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S1. Key Statistics 

The standard additive GWAS model estimates coefficient b from the linear regression of quantitative 

phenotype on genetic variant x, written as: 

y = bx + e   . 

The sampling variance 𝜎𝑏
2 (i.e. the squared standard error, SE) of the b estimate is given as 

𝜎𝑏
2 = (𝑆𝐸𝑏)2 =  

𝜎𝑒
2

𝜎𝑥
2𝑛

=  
𝜎𝑦
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2(𝑏2)

𝜎𝑥
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   , 

where 𝜎𝑒
2 is the residual variance of y, n is the sample size, 𝜎𝑦

2 is the variance of y, and 𝜎𝑥
2 is the variance 

of the variant. Without loss of generality, we assume that y and x have each been standardized to mean 0, 

and standard deviation 1. The sampling variance 𝜎𝑏
2 of the b estimate therefore reduces to 

𝜎𝑏
2 = (𝑆𝐸𝑏)2 =  

𝜎𝑒
2

𝑛
=  

1 − 𝑏2

𝑛
   . 

Because GWAS effect sizes for complex traits are extremely small, the sampling variance can be closely 

approximated by 

𝜎𝑏
2 = (𝑆𝐸𝑏)2 ≈

1

𝑛
   . 

Finally, the Z statistic for b is equal to the ratio of b to its SE, such that 

𝑍 =
𝑏

𝑆𝐸
=

𝑏

1/√𝑛 
= √𝑛 𝑏   . 



 

S2. Relation between Inverse Variance Weighted Meta-Analysis and Meta-Analysis of Z Statistics 

Next, we consider two commonly used fixed meta-analysis approaches for combining GWAS data. In this 

section, we do not consider corrections for sample overlap that have sometimes been implemented, as 

such corrections are not directly germane to this comparison. (Also note that such corrections are more 

commonly necessary when meta-analyzing data across multiple case-control GWAS samples, as opposed 

to meta-analyzing GWAS with GWAX data, which is the focus here.) 

Inverse Variance Approach 

The inverse variance weighted approach can be considered an explicit method, in that it directly combines 

effect size estimates, b, across k sets of GWAX and/or GWAS summary statistics. This approach can be 

written as the weighted average of regression coefficients, with weights 𝑤𝑘 =
1

𝜎𝑏𝑘
2 = 𝑛𝑘, such that 
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   , 

where 𝑏𝑖𝑛𝑣 𝑣𝑎𝑟 is the meta-analytic estimate of b, and ∑( ) refers to the summation of the relevant terms 

across each set of summary statistics. Because this approach weighs estimates by the inverse of their 

squared standard error, it provides greater weight to more precise estimates.  

The standard error of the inverse variance weighted meta-analytic estimate is given as 

𝑆𝐸𝑏𝑖𝑛𝑣 𝑣𝑎𝑟
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   , 

such that the Z statistic is 

𝑍𝑖𝑛𝑣 𝑣𝑎𝑟 =  
𝑏𝑖𝑛𝑣 𝑣𝑎𝑟
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Z Statistic Approach 



A second common approach for meta-analysis of GWAX and/or GWAS summary statistics uses Z 

statistics and sample sizes at the input. (This approach also accommodates p values, so long as the 

direction of effect is known, as such information can be used to back out the relevant Z statistics).  

The Z statistic approach can be considered an indirect method, in that although Z and n are taken as the 

input, this approach is mathematically equivalent to an inverse variance weighed meta-analysis of 

standardized linear regression estimates across datasets. This approach is popularly implemented in 

METAL software1, and serves as the basis for the multivariate GWAS meta-analysis of AD introduced in 

Jansen et al.2 and used in the most recent AD GWAS-GWAX meta-analysis by Wightman et al.3. It can 

be written as the weighted average of Z statistics, with weights 𝑤𝑘 = √𝑛𝑘. 

𝑍𝑍 𝑆𝑡𝑎𝑡 =
∑ 𝑤𝑘  𝑍𝑘

√∑ 𝑤𝑘
2
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∑ √𝑛𝑘  𝑍𝑘

√∑ 𝑛𝑘

   . 

Recalling that 𝑍 = √𝑛 𝑏 , we therefore have 

𝑍𝑍 𝑆𝑡𝑎𝑡 =  
∑ √𝑛𝑘  𝑍𝑘
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   , 

which is equivalent to the Z statistic for the inverse variance weighted meta-analysis (𝑍𝑖𝑛𝑣 𝑣𝑎𝑟) that is 

given above. Thus, the Z statistic approach to meta-analysis is equivalent to an inverse variance weighted 

meta-analysis of standardized regression coefficients. This equivalence can further be seen as follows 
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   . 

Binary Phenotypes 

The above derivations are developed specifically for linear regression, and thus are most relevant to the 

analysis of continuously distributed quantitative phenotypes. When the phenotype under investigation is a 

binary “all-or-nothing” phenotype, taking on one of two values (e.g. 0 or 1), such as a case-control 



phenotype, a logistic regression is more appropriate for relating the effect of the variant on the 

unobserved continuous liability for the binary outcome. However, in the context of GWAS of complex 

traits where individual SNP effects are extremely small, the regression coefficient for the logistic 

regression of the binary phenotype on the standardized variant (𝑏𝑙𝑜𝑔𝑖𝑡 𝑆𝑇𝐷𝑋) can be closely approximated 

from the coefficient from the linear regression of the standardized binary phenotype on the standardized 

variant X (𝑏𝑙𝑖𝑛𝑒𝑎𝑟 𝑆𝑇𝐷) as follows4,5 

𝑏𝑙𝑜𝑔𝑖𝑡 𝑆𝑇𝐷𝑋 ≈
𝑏𝑙𝑖𝑛𝑒𝑎𝑟 𝑆𝑇𝐷

√𝑣(1 − 𝑣)
   , 

𝜎𝑏𝑙𝑜𝑔𝑖𝑡 𝑆𝑇𝐷𝑋

2 ≈
𝜎𝑏𝑙𝑖𝑛𝑒𝑎𝑟 𝑆𝑇𝐷

2

𝑣(1 − 𝑣)
=  

1

𝑣(1 − 𝑣)𝑛
   , 

where v is the proportion of cases, such that v(1-v) is the observed variance of the binary phenotype. Note 

that in this section we use notation to make explicit whether a regression coefficient represents a linear or 

logistic coefficient, and whether it is fully standardized (STD) or only standardized with respect to the 

genetic predictor (STDX), as these distinctions are critical to proper interpretation and application of the 

formulae presented. 

The fully standardized coefficient (𝑏𝑙𝑖𝑛𝑒𝑎𝑟 𝑆𝑇𝐷) for the linear regression of a binary trait on a variant, is 

sometimes referred to as representing the “observed scale,” and is the basis for the concept of observed 

scale heritability. Thus, a key interpretational consideration when using the Z statistic approach to meta-

analyze binary phenotypes, is that this approach is equivalent to an inverse variance weighted meta-

analysis of standardized linear regression coefficients, where coefficients are standardized with respect to 

the observed variance of the binary phenotype, i.e. v(1-v), where v is the proportion of cases in the 

corresponding GWAS, rather than the variance of the continuous liability for binary phenotype.  

However, using the approximations given above, we can specify the Z Statistic approach in terms of 

logistic regression coefficients instead of standardized linear regression coefficients, as 
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where 𝑤𝑘 = (𝑣𝑘(1 − 𝑣𝑘)𝜎𝑏𝑙𝑜𝑔𝑖𝑡 𝑆𝑇𝐷𝑋𝑘

2 )
−1

. Thus, the Z statistic approach will approximate a meta-analysis 

of a study-specific transformation of the logistic regression coefficient (specifically, the logistic 

coefficient multiplied by the standard deviation of the binary phenotype) that is weighted both by the 

inverse sampling variance of the logistic regression coefficients and the inverse variance of the binary 

phenotype.  It may therefore be particularly difficult to interpret the meta-analytic estimate from the Z 

Statistic approach when the GWAS summary statistics being meta-analyzed differ considerably in the 

proportion of cases, as will likely be the case for ascertained studies, as the transformation of the logistic 

regression coefficient will differ for each set of summary statistics. In other words, when case proportions 

differ across sets of summary statistics, the Z Statistic approach amounts to a meta-analysis of arbitrary 

study-specific transformations of the effect sizes of interest. 

In contrast, when applied to logistic regression coefficients (or to linear regression coefficients that have 

already been transformed into logistic regression coefficients) the inverse variance weighted approach to 

meta-analysis of direct GWAS summary data can be straightforwardly interpreted as a direct meta-

analysis of the effect sizes of interest. Using the approximations given above, we can specify this 

approach for logistic regression coefficients that have been standardized with respect to the genetic 

variant X as follows  

𝑏𝑙𝑜𝑔𝑖𝑡 𝑆𝑇𝐷𝑋𝑖𝑛𝑣 𝑣𝑎𝑟
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   , 

𝑆𝐸𝑏𝑙𝑜𝑔𝑖𝑡 𝑆𝑇𝐷𝑋 𝑖𝑛𝑣 𝑣𝑎𝑟
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1
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   . 

Next, we elucidate how further considerations must be given when, rather than only consisting of direct 

GWAS estimates, the summary statistics being meta-analyzed also consist of GWAX estimates.  We 

focus on the meta-analysis of GWAS and GWAX of quantitative phenotypes, but we note that when the 

GWAS/GWAX phenotypes are binary, the properties given here additionally apply. Note that we address 

issues surrounding the estimation of heritability of binary phenotypes in section S8. 



 

S3. Meta-Analyses Combining GWAX and Direct GWAS Data 

We can write the direct GWAS and proxy GWAS regression equations as 

𝑦𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑏𝐺𝑊𝐴𝑆 𝑥 + 𝑒𝑑𝑖𝑟𝑒𝑐𝑡    , 

𝑦𝑚𝑎𝑡 = 𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 𝑥 + 𝑒𝑦𝑚𝑎𝑡
   , 

𝑦𝑝𝑎𝑡 = 𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 𝑥 + 𝑒𝑦𝑝𝑎𝑡
   , 

where xi is genetic variant; 𝑦𝑑𝑖𝑟𝑒𝑐𝑡 , 𝑦𝑚𝑎𝑡 and 𝑦𝑝𝑎𝑡 are the genotyped individual’s own phenotype, the 

maternal phenotype, and the paternal phenotype, respectively; and 𝑒𝑑𝑖𝑟𝑒𝑐𝑡,𝑖, 𝑒𝑚𝑎𝑡,𝑖 and 𝑒𝑝𝑎𝑡,𝑖 are residuals. 

Without loss of generality, we assume that the ys and xs have each been standardized to mean 0, and 

standard deviation 1, and we assume that the three sets of GWAS/GWAX summary statistics are 

independent (i.e. the data have not been obtained from trios, and there has not been assortment related to 

the maternal and paternal AD phenotypes). 

Consider a data generating model in which the GWAX regression estimate is used to approximate the 

estimate 𝑏𝐺𝑊𝐴𝑆
∗  that would have been obtained under a direct GWAS using the parent’s own genotypes, 

𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 = 𝜆𝑚𝑎𝑡 ∙ 𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑆
∗    , 

𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 = 𝜆𝑝𝑎𝑡 ∙ 𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑆
∗    , 

where the 𝜆𝑠 represent attenuation coefficient that reduces the expected effect size due to the indirect 

nature of the GWAX. The standard GWAX model6 treats 𝜆𝑚𝑎𝑡 = 𝜆𝑝𝑎𝑡 =  .5, reflecting the assumptions 

that offspring are 50% related to the parents on whom they report the phenotype (e.g. disease history) and 

that the phenotype of interest has been measured with equal fidelity in family history report as would be 

obtained in direct case-control GWAS. These assumptions will be violated when a proportion of 

genotyped individuals report on the phenotypes of their step or adoptive parents, when individuals are not 

well-informed about their parents’ phenotype or disease status, when individuals misremember or forget, 

their parent’s diagnoses, when individuals confuse their parent’s phenotypes or diagnoses (e.g. confusing 

delirium for AD) , and/or when the quality of the diagnostics is lower for parent history reports than for 

direct GWAS of carefully screened case-control samples. 

The standard GWAX approach is to multiply naïve GWAX coefficients by 2, in order to produce 

an estimate of the regression coefficient that is on the same scale as that which would have been obtained 

under a direct GWAS. In order to preserve the p value of the estimate, the SE is also multiplied by 2 (the 



correction of the naïve coefficients, after all, cannot produce an increase in power unless the original SEs 

of the naïve coefficients were incorrect). It can be seen that when 𝜆𝑘 =.5, this correction is appropriate: 

�̂�𝐺𝑊𝐴𝑆
∗    = 2 ∙ 𝑏𝐺𝑊𝐴𝑋 = 2 ∙ 𝜆 ∙ 𝑏𝐺𝑊𝐴𝑆

∗ =  2 ∙ .5 ∙ 𝑏𝐺𝑊𝐴𝑆
∗ =  𝑏𝐺𝑊𝐴𝑆

∗    .  

However, it follows that when 𝜆𝑘 is less than .5, then the �̂�𝐺𝑊𝐴𝑆
∗  estimate using this correction will be 

downwardly biased by a factor of 2(.5 − 𝜆𝑘).  

Consider the situation in which the naïve uncorrected version of the GWAX coefficients are 

entered into the inverse weighted variance approach. Assuming  the standard GWAX assumption that 

𝜆𝑚𝑎𝑡 = 𝜆𝑝𝑎𝑡 =  .5, it is clear that this will produce a downwardly biased estimate of b, by virtue of meta-

analyzing the effect size of interest from the direct GWAS with effect sizes that are downwardly biased 

by 50%. This is illustrated as follows 

𝑏𝑖𝑛𝑣 𝑣𝑎𝑟 =  
∑ 𝑤𝑘𝑏𝑘

∑ 𝑤𝑘
=

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 𝑏𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑋

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 
 

=
𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 𝑏𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 ∙ 𝜆𝑚𝑎𝑡 ∙  𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑆

∗  + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 ∙ 𝜆𝑝𝑎𝑡 ∙  𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑆
∗

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 
 

=
𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 𝑏𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 (.5) 𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑆

∗  + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 (.5) 𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑆
∗

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 
 , 

where 𝑤𝑘 =
1

𝜎𝑏𝑘
2 = 𝑛𝑘. In other words, when used with naïve GWAX coefficients, the inverse variance 

weighted approach will produce meta-analytic estimates that are the sample-size weighed average of the 

unbiased direct GWAS and the biased GWAX. For instance, when the sample sizes for the direct GWAS, 

maternal GWAX, and paternal GWAX are equal, and the naïve uncorrected version of the GWAX 

coefficients are entered, 𝑏𝑖𝑛𝑣 𝑣𝑎𝑟 is expected to be two thirds (i.e. 66.6%) the true value, under the 

standard GWAX assumption that 𝜆𝑚𝑎𝑡 = 𝜆𝑝𝑎𝑡 =  .5. Moreover, as 𝑅2 = 𝑏2, in this example 𝑅2 is 

expected to be four ninths (i.e. 44.4%) the unbiased 𝑅2 value. 

When the corrected GWAX coefficients are entered using the standard correction in which the 

coefficients and their standard errors are each multiplied by 2, we have 

𝑏𝑖𝑛𝑣 𝑣𝑎𝑟 =  
∑ 𝑤𝑘𝑏𝑘

∑ 𝑤𝑘
=

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 𝑏𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 2 𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 2 𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑋

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 
 

=
𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 𝑏𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 2 ∙ 𝜆𝑚𝑎𝑡 ∙ 𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑆

∗  + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 2 ∙ 𝜆𝑝𝑎𝑡 ∙ 𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑆
∗

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 
 



It can be seen that the inverse variance approach yields unbiased estimates of b and 𝑅2, so long as the 

standard GWAX assumption that 𝜆𝑚𝑎𝑡 = 𝜆𝑝𝑎𝑡 =  .5 is correct. This can be seen as follows 

𝑏𝑖𝑛𝑣 𝑣𝑎𝑟 =
𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 𝑏𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 2(. 5)𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑆

∗  + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 2(. 5)𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑆
∗

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 
 

=
𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 𝑏𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 𝑏𝑚𝑎𝑡 𝐺𝑊𝐴𝑆

∗  + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑆
∗

𝑤𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 + 𝑤𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 + 𝑤𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 
   . 

However, it can also be seen that when the GWAX assumption is violated, such that that 𝜆𝑚𝑎𝑡 <  .5 

and/or 𝜆𝑝𝑎𝑡 <  .5, the meta-analytic 𝑏𝑖𝑛𝑣 𝑣𝑎𝑟 estimate using the standard correction will be downwardly 

biased by virtue of the constituent corrected GWAX estimates being downwardly biased by a factor of 

2(.5 − 𝜆𝑘). 

Now consider how the Z statistic approach operates with respect to the meta-analysis of GWAS with 

GWAX data. As derived earlier, the Z statistic approach is mathematically equivalent to an inverse 

variance weighed meta-analysis of standardized linear regression estimates across datasets. Because 

conversion of linear regression coefficients from GWAX to GWAS metric requires that the identical 

transformation be performed on the standard errors of the associated regression coefficients, the Z 

statistics associated with this transformation are unchanged. For example in the context of the standard 

correction of GWAX estimates, 

�̂�𝐺𝑊𝐴𝑆
∗    = 2 ∙ 𝑏𝐺𝑊𝐴𝑋 

𝑆𝐸�̂�𝐺𝑊𝐴𝑆
∗ = 2 ∙ 𝑆𝐸𝑏𝐺𝑊𝐴𝑋

 

𝑍�̂�𝐺𝑊𝐴𝑆
∗ =

�̂�𝐺𝑊𝐴𝑆
∗

𝑆𝐸�̂�𝐺𝑊𝐴𝑆
∗

=
2 ∙ 𝑏𝐺𝑊𝐴𝑋

2 ∙ 𝑆𝐸𝑏𝐺𝑊𝐴𝑋

=
𝑏𝐺𝑊𝐴𝑋

𝑆𝐸𝑏𝐺𝑊𝐴𝑋

=  𝑍𝑏𝐺𝑊𝐴𝑋
   . 

Therefore, even when the GWAX effect sizes and standard errors have been transformed, the associated Z 

statistics remain unchanged, and the Z statistic approach to meta-analyzing GWAX together with GWAS, 

whether transformed or untransformed, will be equivalent to an inverse variance weighed meta-analysis 

of uncorrected standardized linear regression estimates across datasets, and will therefore be biased in its 

uncorrected form.  This is concerning in that the Z statistic approach is often considered more appealing 

than the inverse variance weighting approach, as it is commonly assumed that this approach does not 

require effect sizes to be scaled to the same metric across sets of summary statistics. This may generally 

be the case when the summary statistics being combined are from direct GWAS of quantitative 

phenotypes. For instance, the Z statistic approach would allow summary statistics from GWAS of 



unstandardized phenotypes to be combined with those of GWAS of standardized phenotypes without first 

requiring the unstandardized estimates to be standardized.  However, in order to conduct an unbiased 

meta-analysis of GWAX together with direct GWAS using the Z statistic approach, the sample size for 

the GWAX must be divided by the square of the correction factor, such that in the context of the standard 

correction factor of 2 (corresponding to 𝜆 = .5), the sample size is divided by 4. This can be observed by 

considering how b in inferred from Z and n. 

𝑏 =
𝑍

√𝑛 
   , 

𝜆 ∙ 𝑏 =
𝜆 ∙ 𝑍

√𝑛 
=

𝑍

1
𝜆

∙ √𝑛 
=

𝑍

√(
𝑛
𝜆2) 

   , 

 

2𝑏 =
2 ∙ 𝑍

√𝑛 
=

𝑍

. 5 ∙ √𝑛 
=

𝑍

√. 25 ∙ 𝑛 
   . 

Note that transforming the naively-weighted Z statistics approach into a meta-analytic regression 

coefficient using the pooled version of the corrected n will be insufficient for fully removing bias of this 

approach, as the corrected n must be used to form the weights for the constituent summary statistics being 

meta-analyzed. 

 

S4. SNP Heritability and Genetic Covariance in Relation to GWAS and GWAX 

Consider a population model in which K phenotypes and M SNPs are measured in N individuals, and 

modeled according to the hypothetical multivariate multiple regression model: 

𝐘 = 𝐗𝐁 + 𝐄 

where Y is an N× K matrix of standardized scores for person i on phenotype k, X is an N×M matrix of 

standardized genotypes for person i on SNP j, B is an M×K matrix of true genotype effect sizes for SNP j 

on phenotype k, and E is an N×K matrix of residuals for person i on phenotype k. Under this framework, 

the SNP heritability (ℎ𝑆𝑁𝑃
2 ) of phenotype k is defined as the multiple R2 from its multiple regression on 

the M SNPs using the true values of the vector of coefficients, bk, contained within B, and genetic 

covariance between any pair of phenotypes is defined as the covariance between the expected values of 

the phenotypes on the basis of both the M genotypes and the corresponding vectors (𝐛𝐤) of true 

regression coefficients contained within B.  



We can straightforwardly observe the effect of using GWAX data to estimate  ℎ2 for phenotype k.  Given 

the M×M linkage disequilibrium matrix, L, containing the correlations among genetic variants, and the 

vector of true effect sizes 𝐛𝐤, the multiple R2 for the population model can be expressed as 

ℎ2 = 𝑅𝑝𝑜𝑝 𝐺𝑊𝐴𝑆
2 = 𝐛𝐤

′ 𝐋𝐛k   . 

Given the indirect nature of the GWAX, the vector 𝐛𝐤 of genetic effects on 𝐲𝐤 is reduced by a factor of 𝜆 

such that 

ℎ𝐺𝑊𝐴𝑋
2 = 𝑅𝑝𝑜𝑝 𝐺𝑊𝐴𝑋

2 = (𝜆𝐛𝐤)′𝐋(𝜆𝐛𝐤) =  𝜆2(𝐛𝐤
′ 𝐋𝐛𝐤) =  𝜆2ℎ𝑆𝑁𝑃

2    . 

Thus, SNP heritability, as estimated from GWAX data, is expected to be reduced by a factor of 𝜆2, unless 

a correction is made. For instance, under the standard GWAX assumption that λ = .5, uncorrected 

GWAX estimates of SNP heritability are expected to be one quarter the size of the true SNP heritability, 

such that the naïve estimate of SNP heritability from GWAX, ℎ𝑆𝑁𝑃 𝐺𝑊𝐴𝑋
2 , must  be quadrupled to produce 

an unbiased estimate of ℎ𝑆𝑁𝑃
2 . 

As the genetic covariance (𝜎𝑔) between two phenotypes can be expressed of the genetic correlation 

(𝑟𝑔) expressed in the metric of their heritability’s (ℎ1
2 and ℎ2

2), a similar attenuation also applies to genetic 

covariance. In other words, for phenotypes 1 and 2, the genetic covariance is  

𝜎𝑔 = 𝑟𝑔√ℎ1
2√ℎ2

2   , 

such that 

𝜎𝑔 𝐺𝑊𝐴𝑋 = 𝑟𝑔√𝜆1
2ℎ1

2√𝜆2
2ℎ2

2  =  λ1λ2𝑟𝑔√ℎ1
2√ℎ2

2   =  λ1λ2𝜎𝑔.   

For instance, under the standard GWAX assumption that λ1 = λ2 = .5, uncorrected GWAX estimates of 

genetic covariance are expected to be one quarter the size of the true genetic covariance. 

In practice, heritability and genetic covariance can be estimated from GWAS summary data using LD 

Score Regression (LDSC), which treats regression coefficients as phenotype-specific random effects, 

varying over SNPs7,8.  The values are estimated by regressing the product of Z statistics for the linear 

regression of phenotypes 1 and 2 on SNP j on the LD score of SNP j and solving for 𝜎𝑔, as follows 

 

𝐸[𝑧1𝑗𝑧2𝑗] = √𝑁1𝑁2

𝜎𝑔

𝑀
ℓ(𝑗) +

𝜌𝑁𝑠

√𝑁1𝑁2

+ 𝑎   , 



where N1 and N2 are the sample sizes for phenotypes 1 and phenotypes 2, M is the number of SNPs, ℓ(j) is 

the LD score of SNP j (that is, the sum of squared correlations between the SNP and all other SNPs), Ns is 

the number of individuals included in both GWAS samples, ρ is the phenotypic correlation within the 

overlapping samples, and a is a term representing unmeasured sources of confounding such as shared 

population stratification across GWASs. Note that when the z statistics for the same phenotype are double 

entered into the left-hand side of the above equation, such that 𝐸[𝑧1𝑗𝑧2𝑗] becomes 𝐸[𝑧𝑗
2] = 𝐸[𝜒𝑗

2], the 

equation reduces to the univariate S-LDSC model, and 𝜎𝑔 becomes an estimate of ℎ𝑆𝑁𝑃
2 . A particular 

strength of LDSC is that it produces estimates of 𝜎𝑔 and ℎ𝑆𝑁𝑃
2  that are robust to biases that would otherwise 

result from sample overlap and population stratification7–9. 

In the next section we introduce a multivariate method for empirically estimating the λ attenuation 

coefficients using a combination of GWAX and direct GWAS summary data. Our method, based in 

Genomic Structural Equation Modelling, simultaneously estimates and incorporates these λ terms while 

estimating heritability and genetic covariance, and can be used to directly compute λ-corrected meta-

analytic summary statistics for individual variants. Our method does not require manual correction of 

summary statistics for λ, either by multiplying GWAX effect sizes and their standard errors by a correction 

factor or by correcting the sample size entered into LDSC. However, it may be instructive to consider how 

such a correction might be made in the context of the GWAX model, we describe how such a manual 

correction can be made when estimating 𝜎𝑔 (and ℎ𝑆𝑁𝑃
2  in the case of univariate LDSC). Simply put, because 

𝜎𝑔 1,2 is expected to be biased by a factor of λ1λ2, we can produce a manually corrected version of LDSC 

by entering 𝜆1
2𝑁1 in place of 𝑁1 and 𝜆2

2 𝑁2in place of 𝑁2. The slope of the LDSC regression equation 

becomes 

√𝜆1
2𝑁1𝜆2

2 𝑁2

𝜎𝑔

𝑀
=  λ1λ2√𝑁1𝑁2

𝜎𝑔

𝑀
  . 

Thus, under the standard GWAX assumption that λ1 = λ2 = .5, when the sample sizes associated GWAX 

summary data are entered at one quarter their actual value, the 𝜎𝑔 term is correctly estimated at four times 

larger than it would be under the naïve, uncorrected, LDSC model.  

 

S5. A Relaxed Multivariate Model for Combining GWAS with GWAX 

Consider a data generating model introduced earlier, in which summary data are available from three 

sources, direct GWAS, maternal GWAX, and paternal GWAX. We describe this model in terms of linear 

GWAS and GWAX of quantitative phenotypes, but this description straightforwardly generalizes to 



binary phenotypes using the liability scale estimates of 𝜎𝑔 and ℎ𝑆𝑁𝑃
2  and logistic regression coefficients 

(or linear probability model coefficients that have been rescaled to logistic regression coefficients)4,5,10. 

We can write a model in which the total genetic propensity toward the phenotype F is specified to affect 

the direct GWAS phenotype and two GWAX phenotypes according to the following system of regression 

equations 

[

𝑌𝑑𝑖𝑟𝑒𝑐𝑡

𝑌𝑚𝑎𝑡

𝑌𝑝𝑎𝑡

] = [

𝜆𝑑𝑖𝑟𝑒𝑐𝑡

𝜆𝑚𝑎𝑡

𝜆𝑝𝑎𝑡

] 𝐹 + [

𝑢𝑑𝑖𝑟𝑒𝑐𝑡

𝑢𝑚𝑎𝑡

𝑢𝑝𝑎𝑡

]   ,  

or more compactly as  

𝑌 = ΛF + U   , 

where, Y constitutes the measured phenotypes, Λ is a vector of attenuation coefficients relating the latent 

genetic propensity toward the phenotype of interest to measured phenotypes, and U constitutes residual 

genetic propensities toward each of the measured phenotypes that are independent of F, and uncorrelated 

with one another and with F. 

Using standard linear structural relations (LISREL) notation11, the covariances among the independent 

variables in the model can be specified as two covariance matrices. The covariance matrix Ψ represents 

the covariances among the factors, and in this case contains a single element, representing the variance of 

F, i.e. 𝜎𝐹
2.  The covariance matrix Θ represents the covariances among the residuals, U, and in this case is 

a 3×3 diagonal matrix with diagonal elements 𝜎𝑢𝐷𝑖𝑟𝑒𝑐𝑡
2 , 𝜎𝑢𝑀𝑎𝑡

2 , and 𝜎𝑢𝑃𝑎𝑡
2  . 

Under this model, the expected genetic covariance matrix for 𝑌𝐷𝑖𝑟𝑒𝑐𝑡, 𝑌𝑀𝑎𝑡, and 𝑌𝑃𝑎𝑡 is given as 

 Σ = ΛΨΛ′ + Θ. 

Estimating ℎ𝑆𝑁𝑃
2  using the assumptions of the standard GWAX approach is equivalent to assuming that 

[𝜆𝑑𝑖𝑟𝑒𝑐𝑡 𝜆𝑚𝑎𝑡 𝜆𝑝𝑎𝑡] =  [1 . 5 . 5] and  [𝜎𝑢𝑑𝑖𝑟𝑒𝑐𝑡
2 𝜎𝑢𝑚𝑎𝑡

2 𝜎𝑢𝑝𝑎𝑡
2 ] =  [0 0 0], and estimating 𝜎𝐹

2. 

This can be achieved in the Genomic SEM framework by first estimating the empirical genetic covariance 

matrix S using a multivariate version of LDSC and subsequently estimating the free model parameters to 

minimize the discrepancy between Σ and S using a fit function, such as the weighted least squares (WLS) 

fit function described in Grotzinger et al.5, which takes into account the full sampling covariance matrix 

of the elements within S (labelled V). This is an overidentified model, and may thus incur misfit. 

However, we are able to relax the above assumptions by freely estimating the Λ terms. We can specify the 

model to estimate all terms, with the minimal identification constraint that 𝜆𝑑𝑖𝑟𝑒𝑐𝑡 = 1 such that the factor 



takes on the scale of the direct GWAS phenotype, and 𝜎𝐹
2 can be interpreted as an unbiased estimate of 

ℎ𝑆𝑁𝑃
2  of the meta-analyzed phenotype in the direct GWAS metric, with the departure of 𝜆𝑚𝑎𝑡 and 𝜆𝑝𝑎𝑡 

from .5 indicating departure of the empirical data from the standard GWAX model. (Alternatively, we can 

specify the model with the minimal identification constraint that 𝜎𝐹
2 = 1, such that the variance of the 

latent factor F is standardized, and the freely estimated term 𝜆𝐷𝑖𝑟𝑒𝑐𝑡 can be interpreted as an unbiased 

estimate of √ℎ𝑆𝑁𝑃
2  of the meta-analyzed phenotype in the direct GWAS metric, and 𝜆𝑚𝑎𝑡 and 𝜆𝑝𝑎𝑡 

representing the attenuation coefficients rescaled to the √ℎ𝑆𝑁𝑃
2  metric, such that departure of 

𝜆𝑚𝑎𝑡/𝜆𝑑𝑖𝑟𝑒𝑐𝑡 and 𝜆𝑝𝑎𝑡/𝜆𝑑𝑖𝑟𝑒𝑐𝑡 from .5 indicates departure of the empirical data from the standard GWAX 

model). This is a 0 df model that is just identified. This factor model implies the following equalities with 

respect to the genetic covariances as a function of the model parameters 

𝜎𝑑𝑖𝑟𝑒𝑐𝑡,𝑚𝑎𝑡 =  𝜆𝑑𝑖𝑟𝑒𝑐𝑡𝜎𝐹
2𝜆𝑚𝑎𝑡   , 

𝜎𝑑𝑖𝑟𝑒𝑐𝑡,𝑝𝑎𝑡 =  𝜆𝑑𝑖𝑟𝑒𝑐𝑡𝜎𝐹
2𝜆𝑝𝑎𝑡   , 

𝜎𝑚𝑎𝑡,𝑝𝑎𝑡 =  𝜆𝑚𝑎𝑡𝜎𝐹
2𝜆𝑝𝑎𝑡  . 

When we impose the minimal identification constraint 𝜆𝐷𝑖𝑟𝑒𝑐𝑡 = 1 to set the metric of F (such that 𝜎𝐹
2 

becomes an estimate of ℎ𝑆𝑁𝑃
2  in the direct GWAS metric), and solve for the model parameters as a 

function of the genetic covariances, amounting to a version of Spearman’s method of triads12,13, we obtain 

𝜎𝐹
2 =

 𝜎𝑑𝑖𝑟𝑒𝑐𝑡,𝑚𝑎𝑡 ∙ 𝜎𝑑𝑖𝑟𝑒𝑐𝑡,𝑝𝑎𝑡

𝜎𝑚𝑎𝑡,𝑝𝑎𝑡
    , 

𝜆𝑚𝑎𝑡 =
 𝜎𝑚𝑎𝑡,𝑝𝑎𝑡

𝜎𝑑𝑖𝑟𝑒𝑐𝑡,𝑝𝑎𝑡
   , 

𝜆𝑝𝑎𝑡 =
 𝜎𝑚𝑎𝑡,𝑝𝑎𝑡

𝜎𝑑𝑖𝑟𝑒𝑐𝑡,𝑚𝑎𝑡
   . 

An important observation from the above is that, although the factor F has been specified to take on the 

metric of the direct GWAS, the estimate of 𝜎𝐹
2 is not specifically or exclusively informed by the SNP 

heritability estimate from the direct GWAS, but rather by the estimates of genetic covariance between all 

three indicators (Ydirect, Ymat, and Ypat). In fact, the heritability of each indicator only directly informs the 

residual genetic variances, i.e. the SNP heritability of each indicator that is not explained by the common 

factor F. This can be seen as follows: 

𝜎𝑢𝑑𝑖𝑟𝑒𝑐𝑡
2 = 𝜎𝑌𝑑𝑖𝑟𝑒𝑐𝑡

2 − 𝜎𝐹
2   , 



𝜎𝑢𝑚𝑎𝑡
2 = 𝜎𝑌𝑚𝑎𝑡

2 − 𝜆𝑚𝑎𝑡
2 ∙ 𝜎𝐹

2   , 

𝜎𝑢𝑝𝑎𝑡
2 = 𝜎𝑌𝑝𝑎𝑡

2 − 𝜆𝑝𝑎𝑡
2 ∙ 𝜎𝐹

2   . 

One somewhat constrained version of the model that may be desirable is to fix the 𝜎𝑢𝐷𝑖𝑟𝑒𝑐𝑡
2  parameter to 0 

a priori, in order to prioritize the direct GWAS as a direct manifestation of the genetic signal of interest. 

As shown in the Supplement of Grotzinger et al.5, such a specification closely resembles the MTAG 

model14.  Allowing 𝜎𝑢𝑑𝑖𝑟𝑒𝑐𝑡
2 to be freely estimated allows for the possibility that the direct GWAS, like the 

GWAX, may contain ancillary genetic signal that is not shared across the three indicators (we discuss this 

topic further under The Heterogeneity Coefficient, QSNP below). In our analysis of AD, we freely estimate 

𝜎𝑢𝑑𝑖𝑟𝑒𝑐𝑡
2 and find it to be ~0. 

 

S6. Using the Multivariate Model to Generate Variant-Specific Meta-Analytic Estimates 

The multivariate Genomic SEM approach can be used to perform GWAS-GWAX meta-analysis relaxing 

the conventional assumptions that [𝜆𝑑𝑖𝑟𝑒𝑐𝑡 𝜆𝑚𝑎𝑡 𝜆𝑝𝑎𝑡] =  [1 . 5 . 5] in order to produce variant-

level summary statistics. Such a multivariate GWAS approach is accomplished by freely estimating 

parameters from a series of models (one per genetic variant) in which the unmeasured variable F, is 

regressed on the variant. This model is identified by relying the summary data for direct GWAS and 

maternal and paternal GWAX, which contain estimates from each of the following equations 

𝑦𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑏𝑑𝑖𝑟𝑒𝑐𝑡  𝑥 + 𝑒𝑑𝑖𝑟𝑒𝑐𝑡   , 

𝑦𝑚𝑎𝑡 = 𝑏𝑚𝑎𝑡 𝑥 + 𝑒𝑦𝑚𝑎𝑡
   , 

𝑦𝑝𝑎𝑡 = 𝑏𝑝𝑎𝑡 𝑥 + 𝑒𝑦𝑝𝑎𝑡
   . 

The estimates from these three equations are used to expand the LDSC-estimated S matrix containing 

genetic covariances, to also include variant-phenotype covariances (if the variant x is standardized, such 

that the b estimates are themselves standardized, then the b estimates are equal to the variant-phenotype 

covariances; if the variant x is not standardized, then multiplying the b estimate by the 2MAF(1-MAF), 

can be used to compute the corresponding variant-phenotype covariance). As described in Grotzinger et 

al.5, the associated sampling covariance matrix of S is also expanded using cross-trait intercepts from 

LDSC in order to take any potential sample overlap (known or unknown) and/or shared stratification 

implied by the LDSC model into account. A model is then fit to the expanded S and V matrices that 

simultaneously estimates the terms in the Λ vector (using the minimal identification constraint 𝜆𝐷𝑖𝑟𝑒𝑐𝑡 =



1 in order to define the metric of F, as described earlier) and regresses F on the individual variant. This 

model is composed of the following two sets of equations. 

𝑌 = ΛF + U   ,    

𝐹 = 𝛾𝑥 + 𝑒   ,  

where 𝛾 is an unstandardized regression coefficient and e is a residual. This model implies that  

𝑏𝑑𝑖𝑟𝑒𝑐𝑡 = 𝜆𝑑𝑖𝑟𝑒𝑐𝑡 ∙ 𝛾   ,    

𝑏𝑚𝑎𝑡 = 𝜆𝑚𝑎𝑡 ∙ 𝛾   ,    

𝑏𝑝𝑎𝑡 = 𝜆𝑝𝑎𝑡 ∙ 𝛾   . 

Intuitively, the estimation of 𝛾 can be conceived of as a WLS regression of the b effects from the three 

original GWAS on Λ, with the regression intercept fixed to 0, and reflects the meta-analytic estimate for 

the effect of the genetic variant on the target phenotype, disattenuating the direct GWAS, maternal 

GWAX, and paternal GWAX summary data based on the Λ terms, and weighting by the precision of their 

estimates. Thus, when the minimal identification constraint  𝜆𝑑𝑖𝑟𝑒𝑐𝑡 = 1 is imposed, the WLS regression 

coefficient (which reflects the expected magnitude of b per 1 unit increase in 𝜆 from 0) can be interpreted 

as the meta-analytic estimate of the three sets of summary statistics, scaled relative to the direct GWAS. 

As explicated in section S3, the effective sample size for the direct GWAS and GWAX can be calculated 

as the observed sample size multiplied by the square of the corresponding attenuation factor (𝜆). Thus, 

under conditions of no sample overlap, the effective sample size for the summary statistics produced 

under the multivariate model introduced here, can be calculated as 

𝑁𝑒𝑓𝑓 = 𝜆𝑑𝑖𝑟𝑒𝑐𝑡
2 𝑛𝑑𝑖𝑟𝑒𝑐𝑡 + 𝜆𝑚𝑎𝑡

2 𝑛𝑚𝑎𝑡 + 𝜆𝑝𝑎𝑡
2 𝑛𝑝𝑎𝑡   . 

For case-control traits, we may use this formula to calculate effective sample size for cases (substituting 

the corresponding number of cases for each constituent n), so as to obtain a sensible estimate of the 

effective proportion of cases in the sample when computing liability scale heritability. 

 

S7. The Heterogeneity Coefficient, QSNP 

The model introduced in S5 allows for the possibility that each of the three sets of phenotypes (direct 

GWAS and two GWAX) is influenced by some genetic factors that are not shared across the three of 

them. This would be indicated in the empirical LSDC-estimated genetic correlation matrix (i.e. the 



standardized version of the S matrix) by off-diagonal elements less than 1.0, and in the model parameters 

as diagonal elements of Θ greater than 0. When this is the case, we expect to find some SNPs for which 

the regression coefficient on F does not well account for its pattern of associations with the three 

phenotypes. This will arise, for example, when a SNP has associations with only a subset of phenotypes, 

or the SNP has an association with some phenotypes incremental of its association with the general 

phenotype. For example, reports of parental AD history data may confuse other cognition-impairing 

disorders for AD at substantially higher rates than such disorders are mistaken for AD in the direct 

GWAS (which employ more rigorous diagnostic criteria to case ascertainment). In this example, genetic 

signal, e.g. for delirium, might be present in the GWAX summary data but not the direct GWAS data.  

We can conceptualize the observed data as being generated by a model in which the total effect of a 

variant on a GWAS or GWAX indicator consists of a component that is mediated by the factor F, and 

(potentially) a component that occurs directly on the indicator and is unique of F, such that 

𝑏𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝑊𝐴𝑆 = 𝜆𝑑𝑖𝑟𝑒𝑐𝑡 ∙ 𝛾   (+ 𝑏𝑢 𝑑𝑖𝑟𝑒𝑐𝑡)  , 

𝑏 𝑚𝑎𝑡 𝐺𝑊𝐴𝑋 = 𝜆𝑚𝑎𝑡 ∙ 𝛾   (+ 𝑏𝑢 𝑚𝑎𝑡)  , 

𝑏𝑝𝑎𝑡 𝐺𝑊𝐴𝑋 = 𝜆𝑝𝑎𝑡 ∙ 𝛾  (+ 𝑏𝑢 𝑝𝑎𝑡)  ,    

where the 𝜆s represent attenuation coefficient that reduces the expected effect size due to the indirect 

nature of the GWAX, and 𝑏𝑢s represent the unique effects of the variant on the individual indicators We 

cannot simultaneously estimate 𝛾 along with all three b terms, as such a model is not locally identified 

(there are only 3 pieces of information regarding associations with the genetic variant, but we would like 

to estimate 4 such parameters). We therefore capitalize on the QSNP statistic to identify variants displaying 

patterns of heterogeneity, i.e. variants whose empirical patterns of association with the three 

GWAS/GWAX phenotypes depart from expectations of the factor model. As detailed by Grotzinger et 

al.5, and de la Fuente et al.15, QSNP is variant-specific chi squared distributed test statistic that indexes the 

difference in fit between the model described in section S6, in which the variant only affects the three 

indicators by way of its effect on F, and a model in which the variant directly effects the three indicators. 

We term the former model a common pathway model, and the latter model an independent pathways 

model. Significant QSNP statistics indicate that expectations of the common pathway model are violated, 

and that the variant operates heterogeneously across the three indicators. 
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