Supplementary Information

Design and evaluation of mobile monitoring campaigns for air pollution exposure assessment in epidemiologic cohorts

Magali N. Blanco,^a Annie Doubleday,^a Elena Austin,^a Julian D. Marshall,^b Edmund Seto,^a Tim Larson,^{a,b} Lianne Sheppard^{a,c}

^aDepartment of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Hans Rosling Center for Population Health, 3980 15th Ave NE, Seattle, WA 98195

^bDepartment of Civil & Environmental Engineering, College of Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195

^cDepartment of Biostatistics, School of Public Health, University of Washington, Hans Rosling Center for Population Health, 3980 15th Ave NE, Seattle, WA 98195

Table of Contents

1	METHODS	1
2	HOURLY READINGS	11
3	ANNUAL AVERAGE ESTIMATES	15
4	MODEL PREDICTIONS	19
5	MODEL ASSESSMENT	27

List of Tables

TABLE S1. TWO-WEEK SAMPLING WINDOWS FOR THE RUSH HOURS AND BUSINESS HOURS DESIGNS	3
TABLE S2. GEOCOVARIATES AND BUFFERS INCLUDED IN PLS REGRESSION (N = 321)	3
TABLE S3. DISTRIBUTION OF THE NUMBER OF HOURLY AND DAY EQUIVALENT (24 SAMPLES/DAY) OBSERVATIONS PER SITE ¹	11
TABLE S4. DISTRIBUTION OF HOURLY CONCENTRATIONS (PPB) ¹	11
TABLE S5. DISTRIBUTION OF ANNUAL AVERAGE NOX ESTIMATES FROM VARIOUS SAMPLING APPROACHES. ¹	
TABLE S6. PREDICTIONS ABOVE 80 PPB EXCLUDED FROM PREDICTION PLOTS, IF NOTED ¹	23
TABLE S7. DISTRIBUTION OF PREDICTION BIAS FOR SHORT-TERM APPROACHES RELATIVE TO THE GOLD STANDARD PREDICTIONS ¹	

List of Figures

FIGURE S1. HIERARCHICAL STRUCTURE OF SIMULATIONS
FIGURE S2. LOESS LINES FOR ABSOLUTE AND PERCENT ERROR OF THE NOX ANNUAL AVERAGE (PPB), AVERAGED ACROSS 10,000 RANDOM
samples and 69 sites, by number of repeat visits. The colored curves are for individual sites, the black curve is the
OVERALL TREND, AND THE DASHED VERTICAL LINE IS FOR 28 REPEAT VISITS
FIGURE S3. AQS SITES INCLUDED IN THE ANALYSIS OF EACH POLLUTANT (N=69 NOX, 51 NO, 73 NO ₂). SITE ID IS A COMPILATION OF THE
CA STATE ID (6, THE FIRST DIGIT), COUNTY ID (NEXT 3 DIGITS), AND AQS SITE ID (LAST 4 DIGITS)
FIGURE S4. CONCENTRATION TRENDS FOR NOX, NO, AND NO2 OVER THE COURSE OF 2016 AT AQS SITES INCLUDED IN THIS STUDY
(N=69 NOx, 51 NO, 73 NO ₂). Colored lines are individual sites
FIGURE S5. CONCENTRATION TRENDS FOR NOX, NO, AND NO2 BY DAY AND SEASON AT AQS SITES INCLUDED IN THIS STUDY (N=69 NOX,
51 NO, 73 NO ₂). Colored lines are individual sites
FIGURE S6. CONCENTRATION TRENDS FOR NOX, NO, AND NO2 BY HOUR AND SEASON AT AQS SITES INCLUDED IN THIS STUDY (N=69
NOx, 51 NO, 73 NO ₂). Colored lines are individual sites
FIGURE S7. ANNUAL AVERAGE SITE CONCENTRATION ESTIMATES FOR DIFFERENT POLLUTANTS AND DESIGN VERSIONS. N=30 CAMPAIGNS
PER DESIGN VERSION X 69 SITES FOR SHORT-TERM APPROACHES; N = 1 CAMPAIGN PER DESIGN VERSION X 69 SITES FOR LONG-TERM
approaches. Short-term approaches appear to be more variable (less precise), in large part because all 30
CAMPAIGNS ARE REPRESENTED IN THE BOXPLOTS
FIGURE S8. SITE-SPECIFIC NOX ESTIMATE BIASES FOR SHORT-TERM DESIGNS (N = 30 CAMPAIGNS) AS COMPARED TO THE TRUE ESTIMATES
(LONG-TERM BALANCED DESIGN VERSION 1). ALL SITES ARE INCLUDED. SITES ARE ARRANGED BY THE TRUE NOX AVERAGE, WITH
HIGHER CONCENTRATIONS HIGHER UP
FIGURE S9. VARIATION OF PREDICTIONS ACROSS 69 SITES BY DESIGN RELATIVE TO THE GOLD STANDARD PREDICTIONS (RELATIVE STANDARD
deviation [RSD]). Boxplots are for short-term approaches (30 campaigns), squares are for long-term approaches
(1 campaign). Values of 1 indicate that design predictions have the same standard deviation as the gold standard
MODEL PREDICTIONS
FIGURE S10. SCATTERPLOT OF CROSS-VALIDATED SHORT-TERM PREDICTIONS FOR 30 CAMPAIGNS VS THE GOLD STANDARD PREDICTIONS
FOR NOX, NO, AND NO2. SHOWING PREDICTIONS BELOW 80 PPB FOR CLARITY (SEE SI FIGURE S12 AND TABLE S6 FOR
PREDICTIONS EXCLUDED)

FIGURE S11. BEST FIT LINES OF CROSS-VALIDATED SHORT-TERM PREDICTIONS FOR 30 CAMPAIGNS VS THE GOLD STANDARD PREDICTIONS
FOR NOX, NO, AND NO2
FIGURE S12. PREDICTIONS ABOVE 80 PPB EXCLUDED FROM PREDICTION PLOTS, IF NOTED
FIGURE S13. SCATTERPLOTS AND BEST FIT LINES OF CROSS-VALIDATED SHORT-TERM PREDICTIONS FOR 30 CAMPAIGNS VS TRUE AVERAGE
CONCENTRATIONS FOR NOX. THIN TRANSPARENT LINES ARE INDIVIDUAL CAMPAIGNS, COLORED BY DESIGN VERSION; THICKER LINES
are the overall version trend. (One prediction is excluded for clarity from the Rush Hours Version 4 scatterplot
AT X=24 PPB, Y=109 PPB [SITE 60731016] BUT IS INCLUDED IN THE LINE PLOTS)
FIGURE S14. SITE-SPECIFIC NOX PREDICTION BIASES FOR SHORT-TERM DESIGNS (N = 30 CAMPAIGNS) AS COMPARED TO THE GOLD
standard (long-term Balanced Design Version 1) predictions for all sites. Sites are arranged by the true NOx
MEASUREMENT, WITH HIGHER CONCENTRATION SITES HIGHER UP. ONE PREDICTION BIAS FOR SITE 60731016 IS EXCLUDED (86 PPB
for Rush Hours Version 4) for clarity
FIGURE S15. NO ₂ Model performances (R ² _{MSE} , R ² _{REG} , and RMSE), as determined by each campaign's cross-validated
predictions relative to: a) the true averages (long-term Balanced Version 1), and b) its campaign averages.
Boxplots are for short-term approaches (30 campaigns), while squares are for long-term approaches (1
CAMPAIGN)
Figure S16. NO Model performances (R ² _{MSE} , R ² _{reg} , and RMSE), as determined by each campaign's cross-validated
predictions relative to: a) the true averages (long-term Balanced Version 1), and b) its respective campaign
averages. Boxplots are for short-term approaches (30 campaigns), while squares are for long-term approaches (1
CAMPAIGN). A FEW INFLUENTIAL OUTLIERS INFLUENCED THESE PERFORMANCE STATISTICS MORE SO THAN FOR NOX AND NO2 28

List of Equations

EQUATION 1. MEAN SQUARED ERROR (MSE) DEFINITION. WHERE yi , $campaign$ is the prediction from a campaign for a given	
DESIGN VERSION; yi, ref is the reference value, either the true annual average or the estimated annual average	
FROM THE SAME CAMPAIGN (THE TYPICAL APPROACH IN PRACTICE); AND n is the total number of sites	. 9
EQUATION 2. ROOT MEAN SQUARED ERROR (RMSE) DEFINITION	. 9
EQUATION 3. MSE-BASED R ² ($RMSE2$) definition. Where $y campaign$ is the average across all n sites for a given	
CAMPAIGN	. 9

1 Methods

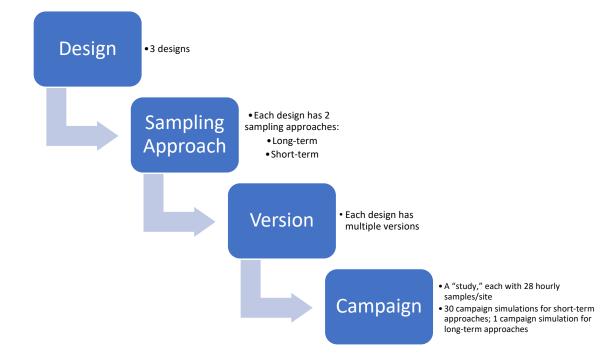


Figure S1. Hierarchical structure of simulations.

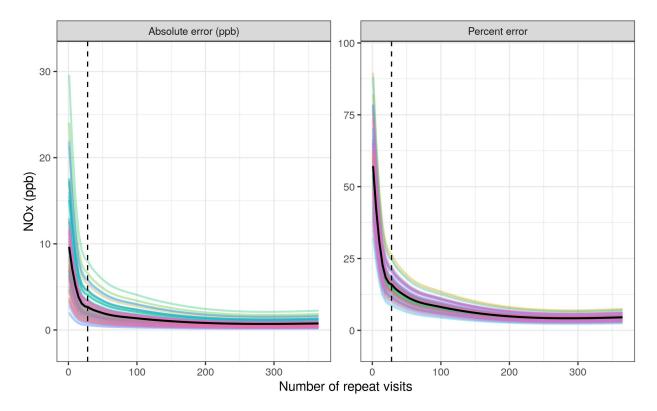


Figure S2. Loess lines for absolute and percent error of the NOx annual average (ppb), averaged across 10,000 random samples and 69 sites, by number of repeat visits. The colored curves are for individual sites, the black curve is the overall trend, and the dashed vertical line is for 28 repeat visits.

Version	Season	Start	End
4	summer	2016-06-20	2016-07-03
4	winter	2016-02-27	2016-03-11
5	summer	2016-08-07	2016-08-20
5	winter	2016-01-15	2016-01-28
6	spring	2016-04-15	2016-04-28
6	fall	2016-09-25	2016-10-08
7	spring	2016-05-15	2016-05-28
7	fall	2016-11-24	2016-12-07

Table S1. Two-week sampling windows for the Rush Hours and Business Hours designs

Table S2. Geocovariates and buffers included in PLS regression (n = 321)

Kind	Covariate	Buffers	Description
airports	log_m_to_airp		log meters to closest airport
airports	log_m_to_l_airp		log meters to closest large airport
bus	log_m_to_bus		log meters to closest bus route
coast	log_m_to_coast		log meters to closest coastline
commercial	log_m_to_comm		log meters to closest commercial and
and services			services area
commercial	lu_comm_p	50, 100, 150, 300,	proportion of commercial land use
and services		400, 500, 750, 1000,	
		1500, 3000, 5000,	
		10000, 15000	
elevation	elev_above	1000, 5000	number of points (out of 24) more
			than 20 m and 50 m uphill of a
			location for a 1000 m and 5000 m
			buffer, respectively

elevation	elev_at_elev	1000, 5000	number of points (out of 24) within
			20 m and 50 m of the location'
			elevation for a 1000 m and 5000 m
			buffer, respectively
elevation	elev below	1000, 5000	number of points (out of 24) more
	—		than 20 m and 50 m downhill of a
			location for a 1000 m and 5000 m
			buffer, respectively
elevation	elev_elevation		elevation above sea level in meters
emissions/air	em_CO_s	3000, 15000, 30000	sum of major CO emissions from
pollutants			stacks
emissions/air	em_NOx_s	3000, 15000, 30000	sum of major NOx emissions from
pollutants			stacks
emissions/air	em_PM10_s	3000, 15000, 30000	sum of major PM10 emissions from
pollutants			stacks
emissions/air	em_PM25_s	3000, 15000, 30000	sum of major PM2.5 emissions from
pollutants			stacks
emissions/air	em_SO2_s	3000, 15000, 30000	sum of major SO2 emissions from
pollutants			stacks
emissions/air	no2_behr_2005		Columnar NO2 for 2005
pollutants			
emissions/air	no2_behr_2006		Columnar NO2 for 2006
pollutants			
emissions/air	no2_behr_2007		Columnar NO2 for 2007
pollutants			
imperviousness	imp_a	50, 100, 150, 300,	average imperviousness
		400, 500, 750, 1000,	
		3000, 5000	
land use	lu_bays_p	3000, 5000, 10000,	proportion of land with bays and
		15000	estuaries

land use	lu_crop_p	100, 150, 300, 400, 500, 750, 1000, 1500, 3000, 5000, 10000, 15000	proportion of cultivated crops such as orchards, vineyards, grains
land use	lu_green_p	750, 1000, 1500, 3000, 5000, 10000, 15000	proportion of evergreen forest land
land use	lu_grove_p	750, 1000, 1500,	proportion of orchards, groves,
		3000, 5000, 10000, 15000	vineyards, nurseries
land use	lu_herb_range_p	1000, 1500, 3000, 5000, 10000, 15000	proportion of herbaceous rangeland
land use	lu_industrial_p	150, 300, 400, 500, 750, 1000, 1500, 3000, 5000, 15000	proportion of industrial land use
land use	lu_mine_p	3000, 5000, 10000	proportion of land with strip mines,
land use	lu mix forest p	10000, 15000	quarries, and gravel pits proportion of mixed forest land
land use	lu_mix_range_p	1500, 3000, 5000, 10000	proportion of mixed rangeland
land use	lu_mix_urban_p	150, 300, 400, 500, 750, 1000, 1500	proportion of mixed urban or built-up land
land use	lu_oth_urban_p	400, 500, 750, 1000, 1500, 5000	proportion of other urban or built-up land
land use	lu_reservior_p	5000	proportion of land with reservoiurs
land use	lu_resi_p	50, 100, 150, 300, 400, 500, 750, 1000, 1500, 3000, 5000, 10000, 15000	Proportion of residential land use

land use	rlu_shrub_p	400, 500, 750, 1000, 3000, 5000	proportion of shrubland
	rlu_pasture_p	1000, 3000, 5000	proportion of pasture, hay land
land use land use	rlu_mix_forest_p	3000, 5000	proportion of mixed forest
land	p	2000 5000	wetland
land use	rlu_herb_wetland_	5000	proportion of herb (nonforested)
11	de trat de t	400, 500, 750, 1000, 3000, 5000	vegetation
land use	rlu_grass_p	400, 500, 750, 1000, 3000, 5000 50, 100, 150, 300,	proportion of grasslands, herbaceous
land use	rlu_dev_open_p	3000, 5000 50, 100, 150, 300,	proportion of developed open land
land use	rlu_dev_med_p	3000, 5000 50, 100, 150, 300, 400, 500, 750, 1000,	proportion of medium developed land (e.g., residential)
land use	rlu_dev_lo_p	50, 100, 150, 300, 400, 500, 750, 1000,	proportion of low developed land (e.g., residential)
		400, 500, 750, 1000, 3000, 5000	(e.g., commercial and services; industrial; transportation, communication and utilities)
land use	rlu_dev_hi_p	5000 50, 100, 150, 300,	land proportion of highly developed land
land use	rlu_crop_p	750, 1000, 3000,	proportion of cropland and pasture
land use	rlu_barren_p	3000, 5000	proportion of barren land
land use land use	lu_transition_p lu_unspec_p	10000, 15000 750, 1000, 1500 10000, 15000	proportion of transitional land use proportion of unspecified land use
land use	lu_shrub_p	400, 500, 750, 1000, 1500, 3000, 5000,	proportion of shrubland

NDV1ndvi_q50_a10000 250, 500, 1000, 250, 500, 7500, 10000NDV1 (50th quantile) 250, 500, 7500, 10000NDV1ndvi_q75_a250, 500, 1000, 2500, 5000, 7500, 10000Average summer time NDV1 2500, 5000, 7500, 2500, 5000, 7500,NDV1ndvi_summer_a250, 500, 1000, 2500, 5000, 7500, 10000average summer time NDV1 2500, 5000, 7500, 10000NDV1ndvi_winter_a250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDV1 2500, 5000, 7500, 10000NDV1ndvi_winter_a250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDV1 2500, 5000, 7500, 1000, 1500populationpop_s500, 1000, 1500, 1000, 1500, 1000, 1500, 1000, 1500,Jong meters to closest small port portportlog_m_to_s_pert300, 400, 500, 750, 1000, 1500, 1000, 1500, 1000, 1500,Iog meters to closest railroad portrailroads, raillog_m_to_rridg meters to closest railroad 1000, 1500, 1000, 1500,Iog meters to closest railroad portrailroads, raillog_m_to_rridg meters to closest railroad 1000, 1500, 1000, 1500, 1000, 1500,Iog meters to closest railroad portrailroads, raillog_m_to_rgidg meters to closest railroad 1000, 1500, 1000, 1500,Iog meters to closest railroad 1000, 1500, 1000, 1500,railroads, raillog_m_to_rgidg meters to closest railroad 1000, 1500,Iog meters to closest railroad 1000, 1500, 1000, 1500,railroads, raillog_m_to_rgidg meters to closest railroad 1000, 1500,Idg meters to closest r	NDVI	ndvi_q25_a	250, 500, 1000,	NDVI (25th quantile)
NDV1ndvi_q50_a250, 500, 1000, 2500, 5000, 7500, 10000NDV1 (50th quantile) 2500, 5000, 7500, 2500, 5000, 7500, 10000NDV1ndvi_q75_a250, 500, 1000, 2500, 5000, 7500, 10000NDV1 (75th quantile) 2500, 5000, 7500, 10000NDV1ndvi_summer_a250, 500, 1000, 2500, 5000, 7500, 10000average summer time NDV1 2500, 5000, 7500, 10000NDV1ndvi_winter_a250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDV1 2500, 5000, 7500, 10000populationpop_s500, 1000, 1500, 2000, 2500, 3000, 500, 10000, 15002000 population density 2000, 2500, 3000, 500, 10000, 1500portlog_m_to_s_portJ00, 400, 500, 750, 1000, 1500, 500, 1500, 3000, 500, 1500, 3000, 1000Ing meters to closest small port portion of transportation, communications, and utilities land 500railroads, raillog_m_to_rrIcg meters to closest railroad 1000, 1500, 3000, 1000, 1000, 1500, 3000, 1000			2500, 5000, 7500,	
2500, 5000, 7500, 10002500, 5000, 7500, 2500, 5000, 7500, 2500, 5000, 7500, 1000NDVI (75th quantile) 2500, 5000, 7500, 2500, 5000, 7500, 2500, 5000, 7500, 1000NDVIndvi_summera250, 500, 1000, 2500, 5000, 7500, 10000average summer time NDVI 2500, 5000, 7500, 10000NDVIndvi_winter_a250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDVI 2500, 5000, 7500, 10000populationpop_s500, 1000, 1500, 2000, 2500, 3000, 5000, 1000, 15002000 population density 2000, 2500, 3000, 5000, 1000, 1500portlog_m_to_sport100, 400, 500, 750, 1000, 1500, 3000, 500, 1000, 1500, 500, 1000, 1500,ingreters to closest small port roportion of transport_pnaitroads, raillog_m_to_rrsummeriadiant signal 100, 1500, 3000, 1000, 1500, 300ingreters to closest railroad porter to ransportation, roportion of transportation, roportion of transport_prailroads, raillog_m_to_rrsummeriadiantic schematication roportion of transportation, roportion of transport_prailroads, raillog_m_to_rrsummeriadiantic schematication roportion of transport_prailroads, raillog_m_to_rrsummeriadiantic schematication roportion of transport_prailroads, raillog_m_to_rrsummeriadiantic schematicati		1 . 50		
NDVIndvi_q75_a10000 250, 500, 1000, 2500, 5000, 7500, 10000NDVI (75th quantile) 2500, 5000, 7500, 10000NDVIndvi_summer_a250, 500, 1000, 2500, 5000, 7500, 10000average summer time NDVI 2500, 5000, 7500, 10000NDVIndvi_winter_a250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDVI 2500, 5000, 7500, 10000populationpop_s500, 1000, 1500, 2000, 2500, 3000, 2000, 2500, 3000, 10000average winter time NDVI 2500, 500, 7500, 10000portlog_m_to_sport500, 1000, 1500, 2000, 2500, 3000, 2000, 1500, 3000, 2000, 2500, 3000, 2000, 2500, 3000, 2000, 1500, 1000, 1500log meters to closest small port propertion of transport_and communications, and utilities land 2000, 2500, 3000, 2000, 2500, 3000, 2000portlog_m_to_sportlog meters to closest railroad 2000, 2500, 3000, 2000, 2500, 3000, 2000portlog_m_to_rrlog meters to closest railroad 2000, 2500, 3000, 2000, 2500, 3000, 2000railroads, raillog_m_to_rrlog meters to closest railroad 2000yards	NDVI	ndv1_q50_a		NDVI (50th quantile)
NDVIndvi_q75_a250, 500, 1000, 2500, 5000, 7500, 10000NDVI (75th quantile)NDVIndvi_summer_a250, 500, 1000, 2500, 5000, 7500, 10000average summer time NDVINDVIndvi_winter_a250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDVIPopulationpop_s500, 1000, 1500, 2500, 2500, 3000, 5000, 10000, 1500,2000 population density portportlog_m_to_s_port 10_transport_p300, 400, 500, 750, 1000, 1500, 3000, 5000log meters to closest small port proportion of transportation, communications, and utilities land 500railroads, raillog_m_to_rrlog meters to closest railroad 300log meters to closest railroad sonoyardsintersect_al_al_s3000intersect_al_al_sroadsintersect_al_al_s3000intersect_al_al_sroadsintersect_al_al_s3000number of al-a3 road intersections roads				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NDVI	ndv1_q75_a		NDVI (75th quantile)
NDVIndvi_summer_a250, 500, 1000, 2500, 5000, 7500, 10000average summer time NDVINDVIndvi_winter_a250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDVIpopulationpop_s250, 500, 1000, 2500, 5000, 7500, 100002000 population density 2000, 2500, 3000, 500, 10000, 15000portlog_mto_s_port500, 1000, 1500, 2000, 2500, 3000, 1000, 15000Iog meters to closest small portportlog_mto_s_port1000, 1500, 3000, 1000, 1500, 3000, 1000, 1500, 3000, 1000, 1500, 3000,proportion of transportation, communications, and utilities land 2000railroads, raillog_mto_rrlog meters to closest railroad 300log meters to closest railroadyardsrailroads, raillog_mto_rglog meters to closest railroadyardsroadsintersect_a1_a1_s3000intersect_a1_a1_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a2_s3000number of a1-a3 road intersectionsroadsintersect_a1_a2_s3000number of a1-a2 road intersections				
$\begin{tabular}{ c c c c } & & & & & & & & & & & & & & & & & & &$				
NDVIndvi_winter_a10000 250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDVIpopulationpop_s500, 1000, 1500, 2000, 2500, 3000, 500, 1000, 15002000 population density 2000, 2500, 3000, 500, 1000, 1500portlog_m_to_s_portlog meters to closest small portportlog_m_to_sport300, 400, 500, 750, 1000, 1500, 3000, 500proportion of transportation, communications, and utilities land 5000railroads, raillog_m_to_rrlog meters to closest railroadyardsrailroads, raillog_m_to_rrlog meters to closest railroadyardsroadsintersect_a1_a1_s3000intersect_a1_a1_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections	NDVI	ndvi_summer_a		average summer time NDVI
NDVIndvi_winter_a250, 500, 1000, 2500, 5000, 7500, 10000average winter time NDVIpopulationpop_s500, 1000, 1500, 2000, 2500, 3000, 500, 1000, 15002000 population density 2000, 2500, 3000, 500, 1000, 1500portlog_m_to_s_portlog meters to closest small port portportlog_m_to_s_portlog meters to closest small port 1000, 1500, 3000, 500portlog_m_to_rrlog meters to closest railroad tooyardslog_m_to_rrlog meters to closest railroadyardslog_m_to_rrylog meters to closest rail yardyardsintersect_a1_a1_s3000intersect_a1_a1_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s300number of a2-a2 road intersections				
populationpop_s2500, 5000, 7500, 100002000 population density 2000, 2500, 3000, 5000, 10000, 15000portlog_m_to_s_portlog meters to closest small port proportion of transportation, 1000, 1500, 3000, 5000portlog_m_to_s_portlog meters to closest small port proportion of transportation, communications, and utilities land 5000railroads, raillog_m_to_rrlog meters to closest railroad yardsrailroads, raillog_m_to_rrlog meters to closest railroad s000roadsintersect_a1_a1_s3000intersect_a1_a2_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersections roads				
populationpop_s10000 500, 1000, 1500, 2000, 2500, 3000, 5000, 10000, 150002000 population density 2000 population density 2000, 2500, 3000, 5000, 10000, 15000portlog_m_to_s_portlog meters to closest small port protor of transport_pportlog_m_to_s_portgroportion of transportation, rodon, 1500, 3000, 5000railroads, raillog_m_to_rrlog meters to closest railroad sourcerailroads, raillog_m_to_rrlog meters to closest railroadyards	NDVI	ndvi_winter_a		average winter time NDVI
populationpop_s500, 1000, 1500, 2000, 2500, 3000, 5000, 10000, 150002000 population density 2000, 2500, 3000, 5000, 10000, 15000portlog_m_to_s_portlog meters to closest small portportlu_transport_p300, 400, 500, 750, 1000, 1500, 3000, 5000proportion of transportation, communications, and utilities land 5000railroads, raillog_m_to_rrlog meters to closest railroadyards				
International 2000, 2500, 3000, 5000, 10000, 15000International portportlog_m_to_s_portlog meters to closest small portportlu_transport_p300, 400, 500, 750, 1000, 1500, 3000, 5000proportion of transportation, communications, and utilities land 5000railroads, raillog_m_to_rrlog meters to closest railroadyardsintersect_a1_a1_s3000intersect_a1_a1_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections			10000	
portlog_m_to_s_portlog meters to closest small portportlu_transport_p300, 400, 500, 750, 1000, 1500, 3000, 5000proportion of transportation, communications, and utilities land 5000railroads, raillog_m_to_rrlog meters to closest railroadyards	population	pop_s	500, 1000, 1500,	2000 population density
port portlog_m_to_s_port lu_transport_plog meters to closest small port proportion of transportation, communications, and utilities land 5000railroads, rail yardslog_m_to_rrlog meters to closest railroadrailroads, rail log_m_to_rrlog_m_to_rrlog meters to closest railroadrailroads, rail yardslog_m_to_rylog meters to closest rail yardroadsintersect_a1_a1_s3000intersect_a1_a1_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections			2000, 2500, 3000,	
portlu_transport_p300, 400, 500, 750, 1000, 1500, 3000, 5000proportion of transportation, communications, and utilities land 5000railroads, raillog_m_to_rrlog meters to closest railroadyardsintersect_a1_a1_slog meters to closest rail yardroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections			5000, 10000, 15000	
Image:	port	log_m_to_s_port		log meters to closest small port
5000railroads, raillog_m_to_rrlog meters to closest railroadyardsilog_m_to_rylog meters to closest rail yardyardsintersect_a1_a1_s3000intersect_a1_a1_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections	port	lu_transport_p	300, 400, 500, 750,	proportion of transportation,
railroads, raillog_m_to_rrlog meters to closest railroadyardsintersect_al_orrylog meters to closest rail yardyardsintersect_al_al_s3000intersect_al_al_sroadsintersect_al_al_s3000intersect_al_al_sroadsintersect_al_al_s3000intersect_al_al_sroadsintersect_al_al_s3000intersect_al_al_sroadsintersect_al_al_s3000intersect_al_al_sroadsintersect_al_al_s3000number of al-a3 road intersectionsroadsintersect_al_al_s3000number of al-a2 road intersections			1000, 1500, 3000,	communications, and utilities land
yards railroads, rail log_m_to_ry log meters to closest rail yard yards roads intersect_a1_a1_s 3000 intersect_a1_a1_s roads intersect_a1_a2_s 3000 intersect_a1_a2_s roads intersect_a1_a3_s 1000, 3000 number of a1-a3 road intersections roads intersect_a2_a2_s 3000 number of a2-a2 road intersections			5000	
railroads, raillog_m_to_rylog meters to closest rail yardyardsintersect_a1_a1_s3000intersect_a1_a1_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections	railroads, rail	log_m_to_rr		log meters to closest railroad
yards roads intersect_a1_a1_s 3000 intersect_a1_a1_s roads intersect_a1_a2_s 3000 intersect_a1_a2_s roads intersect_a1_a3_s 1000, 3000 number of a1-a3 road intersections roads intersect_a2_a2_s 3000 number of a2-a2 road intersections	yards			
roadsintersect_a1_a1_s3000intersect_a1_a1_sroadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections	railroads, rail	log_m_to_ry		log meters to closest rail yard
roadsintersect_a1_a2_s3000intersect_a1_a2_sroadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections	yards			
roadsintersect_a1_a3_s1000, 3000number of a1-a3 road intersectionsroadsintersect_a2_a2_s3000number of a2-a2 road intersections	roads	intersect_a1_a1_s	3000	intersect_a1_a1_s
roads intersect_a2_a2_s 3000 number of a2-a2 road intersections	roads	intersect_a1_a2_s	3000	intersect_a1_a2_s
	roads	intersect_a1_a3_s	1000, 3000	number of a1-a3 road intersections
	roads	intersect_a2_a2_s	3000	number of a2-a2 road intersections
roads intersect_a2_a3_s 3000 number of a2-a3 road intersections	roads	intersect_a2_a3_s	3000	number of a2-a3 road intersections

roads	intersect_a3_a3_s	500, 1000, 3000	number of a3-a3 road intersections
roads	ll_a1_s	500, 750, 1000,	length of al roads
		1500, 3000, 5000	
roads	ll_a2_s	1500, 3000, 5000	length of a2 roads
roads	ll_a3_s	50, 100, 150, 300,	length of a3 roads
		400, 500, 750, 1000,	
		1500, 3000, 5000	
roads	log_m_to_a1		log meters to closest al road
roads	log_m_to_a1_a1_i		log meters to closest a1-a1 road
	ntersect		intersection
roads	log_m_to_a1_a2_i		log_m_to_a1_a2_intersect
	ntersect		
roads	log_m_to_a1_a3_i		log meters to closest a1-a3 road
	ntersect		intersection
roads	log_m_to_a2		log meters to closest a2 road
roads	log_m_to_a2_a2_i		log meters to closest a2-a2 road
	ntersect		intersection
roads	log_m_to_a2_a3_i		log meters to closest a2-a3 road
	ntersect		intersection
roads	log_m_to_a3		log meters to closest a3 road
roads	log_m_to_a3_a3_i		log meters to closest a3-a3 road
	ntersect		intersection
truck routes	log_m_to_truck		log meters to closest truck route
truck routes	tl_s	750, 1000, 1500,	length of truck routes
		3000, 5000, 10000,	
		15000	
water	log_m_to_waterwa		log meters to closest waterway
	У		
water	rlu_water_p	3000, 5000	proportion of water

$$MSE_{ref} = \frac{1}{n} \sum_{i=1}^{n} (y_{i,ref} - \hat{y}_{i,campaign})^2$$

Equation 1. Mean squared error (MSE) definition. Where $\hat{y}_{i,campaign}$ is the prediction from a campaign for a given design version; $y_{i,ref}$ is the reference value, either the true annual average or the estimated annual average from the same campaign (the typical approach in practice); and n is the total number of sites.

$$RMSE_{ref} = \sqrt{MSE_{ref}}$$

Equation 2. Root mean squared error (RMSE) definition

$$R_{MSE}^{2} = \max\left(0, 1 - \frac{MSE_{ref}}{\frac{1}{n}\sum_{i=1}^{n}(y_{i,ref} - \bar{y}_{campaign})^{2}}\right)$$

Equation 3. MSE-based $R^2(R^2_{MSE})$ definition. Where $\overline{y}_{campaign}$ is the average across all n sites for a given campaign.

Figure S3. AQS sites included in the analysis of each pollutant (N=69 NOx, 51 NO, 73 NO₂). Site ID is a compilation of the CA state ID (6, the first digit), county ID (next 3 digits), and AQS site ID (last 4 digits).

2 Hourly Readings

Table S3. Distribution of the number of hourly and day equivalent (24 samples/day) observations per site¹

Parameter Name	Count	Ν	Min	Mean	SD	Median	IQR	Max
Oxides of nitrogen (NOx)	Day Equivalent	69	285	337	15	343	17	355
Oxides of nitrogen (NOx)	Hours	69	6,836	8,090	361	8,236	408	8,510
Nitric oxide (NO)	Day Equivalent	51	294	338	14	342	14	355
Nitric oxide (NO)	Hours	51	7,060	8,119	339	8,216	346	8,510
Nitrogen dioxide (NO2)	Day Equivalent	73	284	337	15	343	17	355
Nitrogen dioxide (NO2)	Hours	73	6,825	8,077	363	8,231	408	8,510

 1 N = number of sites.

Table S4. Distribution of hourly concentrations (ppb)¹

Parameter Name	Ν	Min	Mean	SD	Median	IQR	Max
Oxides of nitrogen (NOx)	558,207	-5	16	21	9	16	427
Nitric oxide (NO)	414,046	-5	9	16	4	5	381
Nitrogen dioxide (NO2)	589,625	-3	10	10	7	12	97

 $\overline{}^{1}$ N = total number of hourly readings.

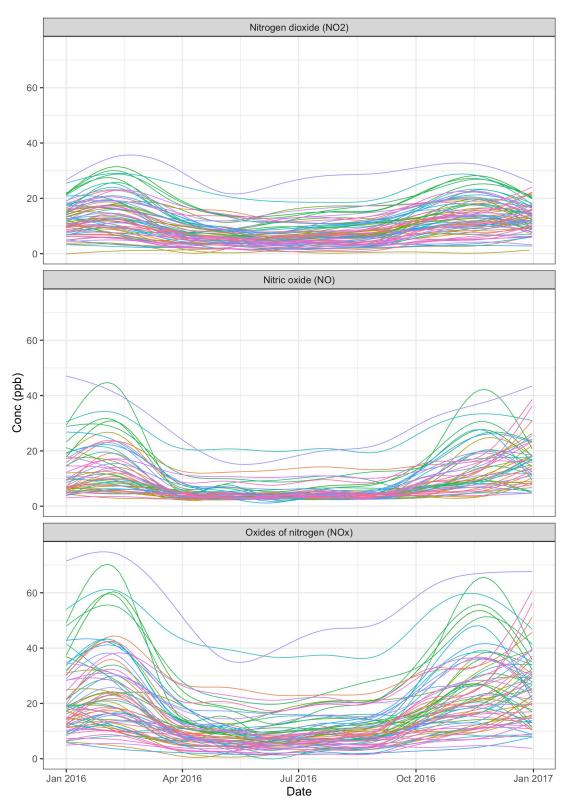


Figure S4. Concentration trends for NOx, NO, and NO2 over the course of 2016 at AQS sites included in this study (N=69 NOx, 51 NO, 73 NO₂). Colored lines are individual sites.

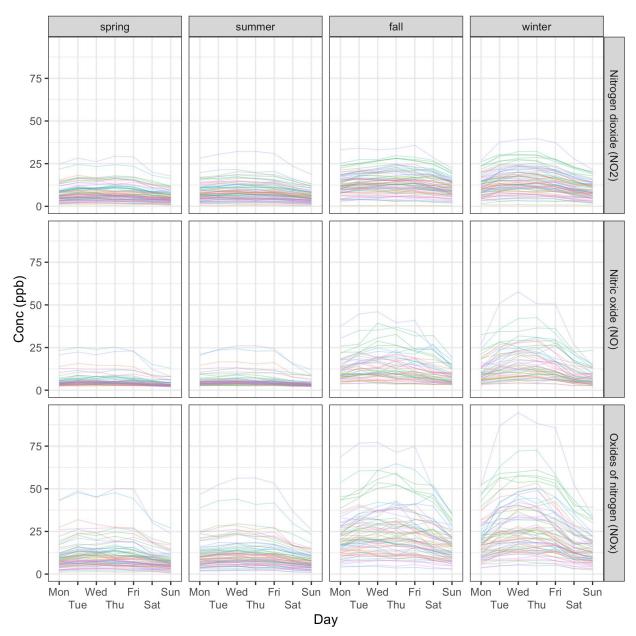


Figure S5. Concentration trends for NOx, NO, and NO2 by day and season at AQS sites included in this study (N=69 NOx, 51 NO, 73 NO₂). Colored lines are individual sites.

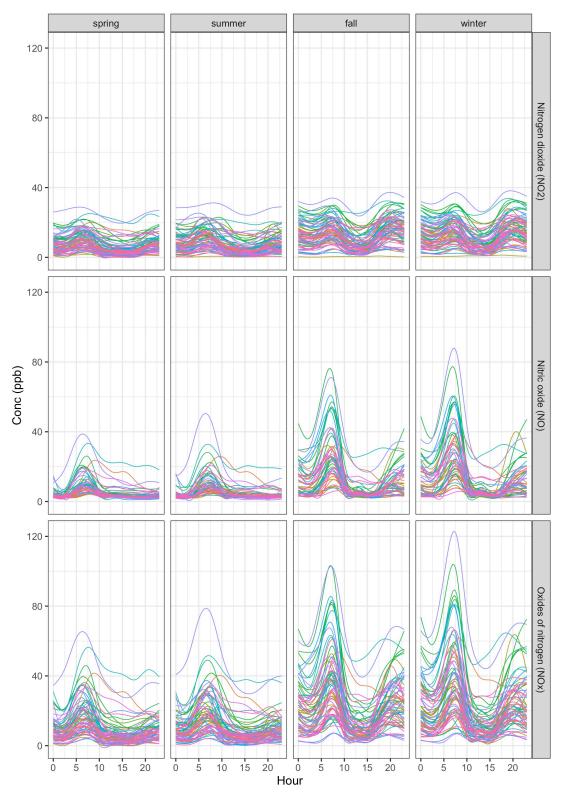


Figure S6. Concentration trends for NOx, NO, and NO2 by hour and season at AQS sites included in this study (N=69 NOx, 51 NO, 73 NO₂). Colored lines are individual sites.

3 Annual Average Estimates

Design	Version	Туре	Ν	Min	Q25	Q50	Q75	Max	SD
Balanced	All Hours (V1)	Long-Term	69	3.0	9.8	14.2	20.8	55.6	9.8
Balanced	All Hours (V1)	Short-Term	2070	1.9	9.2	13.7	21.2	69.5	10.3
Balanced	Most Hours (V2)	Long-Term	69	3.2	9.9	14.1	20.7	55.4	9.9
Balanced	Most Hours (V2)	Short-Term	2070	2.1	9.4	13.9	20.9	70.8	10.3
Balanced	Truncated (V3)	Long-Term	69	3.4	10.4	14.4	21.0	55.7	10.1
Balanced	Truncated (V3)	Short-Term	2070	2.1	9.8	14.7	21.4	66.9	10.6
Rush Hours	Winter, Summer (V4)	Long-Term	69	3.5	8.3	12.1	19.4	67.1	12.0
Rush Hours	Winter, Summer (V4)	Short-Term	2070	2.2	8.2	12.2	19.8	78.2	12.0
Rush Hours	Winter, Summer (V5)	Long-Term	69	4.6	12.3	18.8	29.6	75.9	14.5
Rush Hours	Winter, Summer (V5)	Short-Term	2070	3.1	12.0	18.1	29.0	95.7	14.8
Rush Hours	Spring, Fall (V6)	Long-Term	69	3.1	10.4	13.6	20.4	58.8	11.3
Rush Hours	Spring, Fall (V6)	Short-Term	2070	1.7	9.4	13.7	20.7	70.8	11.7
Rush Hours	Spring, Fall (V7)	Long-Term	69	4.4	10.6	15.7	20.2	55.7	10.0
Rush Hours	Spring, Fall (V7)	Short-Term	2070	2.3	10.4	15.3	20.9	69.5	10.4

Table S5. Distribution of annual average NOx estimates from various sampling approaches.¹

Business Hours	Winter, Summer (V4)	Long-Term	69	1.6	5.5	8.1	12.8	54.6	10.6
Business Hours	Winter, Summer (V4)	Short-Term	2070	1.0	5.4	8.1	14.2	62.1	10.7
Business Hours	Winter, Summer (V5)	Long-Term	69	3.1	8.0	11.9	20.5	65.2	12.0
Business Hours	Winter, Summer (V5)	Short-Term	2070	2.0	8.1	11.8	19.9	73.0	12.0
Business Hours	Spring, Fall (V6)	Long-Term	69	1.6	5.4	7.9	12.2	53.3	9.8
Business Hours	Spring, Fall (V6)	Short-Term	2070	1.1	5.1	8.0	12.1	57.1	9.8
Business Hours	Spring, Fall (V7)	Long-Term	69	2.3	6.1	9.7	12.7	47.2	8.7
Business Hours	Spring, Fall (V7)	Short-Term	2070	0.9	6.2	9.6	13.1	53.9	8.7

N = Total number of sites x number of campaigns.

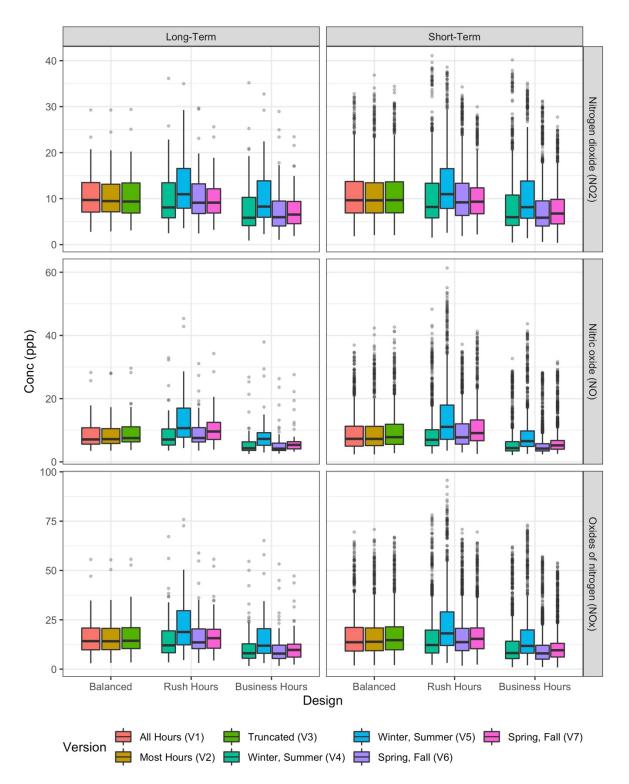


Figure S7. Annual average site concentration estimates for different pollutants and design versions. N=30 campaigns per design version x 69 sites for short-term approaches; N = 1 campaign per design version x 69 sites for long-term approaches. Short-term approaches appear to be more variable (less precise), in large part because all 30 campaigns are represented in the boxplots.

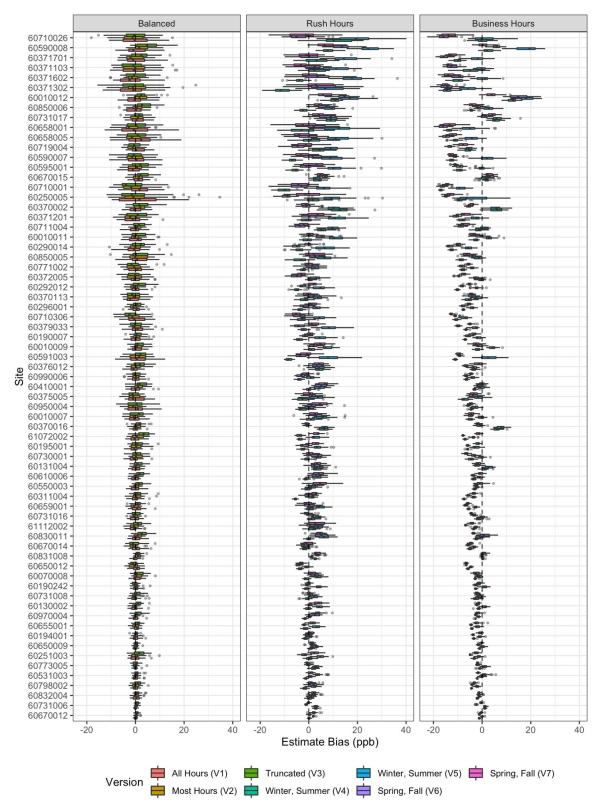


Figure S8. Site-specific NOx estimate biases for short-term designs (N = 30 campaigns) as compared to the true estimates (long-term Balanced Design Version 1). All sites are included. Sites are arranged by the true NOx average, with higher concentrations higher up.

4 Model Predictions

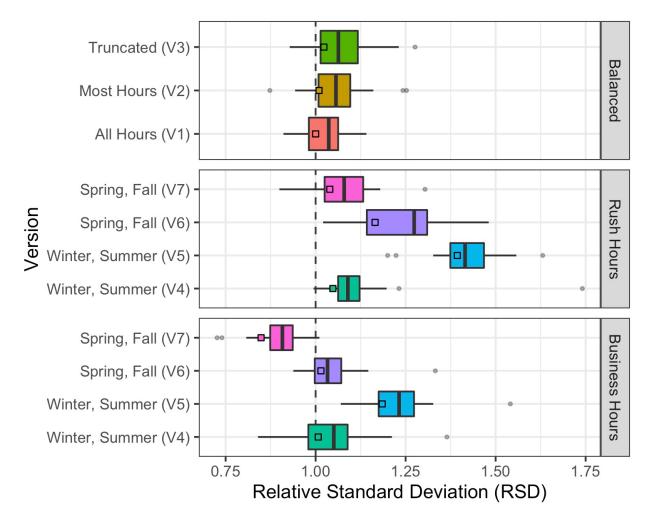


Figure S9. Variation of predictions across 69 sites by design relative to the gold standard predictions (relative standard deviation [RSD]). Boxplots are for short-term approaches (30 campaigns), squares are for long-term approaches (1 campaign). Values of 1 indicate that design predictions have the same standard deviation as the gold standard model predictions.

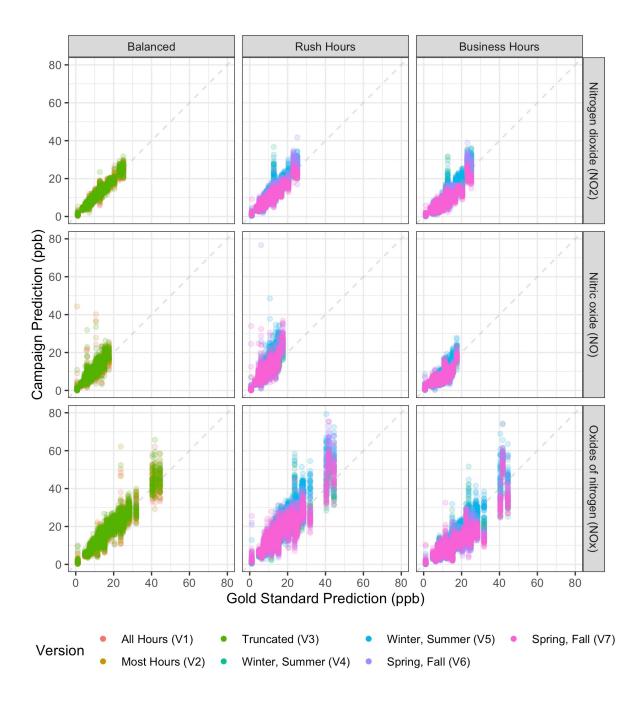
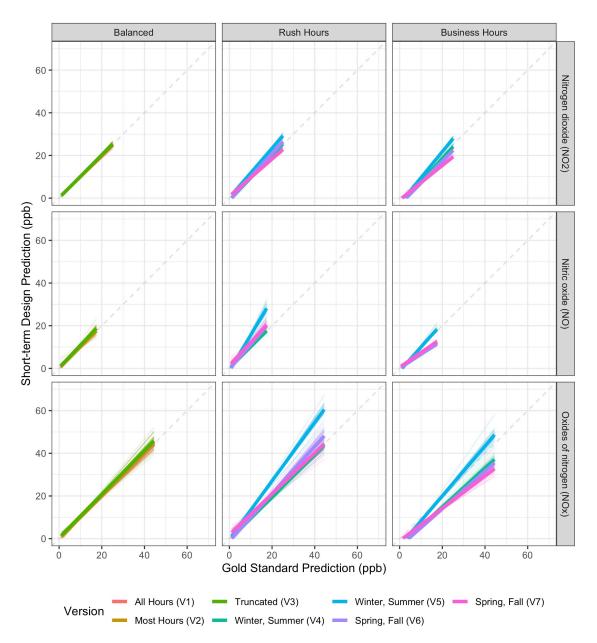
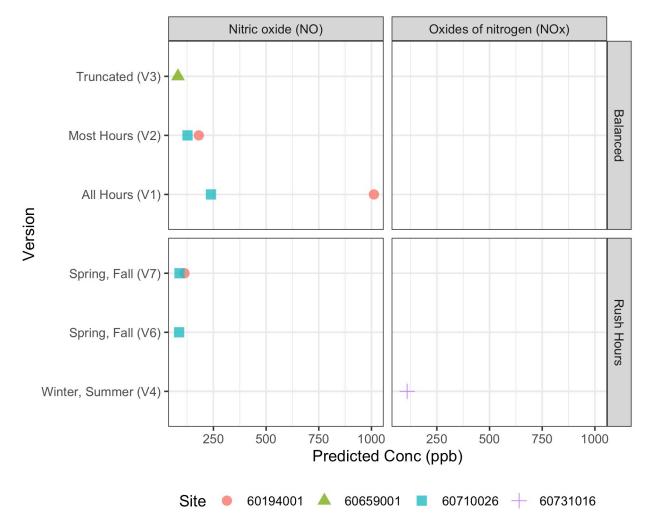




Figure S10. Scatterplot of cross-validated short-term predictions for 30 campaigns vs the gold standard predictions for NOx, NO, and NO2. Showing predictions below 80 ppb for clarity (see SI Figure S12 and Table S6 for predictions excluded).

Figure S11. Best fit lines of cross-validated short-term predictions for 30 campaigns vs the gold standard predictions for NOx, NO, and NO2.

Figure S12. Predictions above 80 ppb excluded from prediction plots, if noted.

Parameter Name	Design Version		Ν	Prediction (ppb)		
Oxides of nitrogen (NOx)	Rush Hours	Winter, Summer (V4)	1	109		
Nitric oxide (NO)	Balanced	All Hours (V1)	2	238, 1012		
Nitric oxide (NO)	Balanced	Most Hours (V2)	2	127, 181		
Nitric oxide (NO)	Balanced	Truncated (V3)	1	82		
Nitric oxide (NO)	Rush Hours	Spring, Fall (V6)	1	87		
Nitric oxide (NO)	Rush Hours	Spring, Fall (V7)	2	89, 113		

Table S6. Predictions above 80 ppb excluded from prediction plots, if noted¹

¹ N is the number of predictions.

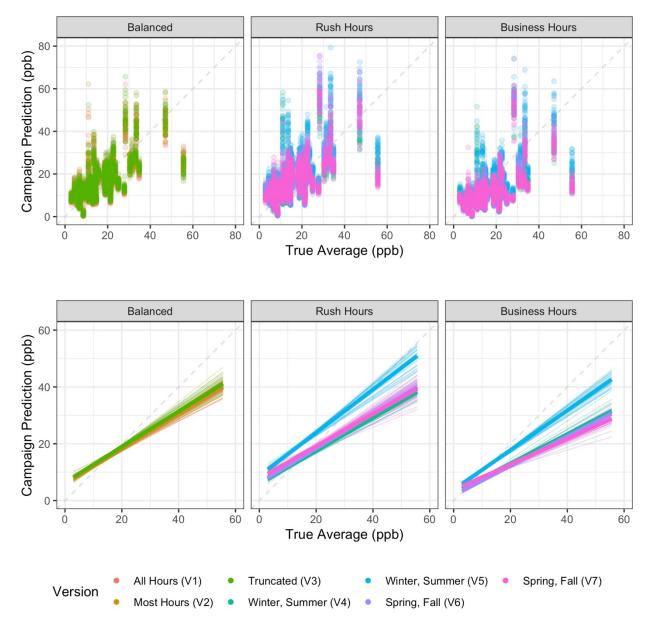


Figure S13. Scatterplots and best fit lines of cross-validated short-term predictions for 30 campaigns vs true average concentrations for NOx. Thin transparent lines are individual campaigns, colored by design version; thicker lines are the overall version trend. (One prediction is excluded for clarity from the Rush Hours Version 4 scatterplot at x=24 ppb, y=109 ppb [site 60731016] but is included in the line plots).

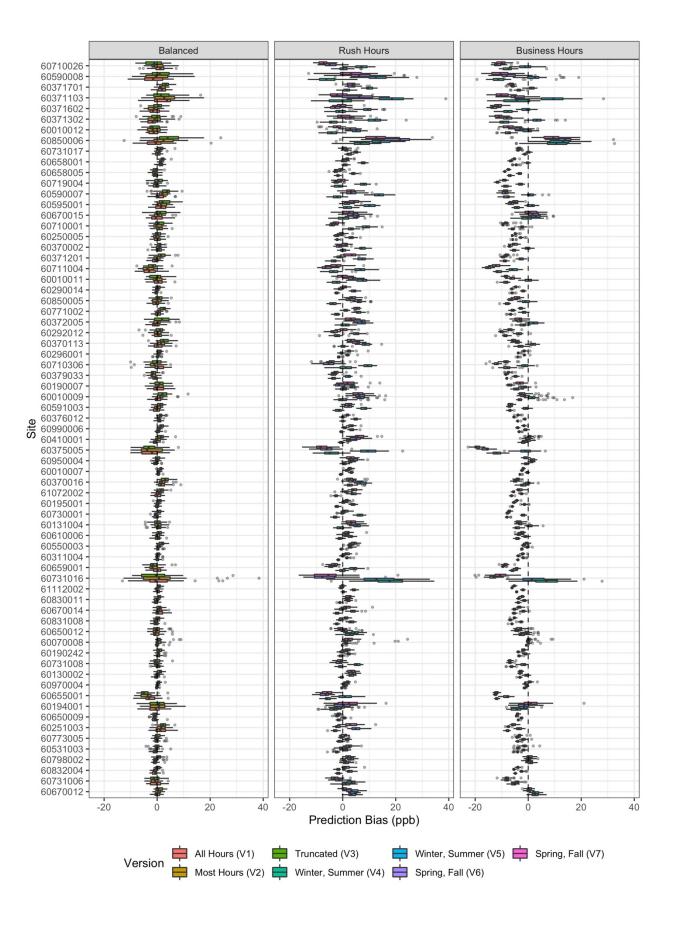


Figure S14. Site-specific NOx prediction biases for short-term designs (N = 30 campaigns) as compared to the gold standard (long-term Balanced Design Version 1) predictions for all sites. Sites are arranged by the true NOx measurement, with higher concentration sites higher up. One prediction bias for site 60731016 is excluded (86 ppb for Rush Hours Version 4) for clarity.

Parameter Name	Design	N	Min	Q01	Median	IQR	Q99	Max
Oxides of nitrogen (NOx)	Balanced	6,210	-13.1	-6.9	0.2	2.4	7.9	38
Oxides of nitrogen (NOx)	Rush Hours	8,280	-16.6	-8.9	1.2	5.2	18.4	86
Oxides of nitrogen (NOx)	Business Hours	8,280	-22.7	-15.2	-3.8	5.3	12.8	33
Nitric oxide (NO)	Balanced	4,590	-10.5	-3.8	0.1	1.7	7.2	1,006 ²
Nitric oxide (NO)	Rush Hours	6,120	-7.9	-3.8	1.3	3.4	13.1	107
Nitric oxide (NO)	Business Hours	6,120	-10.6	-7	-1.8	3	4.2	10
Nitrogen dioxide (NO2)	Balanced	6,300	-6.9	-3	0.1	1.1	3.5	11
Nitrogen dioxide (NO2)	Rush Hours	8,400	-8.2	-4.7	0.1	2.3	6.6	24
Nitrogen dioxide (NO2)	Business Hours	8,400	-11.5	-7.5	-2.2	2.7	6.4	19

Table S7. Distribution of prediction bias for short-term approaches relative to the gold standard predictions¹

 1 N = the number of sites x 30 campaign repetitions x the number of versions per design

² This maximum is the result of a very large outlier prediction

5 Model Assessment

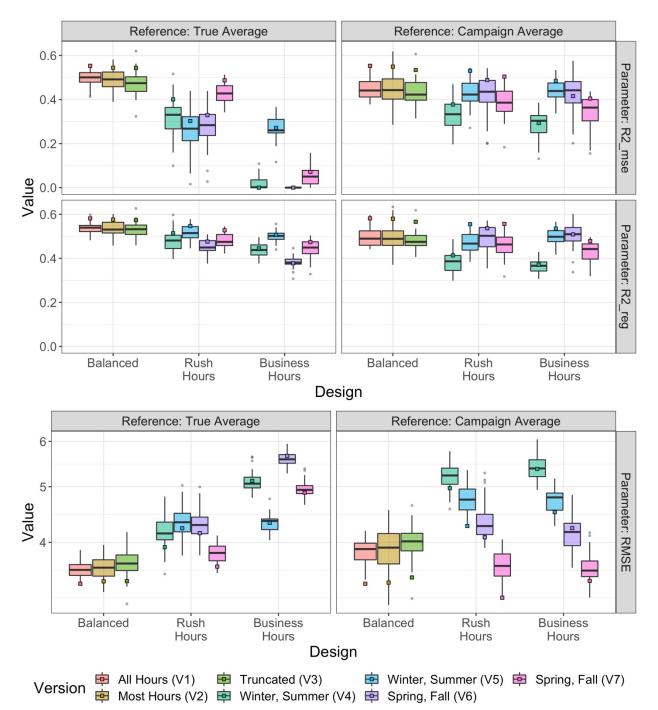


Figure S15. NO₂ Model performances (R^2_{MSE} , R^2_{reg} , and RMSE), as determined by each campaign's crossvalidated predictions relative to: a) the true averages (long-term Balanced Version 1), and b) its campaign averages. Boxplots are for short-term approaches (30 campaigns), while squares are for longterm approaches (1 campaign).

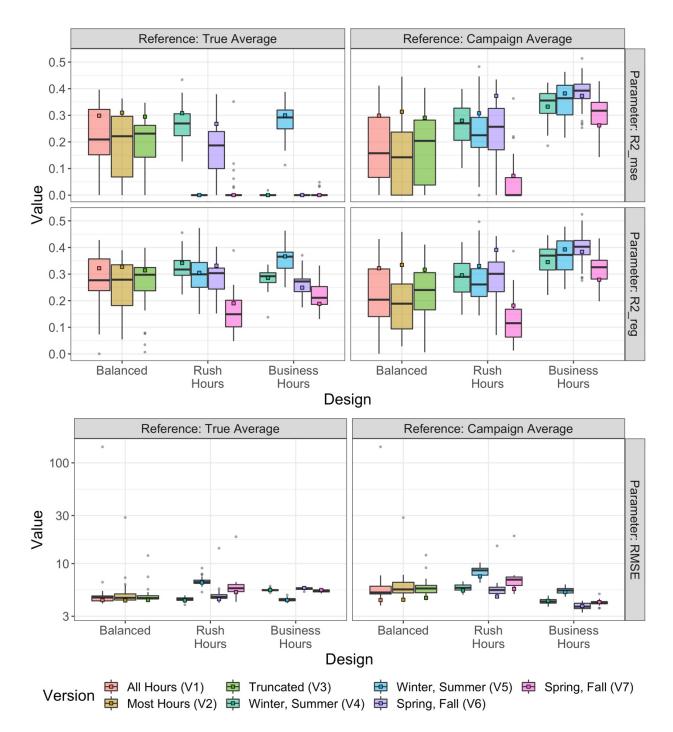


Figure S16. NO Model performances (R²_{MSE}, R²_{reg}, and RMSE), as determined by each campaign's crossvalidated predictions relative to: a) the true averages (long-term Balanced Version 1), and b) its respective campaign averages. Boxplots are for short-term approaches (30 campaigns), while squares are for long-term approaches (1 campaign). A few influential outliers influenced these performance statistics more so than for NOx and NO₂.