
shedding to 
diagnosis 

Tm [5, 7] days for the UK, [5, 8] days for South Africa and Brazil From a few days to a week from symptom 
onset to diagnosis/reporting,4 plus 1-2 
days of viral shedding (being infectious) 
before symptom onset. There may be a 
slightly longer delay for South Africa and 
Brazil. 

Standard 
deviation (SD) of 
time from viral 
shedding to 
diagnosis 

Tsd [1, 3] days To allow variation in time to 
diagnosis/reporting 
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Infection-
detection rate 

r For the UK: starting from U[0.01, 0.15] at time 0 and 
allowed to increase over time using space re-probing5 with 
values drawn from U[0.1, 0.24] starting at week 5 (the 
week of 3/29/2020), U[0.05, 0.2] during the summer (July 
– Aug 2020), U[0.1, 0.3] starting Sep 2020, and U[0.15, 0.3] 
starting Nov 2020.  
For South Africa: starting from U[0.01, 0.06] at time 0 and 
allowed to change over time using space re-probing5 with 
values drawn from U[0.02, 0.08] starting at week 5 (the 
week of 4/12/2020). 
For Brazil: starting from U[0.01, 0.1] at time 0 and allowed 
to change over time using space re-probing5 with values 
drawn from U[0.02, 0.1] starting at week 5 (the week of 
4/12/2020). 
 

Large uncertainties; therefore, in general 
we use large prior bounds and large 
bounds for space re-probing (SR).  Note 
that SR is only applied to 3-10% of the 
ensemble members and r can migrate 
outside either the initial range or the SR 
ranges during EAKF update. Efforts were 
made in the UK to increase detection of 
infection; however, detection during the 
summer of 2020 was likely lower because 
more infections at the time occurred 
among younger age groups with no or mild 
symptoms.  In South Africa, due to the 
younger age structure in the population, 
infection detection rates were likely lower.  
In Brazil, infection-detection rates were 
likely low throughout the pandemic.  

Infection fatality 
risk (IFR) 

 For the UK: starting from U[0.001, 0.015] at time 0 and 
allowed to change over time using space re-probing5 with 
values drawn from U[0.0001, 0.003] during Jun – Sep 2020 
when infections occurred mostly among younger ages, 
values drawn from U[0.0001, 0.005] during Oct – Dec 
2020, and [0.0001, 0.006] during Jan – Apr 2021 to 
account for higher IFR for B.1.1.7. 
For South Africa: starting from [0.0001, 0.003] at time 0 
and allowed to change over time using space re-probing5 

Based on previous estimates6 but extend 
to have wider ranges. Note that SR is only 
applied to 3-10% of the ensemble 
members and IFR can migrate outside 
either the initial range or the SR ranges 
during EAKF update. 
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with values drawn from U[0.0001, 0.0015] during the week 
of 4/19/2020 to the week of 7/5/2020 when case fatality 
risk was lower as computed from the data, values drawn 
from U[0.0001, 0.002] starting the week of 12/13/2020 
with the rise of B.1.351. 
For Brazil: starting from U[0.001, 0.01] at time 0 and 
allowed to change over time using space re-probing5 with 
values drawn from U[0.0001, 0.007] starting at week 5 (the 
week of 4/12/2020), values drawn from U[0.0001, 0.0035] 
during the week of 6/21/2020 to the week of 11/8/2020 
when case fatality risk was lower as computed from the 
data, values drawn from U[0.0001, 0.006] starting the 
week of 1/3/2021 with the rise of P.1, and values drawn 
from U[0.0001, 0.01] starting the week of 2/7/2021 when 
the healthcare systems began to be overwhelmed.  

Vaccine efficacy 
(VE) 

 For the UK: VE = 85% fourteen days after the 1st dose, and 
95% seven days after the 2nd dose. 
For South Africa: VE = 60% fourteen days after the 1st 
dose; no 2nd dose (for J&J vaccine). 
For Brazil: VE = 45% fourteen days after the 1st dose, and 
55% seven days after the 2nd dose. 

During our study period (up to mid-April 
2021), the UK mostly used the Pfizer and 
later on Oxford/AstraZeneca vaccine, both 
shown to be highly effective against both 
the wildtype virus and B.1.1.7.  South 
Africa mostly used the J&J vaccine with just 
one dose. Brazil mostly used the Sinovac 
and Oxford/AstraZeneca vaccines with 
relatively lower VE against P.1.   
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Table S3. Parameters used to generate the synthetic data for model validation 
Truth Settings 
Wildtype-
virus, 
same for 
all truths 

β = 0.65 per day; Z = 3.5 days; D = 3.5 days; L = 2.5 years; Tm = 6 days; Tsd = 2 
days; IFR = 0.7% 

Variant in 
Truth 1 

Large outbreak during the first wave (See Figs 1 and S1). No increase in 
transmissibility (i.e. same β and D as for the wildtype virus); 80% increase in 
immune escape. Other parameters same as the wildtype virus. 

Variant in 
Truth 2 

Large outbreak during the first wave (See Figs 1 and S1). 50% increase in 
transmissibility (i.e. β = 0.65 x 1.5 = 0.975 per day); no immune escape. Other 
parameters same as the wildtype virus. 

Variant in 
Truth 3 

Large outbreak during the first wave (See Figs 1 and S1). 50% increase in 
transmissibility (i.e. β = 0.65 x 1.5 = 0.975 per day); 80% increase in immune 
escape. Other parameters same as the wildtype virus. 

Variant in 
Truth 4 

Large outbreak during the first wave (See Figs 1 and S1). 25% increase in 
transmissibility (i.e. β = 0.65 x 1.25 = 0.8125 per day); 40% increase in immune 
escape. Other parameters same as the wildtype virus. 

Variant in 
Truth 5 

Small outbreak during the first wave (See Figs 1 and S1). 50% increase in 
transmissibility (i.e. β = 0.65 x 1.5 = 0.975 per day); no immune escape. Other 
parameters same as the wildtype virus. 

Infection-
detection 
rate 

20% for results shown in Fig 1 and 10% for results shown in Fig S1. 

 
 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.19.21257476doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.19.21257476


 
 
 

25 

Table S4. Cumulative vaccination coverage used in the multi-variant, age-structured model 
simulations. Baseline vaccination coverage (as of 4/24/2021) is based on data for NYC.  
Projected vaccination rates for the simulation period (from the week starting 4/25/2021 to the 
week ending 8/29/2021) are based on data 10 days preceding the simulation and assuming a 
cumulative vaccination uptake of 80%. Note that ages under 15 (i.e., <1, 1-4, 5-14 years) are 
combined in the same column as they were not eligible to receive the vaccines at the time of 
this study. In addition, the numbers are aggregated from neighborhood-level estimates and 
thus could slightly exceed the 80% total for some age groups when some neighborhoods had 
actual vaccination coverage above 80% at baseline. 

Time point 
Vaccine 
dose 

Vaccination coverage (%) by age group (in year) 
0-14 15-24 25-44 45-64 65-74 75+ 

Start of simulation: 
4/24/2021 

1st dose 0 25.4 41.7 52.9 69 58.2 
2nd dose 0 10.5 26.7 40.7 62.6 53.6 

End of simulation: 
8/29/2021 

1st dose 0 70 76 79.1 80.6 76.8 
2nd dose 0 65.4 73.4 78.7 80.3 74.5 
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Table S5. Parameter settings for different scenarios to simulate and project the impact of 
different variants of concern. Initial conditions and parameters are randomly drawn from 
uniform distributions with lower and upper bounds as specified below, based on estimates for 
NYC made for the week of 4/18/2021 using data during 3/1/2020 – 4/24/2021. Numbers 
associated with the parameter names denote the corresponding age groups.  

scenario: 
Seeding/VE/NPI 

variant parameter lower bound 
upper 
bound 

Equal seeding wildtype Initial seeding (%) 45 61 
Equal seeding B.1.1.7 Initial seeding (%) 35 45 
Equal seeding B.1.351 Initial seeding (%) 2 5 
Equal seeding P.1 Initial seeding (%) 2 5 
More B.1.351 wildtype Initial seeding (%) 49.4 62.8 
More B.1.351 B.1.1.7 Initial seeding (%) 35 45 
More B.1.351 B.1.351 Initial seeding (%) 2 5 
More B.1.351 P.1 Initial seeding (%) 0.2 0.6 
More P.1 wildtype Initial seeding (%) 49.4 62.8 
More P.1 B.1.1.7 Initial seeding (%) 35 45 
More P.1 B.1.351 Initial seeding (%) 0.2 0.6 
More P.1 P.1 Initial seeding (%) 2 5 

All All Travel-related importation, εi 
1 per 21 days, for the 
entire city (N = 8.4 million) 

Same VE wildtype 
VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd days 

Same VE B.1.1.7 
VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd days 

Same VE B.1.351 
VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd days 

Same VE P.1 
VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd days 

High VE wildtype 
VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd days 

High VE B.1.1.7 
VE = 85% x .95 = 80.75% fourteen days after the 1st dose and 
95% seven days after the 2nd days 

High VE B.1.351 
VE = 85% x .80 = 68% fourteen days after the 1st dose and VE 
= 95% x .9 = 85.5% seven days after the 2nd days 

High VE P.1 
VE = 85% x .85 = 72.25% fourteen days after the 1st dose and 
VE = 95% x .95 = 90.25% seven days after the 2nd days 
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Median VE wildtype 
VE = 85% fourteen days after the 1st dose and 95% seven 
days after the 2nd days 

Median VE B.1.1.7 
VE = 85% x .95 = 80.75% fourteen days after the 1st dose and 
VE = 95% x .95 = 90.25% seven days after the 2nd days 

Median VE B.1.351 
VE = 85% x .70 = 59.5% fourteen days after the 1st dose and 
VE = 95% x .8 = 76% seven days after the 2nd days 

Median VE P.1 
VE = 85% x .8 = 68% fourteen days after the 1st dose and VE 
= 95% x .9 = 85.5% seven days after the 2nd days 

Current NPI all variants no further increase in transmission rate 

25% less NPI all variants 
transmission rate increases by 5% per week up to 25% in 
total 

50% less NPI all variants 
transmission rate increases by 5% per week up to 50% in 
total 

Full reopen, slow all variants 
transmission rate increases by 5% per week up to fully 
reopen (~85% of current level) 

Full reopen, fast all variants 
transmission rate increases by 10% per week up to fully 
reopen (~85% of current level) 

 wildtype β11 (per day, same below) 0.11 0.16 
 wildtype β22 0.078 0.11 
 wildtype β33 0.11 0.15 
 wildtype β44 0.13 0.19 
 wildtype β55 0.16 0.25 
 wildtype β66 0.13 0.19 
 wildtype β77 0.13 0.19 
 wildtype β88 0.11 0.16 
 wildtype β12 0.055 0.08 
 wildtype β13 0.014 0.021 
 wildtype β14 0.0057 0.0084 
 wildtype β15 0.018 0.026 
 wildtype β16 0.0082 0.012 
 wildtype β17 0.0058 0.0085 
 wildtype β18 0.004 0.0059 
 wildtype β21 0.039 0.055 
 wildtype β23 0.01 0.014 
 wildtype β24 0.0041 0.0058 
 wildtype β25 0.013 0.018 
 wildtype β26 0.0059 0.0083 
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 wildtype β27 0.0042 0.0059 
 wildtype β28 0.0029 0.004 
 wildtype β31 0.013 0.018 
 wildtype β32 0.013 0.018 
 wildtype β34 0.0066 0.0089 
 wildtype β35 0.0087 0.012 
 wildtype β36 0.0048 0.0066 
 wildtype β37 0.0034 0.0046 
 wildtype β38 0.0044 0.006 
 wildtype β41 0.0073 0.011 
 wildtype β42 0.0073 0.011 
 wildtype β43 0.012 0.017 
 wildtype β45 0.012 0.017 
 wildtype β46 0.0089 0.013 
 wildtype β47 0.0032 0.0046 
 wildtype β48 0.0059 0.0086 
 wildtype β51 0.075 0.12 
 wildtype β52 0.075 0.12 
 wildtype β53 0.061 0.096 
 wildtype β54 0.048 0.076 
 wildtype β56 0.046 0.073 
 wildtype β57 0.028 0.043 
 wildtype β58 0.027 0.042 
 wildtype β61 0.04 0.058 
 wildtype β62 0.04 0.058 
 wildtype β63 0.033 0.047 
 wildtype β64 0.039 0.056 
 wildtype β65 0.04 0.058 
 wildtype β67 0.044 0.064 
 wildtype β68 0.04 0.058 
 wildtype β71 0.024 0.035 
 wildtype β72 0.024 0.035 
 wildtype β73 0.017 0.025 
 wildtype β74 0.0074 0.011 
 wildtype β75 0.018 0.025 
 wildtype β76 0.025 0.036 
 wildtype β78 0.051 0.074 
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 wildtype β81 0.017 0.024 
 wildtype β82 0.017 0.024 
 wildtype β83 0.018 0.025 
 wildtype β84 0.013 0.018 
 wildtype β85 0.016 0.023 
 wildtype β86 0.028 0.04 
 wildtype β87 0.043 0.061 
 wildtype Z1 (days, same below) 3.3 4.3 
 wildtype Z2 3.3 4.3 
 wildtype Z3 3.4 4.4 
 wildtype Z4 3.4 4.4 
 wildtype Z5 3.5 4.4 
 wildtype Z6 3.5 4.5 
 wildtype Z7 3.4 4.5 
 wildtype Z8 3.3 4.4 
 wildtype D1 3.1 4 
 wildtype D2 3.1 4.1 
 wildtype D3 3 4 
 wildtype D4 3.3 4.2 
 wildtype D5 3.2 4.2 
 wildtype D6 3.3 4.2 
 wildtype D7 3.5 4.4 
 wildtype D8 3.3 4.3 
 wildtype IFR1 7.70E-05 0.00012 
 wildtype IFR2 7.60E-05 0.00013 
 wildtype IFR3 7.70E-05 0.00012 
 wildtype IFR4 7.60E-05 0.00013 
 wildtype IFR5 0.00031 0.00049 
 wildtype IFR6 0.0033 0.0047 
 wildtype IFR7 0.018 0.023 
 wildtype IFR8 0.056 0.069 
 B.1.1.7 Increase in transmission rate 0.403 0.5227 
 B.1.1.7 Immune escape 0 0.1 
 B.1.351 Increase in transmission rate 0.1849 0.457 
 B.1.351 Immune escape 0.4414 0.8281 
 P.1 Increase in transmission rate 0.3682 0.4945 
 P.1 Immune escape 0.3588 0.6683 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.19.21257476doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.19.21257476


 
 
 

30 

 B.1.1.7 Increase in transmission rate 0.403 0.5227 
 B.1.1.7 Immune escape 0 0.1 
 B.1.351 Increase in transmission rate 0.1849 0.457 
 B.1.351 Immune escape 0.4414 0.8281 
 P.1 Increase in transmission rate 0.3682 0.4945 
 P.1 Immune escape 0.3588 0.6683 
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