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Supplementary Methods 1: Study design  

Univariable MR: Effect of Chronotype and Sex Hormones on Breast and Prostate Cancer Risk  

Univariable two-sample MR analysis was performed to estimate the effects of chronotype, total 

testosterone, bioavailable testosterone, SHBG and oestradiol on breast and prostate cancer using 

SNP-exposure estimates from UK Biobank (sample 1) and SNP-outcome estimates (sample 2) 

extracted from summary statistics obtained from the Breast Cancer Association Consortium 

(BCAC)1,2, Elucidating Loci Involved in Prostate Cancer (ELLIPSE) and The Prostate Cancer Association 

Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortia3,4 

(PRACTICAL/ELLIPSE) GWAS studies.  

Univariable MR analyses were also conducted using data stratified by breast cancer subtype2 

(luminal A, luminal B, luminal B HER2 negative, HER2-enriched and triple negative).  

All univariable MR analyses used the R package “Two SampleMR”5. If SNPs within the exposure 

instrument were not present in the outcome (breast and prostate cancer) GWAS, proxy SNPs with a 

minimum linkage disequilibrium (LD) of r2 = 0.8 were substituted. Exposure and outcome SNPs were 

harmonised to ensure effect estimates were aligned with the same reference allele for both 

datasets. This was inferred using allele frequencies for palindromes, and if direction of effect could 

not be inferred (MAF>0.42), the SNP was excluded. The mr() function was then used to obtain a 

random-effects inverse variance weighted (IVW) estimate for the causal effect of the exposure on 

the outcome.  

Bidirectional MR: Reciprocal Effects between Chronotype and Sex Hormones   

In bidirectional MR analyses, we performed MR to evaluate the reciprocal effect of each hormone on 

chronotype. Together with the effect obtained from the MR of chronotype on hormones, these 

estimates can be used to determine directionality of the relationship. To ensure the robustness of 

the inferred direction between chronotype and the sex hormone traits, the instruments were 

subjected to Steiger filtering to assess strength of SNP associations with both exposure and 

outcome6. Any SNPs found to be more strongly associated with the outcome than the exposure were 

subsequently removed from the instrument, to ensure that the instrument is only influencing the 

outcome through the exposure of interest. This Steiger filtering of instruments was also subjected to 

sensitivity testing (see ‘sensitivity analyses’).  The same approach was taken as in the univariable, 

with effect estimates obtained from IVW analysis.    

Multivariable MR: Direct Effects of Chronotype and Sex Hormones on Cancer Risk  
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Multivariable MR (mvMR) analysis was conducted to assess the direct effects of chronotype and sex 

hormones on both breast and prostate cancer7,8. For these analyses, the instruments for each 

exposure included in the previous uvMR analyses were used. These instruments were first clumped 

individually (r2 = 0.001), before being combined and then clumped again9. The mv_multiple() 

function was then used to obtain an inverse variance weighted (IVW) estimate for the direct causal 

effect of each exposure on the outcome, in which instruments for each exposure are regressed 

against the outcome together, weighting for the inverse variance of the outcome5. Evidence of 

attenuation of the chronotype effect in mvMR compared to the corresponding uvMR results can be 

used to indicate a mediated (or indirect) effect executed via the sex hormones investigated in this 

study10. 

Supplementary Methods 2: Genotyping, Imputation and association analysis (UKB)  

The full data release contains the cohort of successfully genotyped samples (n=488,377). 49,979 

individuals were genotyped using the UK BiLEVE array and 438,398 using the UK Biobank axiom 

array. Pre-imputation quality control, phasing and imputation are described elsewhere11. In brief, 

prior to phasing, multiallelic SNPs or those with minor allele frequency (MAF) ≤1% were removed. 

Phasing of genotype data was performed using a modified version of the SHAPEIT2 algorithm12. 

Genotype imputation to a reference set combining the UK10K haplotype and HRC reference panels 8 

was performed using IMPUTE2 algorithms13. The analyses presented here were restricted to 

autosomal variants within the HRC site list using a graded filtering with varying imputation quality 

for different allele frequency ranges. Therefore, rarer genetic variants are required to have a higher 

imputation INFO score (Info>0.3 for MAF >3%; Info>0.6 for MAF 1-3%; Info>0.8 for MAF 0.5-1%; 

Info>0.9 for MAF 0.1-0.5%) with MAF and Info scores having been recalculated on an in-house 

derived ‘European’ subset14. 

 

Individuals with sex-mismatch (derived by comparing genetic sex and reported sex) or individuals 

with sex-chromosome aneuploidy were excluded from the analysis (n=814). We restricted the 

sample to individuals of ‘European’ ancestry as defined by an in-house k-means cluster analysis 

performed using the first 4 principal components provided by UKB in the statistical software 

environment R (n=464,708)14.  

Genome-wide association analysis (GWAS) was conducted using linear mixed model (LMM) 

association method as implemented in BOLT-LMM (v2.3)15. To model population structure in the 

sample we used 143,006 directly genotyped SNPs, obtained after filtering on MAF > 0.01; genotyping 
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rate > 0.015; Hardy-Weinberg equilibrium p-value < 0.0001 and LD pruning to an r2 threshold of 0.1 

using PLINKv2.00. Genotype array was adjusted for in the model.  

 

Supplementary Methods 3: Genotyping and Imputation (BCAC) 

Summary GWAS data obtained from BCAC came from a meta-analysis of 133,384 breast cancer 

cases and 113,789 controls1. Summary statistics were also obtained from analyses of 106,491 cases 

and 94,407 controls for five breast cancer subtypes (Luminal A (ER+/ PR+, HER2);  Luminal B 

(ER+/PR+/-, HER2+); Luminal B HER2 negative (ER+/PR+/-, HER2-, Ki-67 > 14%); HER2 (ER-, PR-, 

HER2+); and Triple Negative (ER-, PR-, HER2-))2. A subset of samples from the overall breast cancer 

GWAS were obtained by genotyping with an Illumina custom infinium array (OncoArray) of ~530,000 

SNPs. Criteria for removal of SNPs include: i) concordance of <98% among 5,280 duplicate sample 

pairs; ii) a p < 1.0 x 10-12 in cases or p < 1.0 x 10-7 in controls and; iii) a call rate of <95%. SNPs were 

also removed where the cluster plot was judged to be inadequate. Samples from the overall breast 

cancer GWAS were also obtained through imputation using the 1000 genomes project phase 3 

reference panel16, where criteria for removal include: i) minor allele frequency of <1%; ii) a call rate 

of <98% or; iii) different frequency or absence from the 1000 genomes reference panel.     

Results from the most recent OncoArray analyses were combined with 46,785 cases and 42,892 

controls from the previous iCOGS genotyping project, plus 46,785 cases and 42,892 controls from 

eleven other breast cancer GWAS using a fixed-effects meta-analysis. All contributory GWAS were 

adjusted for principal components of European ancestry. OncoArray analyses were further adjusted 

for country and iCOGS analyses for study. All participating studies had the approval of their 

appropriate ethics review board and all participants provided informed consent. 

Supplementary Methods 4: Genotyping and Imputation (ELLIPSE/PRACTICAL) 

The ELLIPSE Consortium includes the meta-analysis of both existing and novel GWAS, plsu iCOGS 

genotyping. The meta-analysis includes only participants of European ancestry, combining GWAS 

from: UK GWAS stage 1 (Illumina Infinium HumanHap 550 Array: 1,854 cases and 1,894 controls), UK 

GWAS stage 2 (Illumina iSELECT: 3,706 cases and 3,884 controls), CAPS1 (Affymetrix GeneChip 500K: 

474 cases and 482 controls), CAPS2 (Affymetrix GeneChip 5.0K: 1,458 cases and 512 controls), BPC3 

(Illumina Human610 Illumina: 2,068 cases and 3,011 controls), PEGASUS (HumanOmni2.5: 4,600 

cases and 2,941 controls). From UKGPCS, genotyping was conducted for 977 prostate cancer cases 

and exome SNP array genotyping was conducted for 4741 subjects. ICOGs genotyping was 

conducted for 10,366 subjects (including 1,648 participants from the Multiethnic Cohort and 8,718 
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from UKGPCS). Duplicate samples and first-degree relatives were excluded both within each study 

and across GWAS studies. Ancestry was assessed through principal component analysis, and only 

individuals with an estimated proportion of European ancestry > 0.8 (with reference to HapMap 

populations) were retained.  

OncoArray genotyping of 533,631 selected variants from ELLIPSE studies was conducted across five 

sites (Cambridge, CIDR, Copenhagen, USC, and NCI).Exclusion criteria for SNPs included: a <95% call 

rate by study; a <98% call rate in any study; a p < 1.0 x 10-12 in cases or p < 1.0 x 10-7 in controls; 

concordance of <98% among 11,260 duplicate pairs; a minor allele frequency of <1%; different 

frequency or absence from the 1000 genomes reference panel or; where the cluster plot was judged 

to be inadequate. Of the 533,631 SNPs on the OncoArray, 498,417 were retained following quality 

control. Approximately 70 million SNPs were imputed for all samples using the 1000 genomes 

project phase 3 reference panel. OncoArray and GWAS datasets were imputed through a two-stage 

approach, using SHAPEIT31 for phasing and IMPUTEv217 for imputation.  

 

Supplementary Methods 5: Assessment of MR Assumptions 

MR analysis relies on three key assumptions: i) IVs must be robustly associated with the exposure of 

interest; ii) IVs must be independent of confounders of the exposure-outcome association; iii) IVs 

must only influence the outcome through the exposure of interest18.  

To test the first of the MR assumptions, F-statistics were calculated for all IVs used in univariable 

analysis to assess instrument strength. The F-statistic incorporates phenotypic variance explained by 

genetic variants (r2), sample size, and number of variants to estimate strength of the relationship 

between IVs and phenotype19,20. Instrument strength was also assessed in mvMR analyses with 

conditional F-statistics21. In two-sample MR weak instrument bias is expected to result in 

attenuation of effects towards the null. 

While germline genetic variants should not plausibly be influenced by confounding factors, concerns 

about violation of the second MR assumption usually focus on confounding by ancestry. Steps were 

taken to minimise population stratification in the GWAS performed although this assumption is 

difficult to test, particularly in a two-sample setting.   

The third assumption relates to potential horizontal pleiotropy of the IVs used in the genetic 

variants. In particular, the main IVW approach used assumes that the genetic IVs are valid and that 

there is no unbalanced horizontal pleiotropy. We undertook complementary sensitivity analyses 

using methods that relax this assumption. MR-Egger, is similar to IVW but does not constrain the 
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intercept to be zero. A non-zero intercept indicates the presence of horizontal pleiotropy and the 

slope (effect estimate) has controlled for potential bias due to unbalanced horizontal pleiotropy.22 

Both IVW and MR-Egger assume that the ‘instrument strength independent of direct effect’ (INSIDE) 

assumption is not violated (i.e. that there is no correlation between the genetic IV-exposure 

association and unmediated IV-outcome association). The weighted median method assumes that 

≥50% of the weight in the analysis stems from IVs which are valid (i.e. if one strong instrument 

reflecting 50% or more of the variation in the exposure is pleiotropic or several weaker instruments 

together explain 50% or more of the association and are pleiotropic, the estimate will be biased)23. 

Weighted mode-based MR, estimates from individual valid IVs are in the majority24. Scatter plots 

were used to visualise consistency between IVW, MR-Egger, median and mode effect estimates for 

initial uvMR of chronotype and sex hormone measures on breast and prostate cancer risk. In 

subsequent bdMR, and mvMR, MR-Egger alone was used to estimates effects which were robust to 

pleiotropy. 

Steiger filtering was applied to instruments in the bdMR analysis of chronotype and sex hormones. 

This approach removes SNPs that explain more of the variance in the outcome than the exposure 

and consequently reduces the likelihood of erroneous results due to pleiotropy 6. Steiger sensitivity 

ratios (R) were also calculated for these analyses, which considers the measurement precision of 

both exposure and outcome, and represents the likelihood that the observed direction of 

association is correct25. An R>1 provides evidence to support the direction of association from 

exposure to outcome. 
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