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Abstract  45 

Current methods to evaluate gene-by-environment (GxE) interactions on biobank-scale datasets 46 

are limited. MonsterLM enables multiple linear regression on genome-wide datasets, does not 47 

rely on parameters specification and provides unbiased estimates of variance explained by GxE 48 

interaction effects. We applied MonsterLM to the UK Biobank for eight blood biomarkers 49 

(N=325,991), identifying significant genome-wide interaction variance with waist-to-hip ratio 50 

for five biomarkers, with variance explained by interactions ranging from 0.11 to 0.58. 48% to 51 

94% of GxE interaction variance can be attributed to variants without significant marginal 52 

association with the phenotype of interest. Conversely, for most traits, >40% of interaction 53 

variance was explained by less than 5% of genetic variants. We observed significant 54 

improvements in polygenic score prediction with incorporation of GxE interactions in four 55 

biomarkers. Our results imply an important contribution of GxE interaction effects, driven 56 

largely by a restricted set of variants distinct from loci with strong marginal effects. 57 

  58 
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Introduction 59 

Identifying gene-by-environment (GxE) interactions is difficult because individual interaction 60 

effects are expected to be small1, the multiple hypothesis burden is considerable2,3, and the 61 

sample sizes needed are correspondingly large4. Most previous analyses have focused on 62 

identifying interactions with variants marginally associated with a phenotype of interest5,6. 63 

Hitherto, methods developed to estimate the overall effect of these interactions rely on variance 64 

component methods, due to the predictor (m) > observation (n) problem, where single nucleotide 65 

polymorphisms (SNPs) (m) vastly outnumber the participants (n)7,8. These methods are 66 

advantageous for smaller datasets; however, they can be limited when applied to larger datasets 67 

due to computational burden7. Furthermore, variance component methods depend on strong 68 

assumptions about the underlying genetic model and often require a priori specification of 69 

parameters and/or hyper-parameters, such as polygenicity, minor allele frequency (MAF), and 70 

linkage disequilibrium (LD) dependence9–13. While never formally tested in the context of GxE 71 

interactions, it has previously been shown these assumptions can lead to important biases in 72 

heritability estimates 9–11,14–18. Novel methods are thus needed to enable fast and unbiased 73 

calculations of the variance explained (R2) by GxE interactions in large samples, on multiple 74 

traits and without the need for genetic model assumptions.  75 

 76 

Our method is similar to the generalized random effects (GRE) model19, building on the 77 

observation that the multiple regression coefficient of determination can be used to accurately 78 

estimate heritability19. Extending this observation to include an environmental exposure variable 79 

and computing the interactions between genotypes and the environmental exposure allows us to 80 

examine the variance explained by genetic interactions with an environmental exposure. Using 81 
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linear regression across the genome presents a key problem: there are far more SNPs (m) than 82 

participants (n) in genome-wide studies, and thus it becomes difficult to estimate heritability and 83 

interaction variance20,21. By partitioning the genome into non-overlapping regions, it becomes 84 

possible to estimate genome-wide interactions with environmental exposures by reducing m 85 

within each region to a size where m < n. However, partitioning the genome into large blocks 86 

still presents challenges. First, LD spillage at the junction of blocks can theoretically inflate 87 

heritability estimates if many such junctions exist9. Second, any residual population stratification 88 

effects would be amplified if heritability at each region is overestimated and this effect is 89 

expected to be proportional to the number of blocks22. Third, computing prediction R2 on large 90 

blocks with high dimensionality can be slow. By using the conjugate gradient method23 with 91 

graphics processing unit (GPU) acceleration24, it is possible to perform multiple linear regression 92 

modelling efficiently on large (25,000 SNPs) blocks (Supplementary Table 1). The potential for 93 

residual population stratification effects and LD spills are minimized as only approximately 60 94 

blocks are typically needed for genome-wide analyses and variants are LD-pruned. A block size 95 

of 25,000 SNPs also ensures that n > 10m for accurate estimations.  96 

 97 

We propose a novel method, MonsterLM, to estimate the proportion of variance explained by 98 

GxE interactions for continuous traits, in a fast, accurate, efficient and unbiased manner on 99 

biobank-scale datasets (N>300,000). We hypothesized that GxE interactions contribute 100 

significantly to complex trait variance. Our objective was to quantify and characterize these 101 

contributions for continuous traits. We illustrate an overview of our computational analyses in 102 

Figure 1. 103 

  104 
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Methods 105 

UK Biobank 106 

The UK Biobank is a large population-based study which includes over 500,000 participants 107 

living in the United Kingdom 15,32. Men and women aged 40–69 years were recruited between 108 

2006 and 2010, and extensive phenotypic and genotypic data was collected. We selected 325,991 109 

unrelated British individuals from the UK Biobank with both genotype and biomarker data for 110 

inclusion in the analysis. This study used genetic variants from the ‘V3’ release of the UK 111 

Biobank data including those present in the Haplotype Reference Consortium and 1000 Genomes 112 

panels with imputation quality greater than 0.7, no deviation from Hardy-Weinberg equilibrium 113 

(P>1×10−10) and minor allele frequency greater than 1% 15. Genotype data were filtered by 114 

removing highly correlated SNPs with a LD r2 value of more than 0.9 and removing SNPs with a 115 

MAF of less than 0.01, as the focus of this report is on common variants. After quality control 116 

filtering, there remained 1,031,135 SNPs and 325,991 individuals. Raw genotypes were 117 

normalized to have a mean of zero and variance of one. For the current analysis we examined 118 

eight biomarkers including Apolipoprotein B, Bilirubin, Total Cholesterol, C-reactive protein 119 

(CRP), HbA1c, HDL-Cholesterol, LDL-Cholesterol, Triglycerides and the environmental 120 

exposure, waist-to-hip ratio (WHR).  121 

 122 

For secondary analyses, we randomly partitioned the UK Biobank participants into two sets: a 123 

discovery set containing 80% of the participants used for model building and a validation set 124 

containing the remaining 20% of the participants. This was done to remove the potential for 125 

overfitting that can occur when using derived models on the same datasets for prediction 126 

purposes33.  127 
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 128 

MonsterLM Estimations of Variance Explained by GxE Effects  129 

The standard linear model for a phenotypic trait (�) when an interaction term is included can be 130 

expressed as: 131 

 � � β�� � β�� � β���� � � (1) 

Where � is the genotype matrix, � is the environmental exposure, �� is the Hadamard product 132 

between each genotype and environmental exposure, resulting in a matrix with the same 133 

dimensionality as �. The betas (β) represent the true marginal effects associated with their 134 

respective term. To account for covariate effects such as age, sex, �, and population stratification 135 

we first regress � onto the covariates and the first twenty genetic principal components and 136 

extract the residuals of the model (�������	
�). The residuals (�������	
�) become our phenotype 137 

used for analyses in MonsterLM: 138 

 �������	
� � β�� � β���� � � (2) 

Both phenotype and environmental exposures are quantile normalized after residualization, such 139 

that mean is zero and variance one. Through residualization of the environmental exposure, we 140 

can leave � out of the model. For simplicity, we denote the augmented matrix of � and �� as 	 141 

with dimension n×2m, where n is number of participants included and m is number of SNPs: 142 

 	 � � | �� (3) 

And �������	
� becomes: 143 

 �������	
� � β�	 � � (4) 

 144 

The MonsterLM method enables multiple linear regression on biobank-scale datasets by 145 

parallelizing the calculation of least squares regression, including the interaction terms, between 146 
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the genotypes and environmental factors. The calculation is done such that the only practical 147 

limitation is the inversion of the 	 matrix, but without any restriction on n. This limitation is 148 

circumvented using the conjugate gradient method and GPU acceleration24. Importantly, 149 

MonsterLM requires neither parametrization nor assumptions regarding the genetic architecture 150 

of traits analyzed (such as polygenicity of effects, MAF and LD dependence). Genotypic data 151 

was partitioned into blocks with a maximal size of 25,000 SNPs (m) to minimize LD spillage 152 

between blocks and to optimize speed of the matrix calculation.   153 

  154 

Given a quantitative trait �, the least squares estimate for ��, the estimated effects vector, 155 

corresponding to the genotype and GxE interaction is: 156 

 �� � �	�	��	�� (5) 

 157 

After computing �� using conjugate gradient, the predicted values of Y denoted as ��, can be 158 

computed as: 159 

 �� � ��	 (6) 

This same method can be applied if we use the genotype matrix only (�) instead of 	 to compute 160 

�G and ��. Once �� is calculated for each block (with and without interactions), we calculate the 161 

variance explained for the full model (	) and the model without interactions. Since R2 is a biased 162 

estimator, the adjusted R2 (��� is used as our estimate for variance explained. Then, to calculate 163 

the interaction variance explained (��
���

� we compute the difference in ��
���

 as: 164 

 ��
���

� ��
��

� ��
��

 (7) 

 165 
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Since we remove SNPs in very high LD (r2 > 0.9), the remaining variant set will not be highly 166 

correlated. We can then estimate the total contribution of variance by genome-wide environment 167 

interaction (��
���) by taking the sum over all blocks: 168 

 
��

��� � � ��
���

�

���

 

(8) 

Where j is the number of partitioned blocks used for analysis (i.e. 60 blocks for current analyses) 169 

and i is the index of the current block.  170 

 171 

The 95% confidence (CI) of the ��
���

 term can be estimated for each block using asymptotic 172 

properties described by Graf and Alf 34. The asymptotic variance for the difference between 173 

the ��
���

 of two models is given by: 174 

 ����� ���
���

� � ����� ���
��

� � ����� ���
��

� � 2����
� ����,��

� � (9) 

 175 

Where: 176 

 ����� ���
��

� � 4��
��

�1 � ��
��

��/! 
(10) 

 ����� ���
��

� � 4��
��

�1 � ��
��

��/! 
(11) 

 2����
� ����,��

� � � 8���
���0.5�2���,��

� ���
�����1 � ���,��

� � ���
� � ���

� � � ���,��
� �/! (12) 

 177 

 

 178 

And: 179 
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 ���,��
� ���

���

 
(13) 

The 95% CI for a single block can then be derived using the Wald estimate: 180 

 95% �( � ��
���

) 1.96+����� ���
���

� 
(14) 

To estimate the 95% CI for our ��
��� estimate, we calculate the total asymptotic variance as the 181 

sum of the individual variances (��
���

� for each block, but since our estimates use ��
�� to 182 

estimate GxE interactions, we also adjust the variance of ��
���

 similarly to obtain the adjusted 183 

asymptotic variance of ��
��, which is then used to calculate the 95% CIs. 184 

 
����� ,��

���- � � . ! � 1
! � / � 10

�

������ ��
���

�
�

���

 

(15) 

Where n is the number of samples and m is the number of SNPs tested per block i. With the total 185 

asymptotic variance estimated, we calculate the 95% CI for the ��
��� as: 186 

 95% �( � ��
��� ) 1.96+����� ,��

���- 
(16) 

Simulations to Validate the MonsterLM Method 187 

We tested MonsterLM with simulations using UK Biobank genotypes filtered as described 188 

above. We used chromosome 18 to generate a single block of 8,913 SNPs (smallest block 189 

allowing for efficient simulations). We then simulated the true, unobserved effects (β� , β� , β��)  190 

from a normal distribution, assuming 20% of SNPs have a marginal effect associated with the 191 

simulated trait of interest, Ysim (i.e. β�   ≠ 0). We further assumed that 10% of the causal SNPs 192 

(i.e. 2% of total SNPs) have an interaction effect (i.e. β��  ≠ 0). The values were chosen based on 193 

similar estimates with heritability of WHR through MonsterLM. The error was sampled from an 194 
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independent and identically distributed normal distribution. The simulated trait (����� was then 195 

computed as: 196 

 ���� � β�� � β�� � β���� � � (17) 

We divided the above case into three scenarios. The first scenario considered that E was not 197 

dependent on G and the genetic and interaction effects for all SNPs were randomly generated 198 

from a standard normal distribution. The next two scenarios considered that E was dependent on 199 

G. In these scenarios, E was simulated to have 20% of its variance explained by G (i.e. 200 

heritability), as WHR was observed to have similar heritability empirically. Scenario 2 further 201 

assumed that the genetic effects could be zero when the interaction effect was non-zero for a 202 

specific SNP i (β�,�  = 0, β��,� ≠ 0) and the SNPs explaining � were the same as the SNPs with an 203 

interaction effect. Scenario 3 assumed that both the genetic and interaction effects were non-zero 204 

for a specific SNP i (β�,�  ≠ 0, β��,�  ≠ 0) and that the SNPs explaining � were not the same as the 205 

SNPs with an interaction effect. To ensure realistic scenarios were simulated, we varied the 206 

variance of the normal distributions to achieve pre-specified genetic, environment and interaction 207 

effects. The heritability (��
�) was set to 0.025, variance explained by the environmental 208 

exposure (��
�) was set to 0.2 and variance explained by the interactions (��

��) was set to 0.005. 209 

We also considered 3 multi-block scenarios identical to the above scenarios; whereby 210 

chromosome 11 was split into 3 blocks of roughly 15,000 SNPs each. Each block had ��
� set to 211 

0.025, ��
�  to 0.2, and ��

�� set to 0.005, such that the variance explained by interactions across 212 

the whole chromosome (��
���� was 0.015. 213 

 214 
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Directionality of Effects Analysis 215 

After computing ��
��� for our eight biomarkers, we tested whether direction of effect was 216 

concordant between marginal and interaction regression coefficients for each SNP. Concordant 217 

direction of effects is defined as when �� has the same sign (+/+, -/-) as ���for a single SNP and 218 

its associated interaction. Discordant direction of effects is defined as when the �� and ��� have 219 

a different sign (+/-, -/+) for a single SNP and its associated interaction. We used a subset of 220 

��and ���  coefficients that were in low LD (r2 < 0.1) and computed the direction of effect 221 

concordance for this subset. We then plotted the sign concordance twice: first as a function of �� 222 

2 � values (2�� , then as a function of ��� 2 � values (2��� , which were computed from 223 

association of single SNPs and their respective interaction on the biomarker traits. Two-224 

proportion Z-tests were used to compare the proportion of directionally concordant marginal and 225 

interaction effects for each biomarker in each threshold compared to a null count at a proportion 226 

of 0.50. 227 

Stratification of Estimates by MAF and LD 228 

SNPs were stratified by MAF and LD score into a total of 20 bins: 5 MAF bins (0.01≤0.1, 229 

0.1<MAF≤0.2 , 0.2<MAF≤0.3 , 0.3<MAF≤0.4, and 0.4<MAF≤0.5) and 4 LD score quantiles 230 

(0<LD≤0.25 , 0.25<LD≤0.50 , 0.50<LD≤0.75, and 0.75<LD≤0.9). MAF and LD score were 231 

calculated using a subset of 5000 participants from the UKBiobank. We then computed the 232 

variance explained (��
�����

 , ��
��������

) and divided each estimate by the total number of SNPs 233 

in each bin to get an �� per SNP value that was compared between bins and to the total genetic 234 

and interaction variance estimates (��
�����

 , ��
��������

). 235 

 236 
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Polygenic Scores Analysis 237 

To calculate polygenic scores (29� without interactions (29��, we first selected SNPs based on 238 

univariate 2� derived from regression of each variant with biomarker concentration from the 239 

discovery set. We then combined the selected SNPs into a single block from the discovery set, 240 

and applied MonsterLM regression to obtain the multiple linear regression coefficients (�G,). 241 

Using these coefficients, we calculated the 29� in the validation set as: 242 

 
29�,� � � ��,�

�

�

��,� 
(18) 

Where 29�,�  is the individual polygenic score of participant i, j is the SNP number and O 243 

represents the total number of SNPs included in this analysis. We then evaluated the 244 

predictiveness of each 29� using �� in the validation set. We repeated the same process for four 245 

univariate 2�  thresholds (10-2, 10-3, 10-4, 10-5) for each biomarker. 246 

 247 

We define 29�� as the 29 with GxE interactions included. To include GxE interactions, we 248 

selected significant interactions based on 2�� obtained from regressing each variant and its 249 

associated GxE interaction with biomarker concentration in the discovery set. These interactions 250 

are selected from the subset of SNPs included in polygenic scores without interactions. The 251 

interactions passing the univariate 2�� thresholds (10-2, 10-3, 10-4, 10-5) were then included with 252 

the SNPs to create a single block. We applied MonsterLM regression to obtain the multiple 253 

linear regression coefficients (��, ���). Using these coefficients, we calculate the 29�� as: 254 

 
29��,� � � ��,�

�

�

��,� � ��� : ���,�

�

�

���,� 
(19) 
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Where 29��,�  is the polygenic score with interactions incorporated for participant i, summed over 255 

each SNP (j) and, if included, its associated interaction (k). O represents the SNPs included in the 256 

29��, while P represents the interactions included, a subset of O. As with the 29�, we evaluated 257 

the predictiveness of each polygenic score using �� in the validation set. We repeated for all 258 

pairwise combinations of the four 2�  thresholds and the four 2�� thresholds, resulting in 16 29�� 259 

for each biomarker.  260 

Results 261 

Simulation results 262 

We conducted 100 simulations for each of the three scenarios (Figure 2A). On average, the  263 

��
�� was observed to be close to 0.005, the true underlying ��

�� that was predefined for 264 

interactions. We compared the estimated ��
�� to the true ��

��  and found that the difference in 265 

��
�� was not significant (P>0.05). After verifying MonsterLM for a single block, we conducted 266 

100 simulations using three contiguous blocks from chromosome 11 under the same three 267 

scenarios. The ��
���  was observed to be close to 0.015, the true ��

��� set for interactions 268 

(Figure 2B). Our calculated 95% CIs were also well-calibrated for our simulated data. 269 

 270 

Estimation of Genome-Wide Environmental Interaction Effects 271 

Next, we applied MonsterLM to estimate the variance explained by interactions between waist-272 

hip-ratio (WHR) and genetic variants for eight blood biomarkers (Apolipoprotein B, Bilirubin, 273 

Total Cholesterol, CRP, HbA1c, HDL-Cholesterol, LDL-Cholesterol, Triglycerides) linked to 274 

cardio-metabolic diseases. WHR was selected as the environmental exposure because it is a 275 

measure of central obesity linked to a wide range of adverse metabolic consequences, including 276 
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diabetes and cardiovascular disease (CVD) 25. As such, it represents an excellent marker of the 277 

effect of the modern obesogenic environment on metabolism. We observed significant variance 278 

explained by interaction effects for five of the eight biomarkers, with interaction �� ranging from 279 

0.11 to 0.58 (Figure 3A). As expected, all heritability estimates were significant and consistent 280 

with previous work 16. Furthermore, we observed the presence of significant directionality for 281 

interaction effects at both 2� and 2�� <10-3 significance threshold (Figure 3B; Supplementary 282 

Figure 1). When stratifying variants according to MAF and LDscore, there was a general 283 

tendency for SNPs with low MAF (i.e. 0.01 < MAF < 0.1) and higher LDscore to 284 

disproportionally contribute to interaction variance explained per SNP (Supplementary Figure 2) 285 

 286 

The presence of significant gene-by-WHR (GxWHR) interactions prompted additional questions. 287 

First, do GxE interactions arise from SNPs strongly associated with the trait of interest, as has 288 

been commonly assumed, or are the variants contributing to GxE interactions independent from 289 

those with marginal effects? To address this question, we randomly split participants into a 290 

discovery set comprising 80% of participants (260,792 individuals) with the remaining 20% 291 

comprising the validation set. Using the five biomarkers with significant GxE interaction 292 

variance, we conducted linear regression on the discovery set using biomarker concentration as 293 

the outcome variable and a single SNP as the predictor variable, repeating this process for all 294 

SNPs and extracting 2�. We then selected SNPs according to six association 2� thresholds: <1 295 

(i.e. all SNPs), < 10-1, <10-2, <10-3, <10-4, <10-5. Each SNP set was then tested for association 296 

with the corresponding biomarker in the validation set, using the least number of blocks possible. 297 

We evaluated the total ��
� and ��

�� for each of the five SNP sets. The ��
� and ��

�� was then 298 

compared to the variance explained when including all SNPs (i.e. 2�< 1) for the validation set 299 
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(��
��	
 and ��

����	
).  We estimated the proportion of ��
� recovered when including an 300 

increasing proportion of SNPs in the analysis (Figure 4; Supplementary Figure 3).  We observed 301 

that between 51-86% of the original ��
��	
 calculated in the validation set could be recovered 302 

only using SNPs with 2�  <10-3 from the discovery set (Supplementary Table 2). We then 303 

similarly estimated the proportion of variance explained by GxE interactions recovered when 304 

including an increasing proportion of SNPs, based on 2�. At a 2�  threshold of <10-3, only 1-8% 305 

of total ��
����	
 was recovered in the validation set (Figure 4), suggesting that a majority of 306 

��
����	
  involves SNPs with 2� >10-3. At the 2�  <10-2 threshold, the interaction variance 307 

recovered ranged from 2-13% whereas the corresponding range was 0-58% at the 2�  <10-1 308 

threshold. 309 

 310 

As our results showed that GxE interactions are largely derived from SNPs without strong 311 

marginal associations, we next sought to address whether a few strong GxE interactions are 312 

responsible for the large variance explained by interactions, or whether it is the result of many 313 

small interactions. We conducted regression on each SNP and its associated interaction from the 314 

discovery set. We selected interactions based on five discovery 2�� thresholds: <1 (i.e. all 315 

SNPs), <10-1, <10-2, <10-3, <10-4, <10-5. In other words, an interaction term was included in the 316 

validation sample analysis if it passed the 2�� threshold in the discovery set. Importantly, all 317 

SNPs were included in the analysis, irrespective of whether their corresponding interaction terms 318 

were included or not. The interaction ��
��� were computed in the validation set and compared 319 

to the ��
����	
  estimates (Figure 5; Supplementary Figure 4). We observed that up to 45% of 320 

the total ��
����	
  was recovered at a discovery 2�� threshold <10-3, corresponding to 0.2-3.3% 321 

of the SNPs tested in our initial analyses (Supplementary Figure 4). Indeed, high recovery of 322 
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variance explained by interaction was also observed at the 2��  <10-2 (range: 14-78%) and 323 

2��  <10-1 (range: 48-94%) thresholds. To confirm the specificity of interaction effects, we 324 

conducted a sensitivity analysis using Apolipoprotein B (Supplementary Table 3). We randomly 325 

selected a set of interaction terms equal to the number of interactions included at the 2�� <10-2 326 

threshold (62,904 SNPs out of 1.2 million SNPs tested). We then calculated the ��
����	
   327 

using this set of randomly chosen interaction effects. The randomly selected SNPs had an 328 

��
����	
  of 0.02, compared to an ��

����	
   of 0.25 for the interaction terms with 2�� <10-2 in 329 

the validation set. 330 

 331 

Polygenic Scores Analysis 332 

Finally, we examined if the predictiveness of polygenic score (29) could be improved by 333 

incorporating interactions. To select SNPs and interaction effects to be included in each 29, we 334 

used both 2�  �nd 2�� thresholds of 10-2, 10-3, 10-4, and 10-5 in the discovery set when testing 335 

either each SNP individually or both a single SNP and corresponding interaction, respectively. 336 

Each 29 was then tested in the validation sample for association with its corresponding 337 

biomarker. 29 prediction �� was modestly improved for the four biomarkers with the highest 338 

interaction variance by incorporating interaction effects (Figure 6), with the relative increase in 339 

prediction �� ranging from 0% to 8% across the biomarkers analyzed. Significant improvements 340 

in prediction of Apolipoprotein B, Bilirubin and HDL-Cholesterol levels were observed at the 341 

95% confidence level (for interaction significance thresholds of 10-3, 10-4,10-5; Supplementary 342 

Table 4). Notably, there was no improvement in the Total Cholesterol 29 with 343 

interactions �29��� compared to their respective 29 without interactions �29�� values (Figure 344 

6), consistent with the 2�� results for Total Cholesterol (Figure 5).    345 
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Discussion 346 

In this report, we developed a novel method, MonsterLM, to estimate variance explained by 347 

genome-wide interactions with environmental exposures. Using simulations, we verified that 348 

MonsterLM estimates the variance explained by interaction effects accurately and precisely. 349 

Analysis of UK Biobank biomarker data demonstrated the presence of significant GxE 350 

interactions effects with WHR, a marker of metabolically deleterious adiposity. The interaction 351 

estimates for five of the eight biomarkers analysed were significant with estimates ranging 352 

between 0.11 to 0.58 of overall variance, prompting further analyses into these results.  353 

 354 

MonsterLM provides distinct advantages over current methods for GxE analysis (Table 1) 26–30. 355 

In most settings, inference methods for genome-wide SNP-heritability and GxE interactions 356 

make assumptions on genetic architecture. These assumptions are parametrized by polygenicity 357 

(the number of variants with effects) and MAF/LD-dependence (the coupling of effects with 358 

MAF, LD or other functional annotations). Since the true genetic architecture of any given trait 359 

is unknown, existing methods are susceptible to bias and often yield vastly different estimates 360 

even when applied to the same data10–12. This is also the case for the estimation of Genome-Wide 361 

Environment interactions, where different assumptions about the structure of interactions result 362 

in a variety of different estimates26–30. Although multi-component methods that stratify SNPs by 363 

LD/MAF can address these robustness issues, fitting multiple variance components to biobank 364 

scale data is highly resource intensive16, and this problem is compounded when considering 365 

interactions where the number of variables analyzed increases by two-fold. Alternate methods 366 

that explicitly model these dependencies are also sensitive to model misspecification 9–13. 367 

MonsterLM makes no assumption with respect to the genetic model and does not rely on 368 
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parametrization for underlying assumptions. Our partitioning approach combined with methods 369 

to accelerate computations allows for fast, unbiased genome-wide computations of heritability 370 

and GxE interactions for both small datasets and biobank-scale data. Our method also enables 371 

testing for interactions with specific environmental exposures instead of overall effects from 372 

multiple environmental outcomes. By reducing the assumptions required for computing 373 

heritability and GxE interactions, MonsterLM has the potential to uncover greater insights into 374 

the genetic architecture of GxE interactions.  375 

 376 

Our analyses revealed the presence of significant GxE interactions for five of eight blood 377 

biomarkers with WHR. Interaction effects ranged from null to very strong, and in the cases of 378 

Apolipoprotein B, Bilirubin, and HDL-Cholesterol, explained a higher proportion of overall 379 

variance than heritability. These results have important implications for future research. First, 380 

our observations suggest that there are real interactions between genetics and exposures that 381 

contribute greatly to complex trait variance. Second, genetic associations are likely to be 382 

heterogenous when comparing populations with dramatically different obesogenic environmental 383 

exposures. The observation that GxE effects do not come from SNPs with strong marginal 384 

effects suggests this may not impact top GWAS hits excessively. We also observed the presence 385 

of significant directionality effects for strongly significant SNPs and their associated interaction 386 

effects, which suggest an overall greater impact of genetic variation under certain environmental 387 

conditions. There are also clinical implications for these observations. For instance, 388 

Apolipoprotein B is a bona fide risk factor for coronary artery disease (CAD) 31. A strong 389 

interaction effect with WHR is observed, suggesting WHR is also an important modulator of 390 

genetic risk of CAD mediated through Apolipoprotein B. 391 
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 392 

Our results also provide some insights into why identification of GxE interactions has been 393 

challenging1. Many prior studies have reasonably focused the search for significant GxE 394 

interactions on variants with genome-wide significant marginal effects. However, our results 395 

show that only a small proportion of GxE interaction effects can be explained by such variants. 396 

Rather, the majority of GxE interaction effects are due to variants with unremarkable marginal 397 

effects. On the other hand, we also show that a relatively small minority of variants is 398 

responsible for a disproportionate contribution to GxE interactions. Altogether, these findings 399 

offer hope that the identification of specific interactions is possible. Indeed, we also show in a 400 

proof-of-concept experiment that incorporation of GxE interactions can significantly improve PS 401 

prediction, albeit modestly. 402 

 403 

Some limitations are worth mentioning. First, we quantile normalized all traits before analysis, 404 

and while this protects against potential scaling effects, it could also bias results towards the null. 405 

Second, MonsterLM is not meant to identify specific GxE interactions but rather to quantify the 406 

overall, genome-wide contributions of GxE interactions to continuous traits. Another limitation 407 

includes the potential loss of information from LD pruning to account for high correlation in the 408 

genotype data and from filtering rare variants (MAF<1%). 409 

 410 

In this report, we have established the presence of GxE interactions in cardiometabolic 411 

biomarkers. We observed that SNPs with strong marginal effects contribute weakly to the 412 

variance of GxE interaction effects, and that there is a disproportionate contribution from a 413 

relatively small minority of variants. Our results also highlight the potential for pathway 414 
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analysis, examining specific genes involved in GxE interactions. MonsterLM provides flexibility 415 

for any form of genetic architecture, environmental exposures and interaction models, and serves 416 

as the basis for more advanced future analyses into the specifics of genome-wide environmental 417 

interactions and importantly, the contribution of GxE interactions to dichotomous traits such as 418 

disease status. 419 

 420 

  421 
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Figure Legends 

Figure 1 | Summary of Gene-by-Environment (GxE) analysis conducted with MonsterLM.  

Initial simulation studies were conducted to verify the properties of MonsterLM; simulated 

phenotypes with known values for variance explained were regressed under varying SNP 

partitioning and interaction structure conditions to ensure robust estimations (blue panel).  Real 

trait analyses were conducted with UK Biobank data (grey panels). Genome-wide SNP 

heritability estimates with and without waist-hip-ratio (WHR) interactions revealed significant 

interaction effects for five of eight biomarkers and were further assessed with a directionality of 

effects and stratification analysis (bottom left panel). The model was further explored by 

recovering genotype and interaction variance explained through partitioning SNPs based on 

genotype and interaction univariate regressions thus providing insights into the model’s 
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architecture (bottom middle panel). Lastly, sequential incorporation of subsets of SNPs with 

significant 2��  derived from univariate interaction regressions of the genotype SNPs on their 

respective traits revealed modest improvements of polygenic scores (29� , 29��) in four of the 

five biomarkers tested (bottom right panel).  

 

Figure 2 | Estimation of variance explained by GxE interactions for 100 simulated 

phenotypes. Estimation of variance explained by GxE interactions under three simulation 

scenarios. (+) indicates that the presence of a specific condition, while (-) indicates the absence 

of a condition. The “E dependent on G” condition denotes the case where environment effect 

SNPs are a subset of the same genetic effect SNPs. The “SNP (β�,�  ≠ 0, β��,� ≠ 0)” condition 

denotes the case where a single SNP has both non-zero genetic and interaction effects. Dashed 

blue lines denote the true variance set by simulations. a, Estimation of variance explained by 

GxE interactions using a single block in chromosome 18 in three scenarios. b, Estimation of 

variance explained by GxE interactions under the three multi-block simulation scenarios for 

chromosome 11 (3 blocks). 95% CIs were calculated for simulations as described in the methods. 

P-values were derived via Z-test. 

 

Figure 3 | Estimates of genetic, interaction, and environment (WHR) D� for eight 

biomarkers and associated directionality of effects. Studied biomarkers were residualized for 

age, sex, WHR and the first 20 genetic principal components. Phenotypes were quantile 

normalized and mean imputed as per methods. 95% CIs were calculated for each estimate as 

described in the online methods. a, Genetic, interaction, and environment (WHR) variance 

estimated �� for each biomarker using the MonsterLM protocol. b, The directionality of effects 
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for derived interaction estimates. SNPs were filtered based on univariate 2�, 2�� and LD (r2 < 

0.1) for each biomarker. Directionality is concordant when �� and ���have the same sign (+/+, -

/-) and discordant when they have opposite signs (+/-, -/+). Two-proportion Z-tests were used to 

compare each directionality result with a null value of 0.5. 

 

Figure 4 | Proportion of D�
���  and D�

�!"��  as a function of E�. a, The proportion of 

total ��
��	
 recovered in the validation set at each discovery sample 2�  for the five biomarkers 

with significant interaction variance. b, The proportion of total interaction ��
����	
 recovered 

in the validation set at each discovery sample 2� threshold for the same biomarkers. 95% CI 

were derived based on the upper and lower bounds of each estimate in proportion to either total 

��
��	
 or ��

����	
. 

 

Figure 5 | Proportion of D�
�!"��  estimates as a function of E�" thresholds.   Proportion of 

total ��
����	
  recovered in the validation set at each univariate 2�� threshold for the five 

biomarkers with significant interaction variance. 95% CI were derived based on the upper and 

lower bounds of each estimate in proportion to total ��
����	
. 

 

Figure 6 | Polygenic score prediction D� with and without incorporation of 

interaction effects. For each biomarker, there are 20 different conditions based on 

discovery sample 2�  and 2�� thresholds. The polygenic score �� was estimated in the 

validation sample based on discovery sample ��, ��� values.
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Tables 

 Table 1 - Comparison of current methods estimating GxE contributions to MonsterLM 

Method Description Advantages Disadvantages MonsterLM 

StructLMM
26

 Evaluates interaction variance 

for multiple environmental factors 

with a single SNP. 

Fast, robust model for a variety 

of different environmental exposures. 

Limited to interaction 

effects of only a single SNP or 

genotype. 

Analyzes variance explained 

by interactions genome-

wide (after LD-pruning).  

CGI-GREML
27

 

Uses a mix of parametrized models 

and restricted likelihood methods 

to estimate variance explained by 

GxE. 

Well-structured for identifying 

GxE interactions with 

categorial exposures. 

>250 Likelihood Ratio Tests; 

Slow; Cannot use continuous 

traits. 

Can analyze continuous 

traits without categorizing 

them; Quick, efficient Wald-

test/CI for R2 of 

interaction effects. 

GxEMM
28

 Linear mixed model method 

to detect GxE interactions 

across the genome and a single 

exposure. 

Multiple parametrizations available 

to efficiently model GxE 

interaction effects. 

Small sample size only; 

Minimal number of SNPs. 

Can analyze a large sample 

size with many SNPs through 

partition of genotype matrix 

& Conjugate Gradient method

. 

GRSxE
29

 Method to detect total 

GxE interactions with a Gene-Risk 

Score. 

Estimates the GxE contribution for all 

possible environmental factors with 

SNPs. 

Assumes each SNP 

interacts equally with E. 

Accounts for the unique 

interaction effect of each SNP 

with E. 

LEMMA
30

 Linear mixed model method 

to detect GxE interactions 

across the genome and 

an estimated linear combination 

of exposures. 

Considers the impact of over-

lapping environmental exposures 

when computing total GxE 

contributions across the genome. 

Requires parametrization and 

is dependent on 

model specification; Uses an 

estimated linear 

combination of 

exposures, assuming all 

E’s interact with the same 

SNPs. 

Tests for specific interaction 

with E rather than a 

linear combination of E. 
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