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epidemiological methods finds a number of risk factors (sociodemographic, lifestyle, and 

psychosocial factors, biomarkers, disease outcomes and treatments) associated with 
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Abstract 

 
Severe acute respiratory syndrome coronavirus has infected over 114 million people 

worldwide as of March 2021, with worldwide mortality rates ranging between 1-10%. We 

use information on up to 421,111 UK Biobank participants to identify possible predictors for 

long-term susceptibility to severe COVID-19 infection (N =1,088) and mortality (N =376). 

We include 36,168 predictors in our analyses and use a gradient boosting decision tree 

(GBDT) algorithm and feature attribution based on Shapley values, together with traditional 

epidemiological approaches to identify possible risk factors. Our analyses show associations 

between socio-demographic factors (e.g. age, sex, ethnicity, education, material deprivation, 

accommodation type) and lifestyle indicators (e.g. smoking, physical activity, walking pace, 

tea intake, and dietary changes) with risk of developing severe COVID-19 symptoms. Blood 

(cystatin C, C-reactive protein, gamma glutamyl transferase and alkaline phosphatase) and 

urine (microalbuminuria) biomarkers measured more than 10 years earlier predicted severe 

COVID-19. We also confirm increased risks for several pre-existing disease outcomes (e.g. 

lung diseases, type 2 diabetes, hypertension, circulatory diseases, anemia, and mental 

disorders). Analyses on mortality were possible within a sub-group testing positive for 

COVID-19 infection (N =1,953) with our analyses confirming association between age, 

smoking status, and prior primary diagnosis of urinary tract infection. 
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Background 

 
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has infected over 114 million 

people worldwide as of March 2021, with worldwide mortality rates ranging between 1-10%. 

While many patients will have a mild or even asymptomatic infection, 10-20% of patients 

experience severe infection requiring hospitalization. In critically ill patients the so called 

‘cytokine storm’ characterized by excessive production of proinflammatory molecules can 

lead to multi-organ damage particularly in the lungs manifesting as acute respiratory distress 

syndrome, as well as disseminated intravascular coagulation and shock, and is associated 

with high levels of mortality [1]. In addition, survivors of severe coronavirus disease 

(COVID-19) are likely to have long-term adverse health effects [2, 3]. Characterizing those at 

risk of severe infection and mortality, can inform public health strategies to prevent and 

manage the pandemic, and provide insights into the risk factors reflecting longer-term 

susceptibility to severe infection.  

Machine learning (ML) is the application of computer algorithms which learn from 

data. While traditional statistical testing requires assumptions and a priori knowledge, ML 

has the advantage of being hypothesis free (i.e., not requiring a priori assumptions on 

causality). It is also able to handle large complex datasets. Previous studies have used ML to 

explore various aspects relating to the diagnosis and prognosis of COVID-19 disease, 

including approaches to treatment and management, forecasting, and anti-viral drug 

discovery [4-6]. In this study, we use ML to explore characteristics reflecting longer-term 

susceptibility to infection. We use information from over 30,000 features which have been 

collected up to 14 years before the COVID-19 crisis, with an aim to identify characteristics 

associated with the severity and/or mortality from COVID-19. We use a novel approach 

where ‘risk factor discovery’ is conducted using ML, followed by standard epidemiological 

analyses to facilitate confounder adjustments and interpretation [7]. Our study is based on 
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information from the UK Biobank [8, 9]. Established in 2007, it includes >500,000 

participants and is one of the world’s largest and most comprehensive prospective cohort 

studies, enabling us to examine the possible contribution of an extensive range of potential 

risk factors and biomarkers. We use an ML algorithm called gradient boosting decision trees 

(GBDT) [10] and conduct further epidemiological analyses to explore the importance and 

quantify the effects of the identified COVID-19 predictors. 

 

Methods 

 
Participants  

The UK Biobank contains genetic, physical, and clinical data on over 500,000 middle to 

older aged participants (aged 37-73 years) recruited between March 13, 2006 and October 1, 

2010 from England (89%), Scotland (7%) and Wales (4%) through 22 assessment centers and 

followed up by linkage to hospital, cancer and mortality registrations and online surveys. 

COVID-19 test result data up to July 26, 2020 for the participants from England were 

provided by Public Health England [11] and accordingly, our study was confined to the 

participants from England. Participants who died before January 2020 were also excluded 

from our analyses. COVID-19 diagnosis was made based on a positive reverse transcription-

polymerase chain reaction (RT-PCR) test. Severe COVID-19 infection was defined by 

hospital admission with diagnosis or death under ICD 10 codes U07.1 and U07.2 (recorded 

up to May 31 and June 28, 2020, respectively). For severe COVID-19 analyses, the control 

group consisted of participants living in England, excluding those who had received a 

positive COVID-19 test. In mortality analyses, the control group consisted of participants 

who tested positive and/or had COVID-19 disease requiring hospitalization. 

In this study, we considered all information collected at the baseline assessment using 

touchscreen questionnaires, biomarker profiling, and results from clinical examinations, in 
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addition to disease coding derived from linkage to cancer registrations (up to December 

2016) and hospital episode statistics (HES) (up to September 2019). As the data was not 

sufficiently structured for our analyses, we ran an automated pre-processing step using a 

specifically designed software package for UK Biobank, PHESANT (PHEnome Scan 

Analysis [12] (Supplementary Methods), available in R. We removed baseline features which 

were recorded for less than 90% of the participants. Information obtained from online follow-

up surveys or sub-samples of the cohort were excluded from our analyses due to their low 

coverage. Supplementary Table 1 and Supplementary Table 2 show UK Biobank variables 

included in our severity and mortality analyses, respectively. The pre-processing resulted in 

36,168 features for severe COVID-19 and 36,145 features for COVID-19 mortality analyses, 

with 92% of the features representing HES and cancer linkage data. Supplementary Table 3 

shows category-wise counts of those features for severity and mortality analyses.  

The UK Biobank project was approved by North West Multicenter Research Ethics 

Committee and the National Information Governance Board for Health and Social Care 

(11/NW/0382). Informed consent was obtained at the time of enrolment from all participants 

[9]. This study was conducted under application number 20175 to the UK Biobank. 

Machine learning pipeline and Cox regression modeling 

Following the pre-processing step, we conducted our analyses in two stages, namely, a) 

discovering predictive factors and b) epidemiological analyses as shown in Figure 1. 

Discovering predictive factors 

Our first stage has four steps, namely, a) developing GBDT models (Supplementary 

Methods) with all the available features and assessing model performance, b) calculating 

feature importance using SHAP (Shapley Additive exPlanation) values [13, 14] and 

eliminating features based on a threshold, c) further elimination of highly monotonically 
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correlated features, and d) ensuring that the reduced feature set is appropriate from a 

predictive performance perspective as well as from an epidemiological perspective. For our 

ML models, following a standard practice of internal validation in prognostic modeling, we 

split the severity data into random training, development, and test sets in a ratio of 60:20:20. 

We used the training and the development sets as the derivation cohort and the test set as the 

validation cohort. For mortality analysis, we split the serological samples into random 

training and test sets in a ratio of 80:20 due to low number of samples.  

Our ML models, built using GBDT, are binary classifiers, that is, their input are the 

features for each individual, and their output is the model’s confidence for developing severe 

COVID-19 symptoms/mortality for that individual. The classes were highly imbalanced in 

our dataset for predicting severe COVID-19 (severe COVID-19 cases were around 0.25%) 

and moderately imbalanced in our dataset for predicting COVID-19 mortality (mortality rate 

was around 19%). To address the class imbalance problem, all our ML models were 

developed as weighted models [15] with the hyperparameter ‘positive class weight’ set to the 

ratio of negative to positive training samples, forcing GBDT to scale up gradients of the 

positive class samples during the training. We used CatBoost [16] (Supplementary Methods) 

version 0.21 implemented in Python (Python Software Foundation, version 3.5.2) for GBDT 

model development. GBDT model performance was assessed using the threshold 

independent performance metric, area under the receiver operating characteristics curve 

(AUROC), which has become the de facto standard to assess binary classifiers. AUROC 

confidence intervals were calculated using 1,000 bootstrap [17] datasets based on the test set 

for COVID-19 severity models and using 1,000 random training-test splits for COVID-19 

mortality models. 

For each feature, feature importance was defined as the mean absolute SHAP value as 

explained in Supplementary Methods. Instead of using SHAP values obtained from a single 
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training and test cycle, we calculated SHAP values with five different randomized training 

and test cycles and averaged them to reduce split specific nuances. We tried a few thresholds 

to identify ‘important’ features and based on the features returned, we chose a threshold of 

0.05% of the total importance for severity models and 0.1% for mortality models to identify 

‘important’ predictive features. We used Spearman’s ρ (above 0.9) to identify sets of highly 

correlated features and removed all but one (the one recorded for the greatest number of 

samples) from those sets to produce the final set of important features to be taken to 

epidemiological analyses. 

Epidemiological analyses 

Following the development of univariate Cox regression models and based on the existing 

literature on COVID-19, we developed Cox models adjusting all models for the confounders 

age, sex, UK Biobank assessment center, Townsend deprivation index, ethnicity, body mass 

index (BMI), smoking and long-standing illness. We assessed the association of all the 

potential risk factors obtained from the previous stage with the outcomes, in isolation but 

adjusted for the confounders, for a P-value threshold of 0.01. We used the resulting 

interpretable coefficients (as opposed to mean absolute SHAP values, which do not show the 

directionality and are only meaningful in the context of all other features) and their 95% 

confidence intervals to show the association of risk in a meaningful way. We used STATA 

(version 16, StataCorp, College Station, TX, USA) for Cox models. 
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Results 

 
Participants characteristics 

Of the 421,111 participants included in our severity analyses, 1,088 participants (0.25%) 

were classified as severe COVID-19 cases based on hospital diagnoses. Of the 421,111 

participants, a sub-sample of 1,953 participants, tested positive for COVID-19 or developed 

severe COVID-19 symptoms, and among this group there were 376 deaths and these 

participants were included in our mortality analyses. Table 1 shows the distribution of the 

participants as a whole and by categories reflecting age, sex, Townsend deprivation index, 

ethnicity, BMI, smoking and long-standing illness. 

Gradient boosting decision tree (GBDT) models to discover predictors 

In severity analyses, the GBDT models with all the features reported an AUROC value of 

0.74 [95% CI 0.72-0.78] and the reduced features (133 features) model (after feature 

elimination using SHAP values and correlation) reported an AUROC value of 0.73 [95% CI 

0.70-0.76] on the test set. Predictive values for mortality analyses were slightly lower, with 

AUROC of 0.71 [95% CI 0.68-0.73] for the full model and 0.70 [95% CI 0.65-0.74] for the 

reduced features (149 features) model. Supplementary Figure 1 shows the receiver operating 

characteristics (ROC) curves for the “all features” and “reduced features” predictive models 

used for SHAP value calculations. Baseline characteristics and lifestyle factors had a similar 

contribution to feature importance both for severity and mortality models, while 

sociodemographic features had a larger contribution for severity than for mortality (9.2% vs. 

5.1%) (Figure 2). Health related factors including physical measures, cognitive function, self-

reported disease, medications/operations, health and medical history, hospital diagnoses and 

biomarkers jointly accounted for > 70% of feature importance in both severity and mortality 

models. SHAP values for the top 50 features in severity and mortality analyses are shown in 
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Supplementary Figure 2, with the full list including all important features in severity and 

mortality models shown in Supplementary Table 4 and 5 respectively. Both the severity and 

mortality models identified age, waist circumference and blood pressure/hypertension among 

the top 10 features.  

Epidemiological analyses 

Of the 133 important features identified in the previous stage, 116 features were found to be 

associated with severe COVID-19 in univariate Cox models under the P-value threshold of 

0.01, whereas 76 features were found to be associated with severe COVID-19 also in models 

adjusted for covariates listed in Table 1. In mortality models, of the 149 important features 

identified in the previous stage, 60 features were found to be associated with COVID-19 

mortality in univariate Cox models for the P-value threshold of 0.01, whereas only 10 

features were found to be associated with COVID-19 mortality after adjustment. In 

Supplementary Table 6 and 7 we present full data from the Cox models on severity and 

mortality, respectively.  

Our main findings with respect to sociodemographic features are shown in Figure 3. 

Age had a strong association with developing severe COVID-19 symptoms with nearly 7-fold 

risk of severe disease in individuals >70 years vs. those < 50 years (HR 6.91, 95% CI 4.10, 

11.62). Men had higher risk compared to women (HR 1.72, 95% CI 1.52-1.96) and there 

were clear ethnic differences; compared to white Europeans, in particular participants of 

black African ancestry were more likely to be affected (HR 2.79, 95% CI 2.08-3.75). Greater 

material deprivation (Townsend index, 4th vs. 1st quartile) was also associated with higher 

risk of severe COVID-19 disease (HR 1.43 95% CI 1.18 - 1.73). From sociodemographic 

features, our analyses confirmed the association between age with mortality.  
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As shown in Figure 4 describing associations identified for lifestyle factors, compared 

to non-smokers, ex-smokers and current smokers had a higher risk of developing severe 

COVID-19. Those who smoked more than 15 cigarettes a day were found to be associated 

with the highest risk in the smoking categories (HR 2.25 95% CI1.34 - 3.78). Our results 

show that, in general, physical activity was associated with decreased risk, while greater 

inactivity reflected by more time spent watching television is associated with increased risk. 

We also found tea intake to be associated with decreased risk of developing severe COVID-

19 symptoms. We did not find strong evidence for associations between baseline lifestyle 

factors and mortality risk, except that for current smoking (smoked on all or most days), 

which was associated with increased risk of COVID-19 mortality (HR 1.41 95% CI 1.01 – 

1.99). 

Figure 5 describes associations between health-related outcomes and severe COVID-

19 diseases. Worse self-rated health status and higher number of treatments/medications were 

associated with developing severe COVID-19 symptoms. From the disease outcomes, prior 

diagnoses of lung disease (including wheezing, pneumonia, and COPD), type 2 diabetes, 

hypertension, and urinary system disorders were all associated with an increased risk. Further 

associations were seen with higher risk of severe disease by anemia (HR 2.24 95% CI 1.80 – 

2.78), nausea and vomiting (HR 2.15 95% CI1.70 - 2.70), depression (HR 2.12 95% CI1.70 - 

2.65) and psychoactive substance abuse (HR 1.67 95% CI 1.41 - 1.97). From serum 

biomarkers measured at the baseline (i.e., 10 to 14 years before COVID-19 diagnoses), we 

found evidence for an adverse association by higher levels of Cystatin C, C-reactive protein 

(CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), in addition to a 

higher risk of developing severe COVID-19 by microalbuminuria (Figure 6). In mortality 

analyses, prior primary diagnosis of urinary tract infection was associated with COVID-19 
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mortality (HR 1.95 95% CI 1.30 – 2.91). We did not find strong evidence for associations 

between baseline serum biomarkers and COVID-19 mortality. 

Discussion 

 
The purpose of this study was to identify characteristics reflecting longer-term susceptibility 

to infection, in particular, susceptibility to severe COVID-19 disease and mortality. We used 

a novel approach of combining ML with conventional epidemiological analyses, which 

allowed us to identify a number of possible risk factors from a very large pool of features 

when assessing associations with COVID-19 risk. While our analyses confirmed associations 

for many well-known population determinants and risk factors for COVID-19 disease, our 

study also suggested possible predictive roles for renal and liver blood biomarkers as 

reflecting longer-term susceptibility to infection. Our results highlighted the increased risks 

for those members of society who are the most deprived, while associations observed for 

lifestyle factors largely supported current general advice for better general health.  

Pre-existing disease, in particular respiratory conditions, type 2 diabetes and 

hypertension and other cardiovascular diseases, were expectedly associated with severe 

COVID-19 disease. Our study shows similar results obtained by studies conducted elsewhere 

(i.e., not in England) on COVID-19 severity and mortality. For example, in line with previous 

studies [18-23], our study also shows evidence of association between comorbidities, 

hypertension and diabetes and developing severe COVID-19 symptoms, although such 

associations were less apparent in our mortality analyses.  

Both depression and psychoactive substance abuse were associated with increased 

risk of severe COVID-19 disease and the magnitude of this effect was similar compared to 

that observed for purely physiological diseases. In line with our earlier phenome-wide 
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investigation which suggested wide ranging downstream health effects for depression [24], 

these findings highlight the need to monitor and treat physical diseases in those affected.  

 

 Consistent with previous studies, our study showed the disproportional number of people 

who developed severe COVID-19 symptoms from black African or ‘other’ (unspecified) 

ethnic backgrounds [25]. Also, in line with previous studies, our study picked up disparities 

in severe COVID-19 cases with respect to multiple aspects of social and material deprivation, 

including lower education, type of accommodation, and home ownership, highlighting the 

need to consider infection control as an important aspect when addressing inequalities in 

health. In line with a previous study looking at the determinants of a positive test result in the 

UK Biobank [26], we confirmed the key predictors including ethnicity, male sex and higher 

BMI were associated with testing positive for COVID-19 and our study shows such an 

association exists also for developing severe symptoms. We also observe similar associations 

with respect to lower education attainment and testing positive [27] and developing severe 

COVID-19 symptoms. 

We found that higher levels of indicators of renal dysfunction (cystatin C and urinary 

microalbumin) and disorders of the urinary system were associated with severe COVID-19 

disease. Furthermore, biomarkers of liver injury (GGT and ALP) and systemic inflammation 

(CRP) were also associated with severity. Indicators of acute renal dysfunction, elevated liver 

metabolism and inflammation are frequently reported to accompany the disease course of 

COVID-19, and to associate with more severe COVID-19 outcomes [28-32]. Respiratory 

diseases including pneumonia and COPD are known to increase the risks related to reduced 

oxygen carrying capacity in COVID-19, and hypoxemia in turn has been identified as a factor 

affecting liver function in critical COVID-19 cases [33]. However, in this study biomarkers 
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reflecting renal dysfunction and liver injury were in most cases measured more than a decade 

earlier, suggesting that these biomarkers per se may reflect a long-term susceptibility to 

severe infection.  

A number of studies have used the UK Biobank to investigate risk factors associated 

with developing severe COVID-19 symptoms and COVID-19 mortality. The uniqueness of 

our study can be attributed to more than one aspect. Many studies focus on one or two 

particular risk factors (e.g., [34, 35]) or an area of interest such as sociodemographic (e.g., 

[36]), lifestyle factors (e.g., [37]), disease outcomes, and biomarkers (e.g., [23, 38]), and 

choose the predictors in advance. Our novel hypothesis-free approach of combining ML and 

traditional epidemiological methods, investigates all predictors (such as sociodemographic, 

lifestyle, and psychosocial factors, cognitive functions, biomarkers, disease outcomes and 

treatments). While we reported associations for the well-known risk factors, our analyses also 

suggest long-term predictive ability for markers of liver and kidney injury, and inflammation.  

There are some methodological considerations which need to be considered in the 

context of our study. We defined severe COVID-19 based on hospital episode statistics and 

looked at predictors of mortality only in the subgroup with a positive test/known infection. 

Other studies have defined COVID-19 infection based on a positive test result from RT-PRC 

tests [38, 39] in the subgroup tested for infection, while  testing positive for COVID-19 

within a particular time period (when most of the testing took place in a hospital setting) has 

been used as a proxy for COVID-19 severity [40, 41]. While our outcome will only capture 

COVID-19 cases which required hospitalization, it allows us to assess long-term predictors of 

severe infection using information from the whole cohort. Some previous studies have looked 

into all-cause mortality subsequent to testing positive for COVID-19 mortality [42], while 

our approach was more specific and required cause of death mentioning COVID-19 related 

disease codes (U07.1 or U07.2).  
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While the UK Biobank prospective cohort is unique in its size and scope with 

extensively phenotyped and genotyped data, enabling hypothesis-free approaches for 

identifying long-term predictors of infection risk, it is also a cohort of volunteers with higher 

education and socio-economic status, and lower mortality rates compared to the general 

population [43]. The healthy volunteer bias may have affected our analysis and thus the 

external validity. However, it was reassuring that several of our findings have been observed 

in studies conducted in other parts of the world. Our mortality analyses were conducted in the 

sub-sample testing positive for COVID-19, hence, we may have lacked power to detect 

further predictors. Also, while our results show association and not causation, we are unable 

to discount residual confounding by factors not included in our analyses.  

In conclusion, our large-scale hypothesis-free approach identified several risk factors 

associated with COVID-19 infection, and suggested indicators of renal dysfunction, liver 

injury and inflammation as predictors of long-term infection risk. Our data also highlights the 

need to focus on infection control in attempts to reduce inequalities in health.  
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Tables 

Table 1 : Characteristics of the UK Biobank participants in the analytical sample. 

  Severe COVID-19 COVID-19 Mortality 

Characteristics N Cases% (N) N Cases% (N) 

Age       

< 50       102,318  0.15 (151) 538 3.35 (18) 

50 - 59.9       141,599  0.18 (254) 467 14.56 (68) 

60 - 69.9       175,296  0.38 (666) 929 30.68 (285) 

70+           1,898  0.90 (17) 19 26.32 (5) 

*P-value 4.91E-43   1.16E-34   

        

Sex       

Female 232,148 0.18 (419) 921 14.66 (135) 

Male 188,963 0.35 (669) 1,032 23.35 (241) 

*P-value 1.12E-16   0.011   

        

Townsend index       

Q1 ( -4.39, -6.26 - -3.64)       105,211  0.17 (184) 349 19.48 (68) 

Q2 ( -2.92, -3.64 - -2.16)       105,110  0.20 (207) 386 18.13 (70) 

Q3 ( -1.10, -2.16 - 0.48)       105,140  0.25 (264) 483 17.81 (86) 

Q4 ( 2.74, 0.48 - 10.59)       105,150  0.41 (432) 734 20.57 (151) 

(missing)             500  0.20 (1) 1 100.00 (1) 

*P-value 0.0002   0.216   

        

Ethnicity       

White European       393,867  0.24 (949) 1,698 19.61 (333) 

South Asian           9,090  0.42 (38) 82 13.41 (11) 
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East Asian           1,393  0.29 (4) 8 0.00 (0) 

Black African           7,607  0.80 (61) 98 23.47 (23) 

Other/mixed           6,766  0.37 (25) 51 7.84 (4) 

Unknown           2,388  0.46 (11) 16 31.25 (5) 

*P-value 1.21E-09   0.047   

        

BMI       

Underweight           2,097  0.24 (5) 8 37.50 (3) 

Normal       138,346  0.15 (202) 451 15.30 (69) 

Overweight       178,025  0.25 (447) 816 18.26 (149) 

Obese       100,200  0.42 (418) 655 21.98 (144) 

(missing)           2,443  0.65 (16) 23 47.83 (11) 

*P-value 2.43E-15   0.415   

        

Smoking       

Non-smokers       232,900  0.20 (461) 929 15.07 (140) 

Ex-smokers       144,249  0.32 (460) 762 23.10 (176) 

Smokers - no type         11,448  0.34 (39) 66 18.18 (12) 

Cigars/pipes           1,984  0.40 (8) 12 33.33 (4) 

Cigarettes <1-15         17,599  0.30 (53) 94 23.40 (22) 

Cigarettes >15         10,460  0.47 (49) 67 23.88 (16) 

(missing)           2,471  0.73 (18) 23 26.09 (6) 

*P-value 0.0001   0.197   

        

Long-standing illness       

No       281,486  0.18 (494) 1,044 15.71 (164) 

Yes       128,395  0.43 (554) 841 23.31 (196) 
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(missing)         11,230  0.36 (40) 68  23.53 (16) 

*P-value 3.79E-19   0.999   

     

*P-values are from likelihood ratio tests for Cox models fitted with all the covariates listed in 

the table and when the variable of interest is removed from the input. 
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Figures legends 

Figure 1.  Participant selection, pre-processing, and machine learning model development 

pipeline for discovering predictive factors and subsequent epidemiological analyses.  

Figure 2.  We normalize absolute mean SHAP values of all features so that the sum is equal 

to 100% and hence can be shown as percentages. Absolute mean SHAP feature importance 

values (in percentage) from reduced feature set ML models summed up category wise into 

eleven categories. Left: predicting severe COVID-19. Right: predicting COVID-19 mortality.  

Figure 3.  Sociodemographic factors associated with developing severe COVID-19 

symptoms with their hazard ratios and 95% confidence intervals from Cox regression models 

adjusted for age, sex, UK Biobank assessment center, Townsend deprivation index, ethnicity, 

body mass index (BMI), smoking, and long-standing illness. 

Figure 4.  Lifestyle factors associated with developing severe COVID-19 symptoms with 

their hazard ratios and 95% confidence intervals from Cox regression models adjusted for 

age, sex, UK Biobank assessment center, Townsend deprivation index, ethnicity, body mass 

index (BMI), smoking, and long-standing illness. 

Figure 5.  Self-rated health, medications, and disease outcomes associated with developing 

severe COVID-19 symptoms with their hazard ratios and 95% confidence intervals from Cox 

regression models adjusted for age, sex, UK Biobank assessment center, Townsend 

deprivation index, ethnicity, body mass index (BMI), smoking, and long-standing illness. 

Figure 6.  Baseline biomarkers associated with developing severe COVID-19 symptoms with 

their hazard ratios and 95% confidence intervals from Cox regression models adjusted for 

age, sex, UK Biobank assessment center, Townsend deprivation index, ethnicity, body mass 

index (BMI), smoking, and long-standing illness. 
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COVID-19 Severity COVID-19 Mortality 

- Baseline characteristics - Self-reported diseases - Sociodemographics - Medications & Operations - Lifestyle and environment - Health and medical history - Physical measurements - Hospital diagnoses - Cognitive function - Biomarkers - Psychosocial factors 



Feature HR (95% Cl) 

Age 

<50 (ref.) 1 • 

50-59.9 ---- 1.29 (1.05, 1.59) 

60-69.9 ---- 2.83 (2.34, 3.42) 

70+ ■ ) G.91 (4.10, 11.62) 

Sex --- 1.72 (1.52, 1.96) 

Ethnicity 

White European (ref.) 1 • 

South Asian ■ 1.57 (1.10, 2.23) 

East Asian - 2.15 (0.80, 5.75) 

Black African ■ 2.79 (2.08, 3.75) 

Other/Mixed ■ 1.64 (1.08, 2.47) 

Unknown - 0.73 (0.24, 2.28) -

Education 

None (ref.) 1 • 

NVQ/CSE/A-levels - 0.72 (0.61, 0.85) 

Degree/professional - 0.73 (0.62, 0.86) 

Townsend index 

Q1 ( -4.39, -6.26 - -3.64) (ref.) 1 • 

Q2 ( -2.92, -3.64 - -2.16) --I ..... 1.00 (0.82, 1.23) 

Q3 (-1.10, -2.16 - 0.48) ·1-9- 1.14 (0.94, 1.39) 

Q4 ( 2.74, 0.48 - 10.59) ---- 1.43 (1.18, 1.73) 

Accomodation type 

House/bungalow (ref.) 1 • 

FlaUapartment - 1.33 (1.10, 1.62) 

Other - 1.46 (0.82, 2.61) 

Own/rent 

Own outright (ref.) I. 
Own with mortgage f,+- 1.16 (0.99, 1.37) 

Rent - 1.65 (1.35, 2.01) 

Other - 1.25 (0.71, 2.17) -

Disability allowances ---- 1.61 (1.33, 1.95) 
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Feature HR (95% Cl) 

Smoking 
Non-smokers (ref.) 11 
Ex-smokers ---- 1.43 (1.25, 1.64) 
Smokers notype - 1 .40 (1.00, 1.95) -
Cigars/pipes - 1.56 (0. 78, 3.15) -
Cigarettes <1-15 ■ 1.62 (1.09, 2.39) 
Cigarettes >15 - 2.25 (1.34, 3. 78) -

Physical activity (MET) 
Low (ref.) 11 
Moderate ■ 0. 79 (0.69, 0.92) 
High - 0.97 (0.82, 1.16) -

Activity type 
None (ref.) 11 
Light/Moderate ■ 0.60 (0.50, 0. 72) 
Strenous sports ■ 0.52 (0.39, 0.70) 

Walking pace 
Slow (ref.) 11 
Steady ■ 0.68 (0.57, 0.81) 
Brisk ■ 0.51 (0.41, 0.63) 

Stair climbing frequency 
None (ref.) 11 
1-5 times - 0.87 (0. 70, 1.07) -
6-10 times - 0.83 (0.67, 1.01) -
11-15 times ■ 0.63 (0.50, 0.81) 
>15 times ■ 0.76 (0.60, 0.98) 

TV watching time 
0-1 hours (ref.) 11 
2-3 hours - 1.09 (0.90, 1.31) -
>3 hours ■ 1.28 (1.05, 1.56) 

Tea intake 
Non drinker (ref.) 11 
<1-2 cups/day ■ 0.69 (0.57, 0.84) 
3-4 cups/day ■ 0.73 (0.60, 0.87) 
>4 cups/day ■ 0. 73 (0.61, 0.87) 

Coffee intake 
Non drinker (ref.) 11 
<1-2 cups/day ■ 0.79 (0.68, 0.92) 
3-4 cups/day - 0.84 (0.69, 1.01) -
>4 cups/day - 0.94 (0. 76, 1.16) -

Bread type 
White (ref.) 11 
Brown ■ 0. 73 (0.59, 0.91) 
Wholemeal/Wholegrain ■ 0. 79 (0.69, 0.91) 
Other types - 0.94 (0.69, 1.28) -

Major dietary changes 
No (ref.) 11 
Yes, due to illness ■ 1.33 (1.12, 1.58) 
Yes, other reasons - 0.89 (0.77, 1.03) -
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Feature HR(95% Cl) 

Self-rated health 

Excellent (ref.) • 
Good 1.22 (0.97, 1.54) 

Fair 1.70 (1.32, 2.18) 

Poor 2.47 (1.82, 3.36) 

Long-standing illness - 1.74 (1.53, 1.97) 

Treatment/medications taken 

None (ref.) • 
1-3 i--- 1.19 (0.99, 1.42) 

>3 - 2.11 (1.74, 2.56) 

Pain(s) experienced last month - 1.29 (1.13, 1.49) 

Disease outcomes 

Wheeze/whistling - 1.34 (1.16, 1.54) 

Lobar pneumonia (J18.1) 3.89 (3.07, 4.91) 

Pneumonia (J18) - 2.71 (2.24, 3.27) 

Other COP□ (J44) 1.71 (1.36, 2.16) 

Type 2 diabetes - 1.74 (1.46, 2.07) 

Essential hyptertension (110) - 1.59 (1.39, 1.82) 

Pure hypercholesterolemia (E78.0) - 1.43 (1.23, 1.67) 

Circulatory system diseases (Z86.7) - 1.97 (1.64, 2.37) 

Disorders of urinary system (N39) - 1.91 (1.60, 2.29) 

Anemia (064.9), primary/secondary 0.95 (0.70, 1.28) 

Nausea and vomiting (R 11) 2.15 (1.70, 2.70) 

Lipoprotein metabolism disorders (E78) - 1.25 (1.09, 1.43) 

Depressive episode (F32.9) ■ 2.12 (1.70, 2.65) 

Psychoactive substance abuse (Z86.4) - 1.67 (1.41, 1.97) 
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