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Abstract 45 

 46 

Identifying linked cases of infection is a key part of the public health response to viral infectious 47 

disease. Viral genome sequence data is of great value in this task, but requires careful analysis, 48 

and may need to be complemented by additional types of data. The Covid-19 pandemic has 49 

highlighted the urgent need for analytical methods which bring together sources of data to inform 50 

epidemiological investigations. We here describe A2B-COVID, an approach for the rapid 51 

identification of linked cases of coronavirus infection.  Our method combines knowledge about 52 

infection dynamics, data describing the movements of individuals, and novel approaches to 53 

genome sequence data to assess whether or not cases of infection are consistent or inconsistent 54 

with linkage via transmission. We apply our method to analyse and compare data collected from 55 

two wards at Cambridge University Hospitals, showing qualitatively different patterns of linkage 56 

between cases on designated Covid-19 and non-Covid-19 wards. Our method is suitable for the 57 

rapid analysis of data from clinical or other potential outbreak settings.  58 

 59 

Introduction 60 

 61 

Having emerged via zoonotic transfer in late 2019, the COVID-19 pandemic remains an ongoing 62 

public health priority [1,2]. Understanding the nature of viral transmission is a key factor in all 63 

strategies to prevent and control disease spread. The earliest stages of the outbreak were 64 

characterised by small, localised clusters of infection [3,4]. Identifying chains of inked cases 65 

remains crucial for containing disease spread [5,6], particularly in healthcare settings.  Outbreaks 66 

in these settings, however, provide a particular challenge to the identification of linked cases as 67 

regular new introductions from the community have to be distinguished from potential cases of 68 

nosocomial transmission [7–9]. 69 
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 70 

Viral genome sequencing provides one strategy for identifying clusters of transmission. The rapid 71 

evolution of viral populations leads to the accumulation over time of genetic differences which 72 

distinguish linked from unlinked cases [10]. A broad range of phylogenetic approaches for 73 

identifying linked infection clusters have previously been described [11–15] 74 

 75 

With this background, a recent study of hospital-based COVID-19 infection used genome 76 

sequencing to identify potential clusters of infection. In this study, sets of individuals with identical 77 

viral genome sequences were often verified by a process of epidemiological follow-up to 78 

correspond to likely cases of nosocomial transmission [5]. Data from genome sequencing allowed 79 

feedback in real time to clinical, infection control and hospital management teams to inform their 80 

response. 81 

 82 

Whilst genome sequence data is of great value for studying viral transmission, it has some 83 

drawbacks in the context of SARS-CoV-2. Given the recent emergence of SARS-CoV-2, and the 84 

low diversity of global viral sequences, finding identical sequences in different individuals does 85 

not necessarily imply a connection between those people. Furthermore, sequence data is not the 86 

only type of information that may be available. For example, studies of known SARS-CoV-2 87 

transmission events have quantified the distribution of times between the onset of symptoms and 88 

the transmission of the virus, and of the subsequent time between infection and the onset of 89 

symptoms [16–19]. In addition the contribution of asymptomatic individuals to transmission is 90 

difficult to ascertain as they may not be sampled [20,21].  Such information has implications for 91 

the analysis of potential transmission events. Information about the location of individuals might 92 

also contribute to the identification or ruling out of connections; people who never physically 93 

interact cannot directly transmit the virus from one to another. Potential, therefore, exists for novel 94 

approaches in the identification of transmission clusters.  95 
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 96 

New methodologies have the potential to gain insights into viral sequence data. For example, 97 

noise in the process of viral sequencing can affect phylogenetic analyses which rely on finding 98 

identical sequences. Multiple studies have considered the problem of noise in genome sequence 99 

data, particularly with regard to identifying variant frequencies [22–25].  The potential for error in 100 

variant frequencies means that a viral consensus sequence is also stochastic, since it is 101 

generated from a potentially diverse viral population. Further, evolution would be expected to 102 

change viral sequences over time. Metrics which account for measurement error and viral 103 

evolution may be advantageous for identifying linked cases of infection. 104 

 105 

A variety of studies have used short-read viral sequencing to evaluate the nature and likely 106 

direction of viral transmission. The ability of such data to capture the diversity of within-host viral 107 

populations has proved very valuable in the assessment of transmission events [26–29].  108 

However, the low cost of data collection via nanopore-based methods has often outweighed the 109 

additional precision provided by Illumina technology [30,31]. Analyses which can utilise the 110 

consensus sequences provided by such methods have broader application, increasing their 111 

value. 112 

 113 

Here, we describe a tool which implements a combined statistical and evolutionary framework to 114 

analyse genome sequence data with location data and knowledge of SARS-CoV-2 infection 115 

dynamics to rapidly identify clusters of infection. Our approach provides a rapid data analysis, 116 

outputting information in an easily interpretable format.  We demonstrate its use with augmented 117 

sequence data from outbreaks on hospital wards, illustrating the value of different kinds of data 118 

in this context.  While designed with clinical application in mind, the generality of the properties of 119 

viral transmission make our method applicable to any setting in which appropriate data has been 120 
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collected from more than one individual. We hope that our approach will be of value in ongoing 121 

public health efforts to combat the COVID-19 pandemic. 122 

 123 

Results 124 

 125 

Our method exploits data from genome sequencing alongside other information about individuals 126 

and COVID-19 infection. Given short periods of time between samples, the extent of 127 

measurement error in a viral sample may exceed the extent of evolutionary change in a population 128 

[32].  As a preliminary step therefore, we evaluated the extent of measurement error in our 129 

sequencing pipeline. 130 

 131 

We examined cases among data collected from patients at the Cambridge University Hospitals 132 

National Health Service Foundation Trust (CUH) for which more than one viral sample was 133 

sequenced.  A total of 136 such patients were identified, with between 2 and 9 (median 2) samples 134 

collected from each individual and 336 samples in total. Intervals between pairs of samples varied 135 

from 0 to 39 days.  Each sample gave rise to a consensus sequence.  We filtered the data to 136 

remove sequences with less than 90% coverage of the genome. Combining these data through 137 

regression, we inferred a mean error rate of approximately 0.207 nucleotide errors per sequence 138 

(S1 Figure). While small, this rate is significant. In our model, the expected time between 139 

symptoms being reported from individuals in a transmission pair is 5.7 days; the expected amount 140 

of sequence evolution within this time is not greater than the expected difference between two 141 

sequences resulting from noise (S2 Figure). 142 

 143 

For each pair of individuals in a dataset we compared symptom onset, location, and genome 144 

sequence data with an underlying model of transmission, identifying whether or not the data were 145 

consistent with the null hypothesis that direct viral transmission occurred between the two 146 
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individuals.  Our model produces a simple output, stating that the data are either ‘consistent’ with 147 

the hypothesis of transmission (nominal p-value > 0.05), that transmission is ‘unlikely’ to have 148 

occurred (p-value < 0.01) or that the case is ‘borderline’ (p-value between 0.05 and 0.01).   149 

 150 

We applied our model to data from two wards within CUH, which we term X and Y.  Ward X was 151 

a ‘green’ ward, used for patients considered to be free from COVID-19 infection.  By contrast, 152 

ward Y was a ‘red’ ward within the hospital, designated for the treatment of patients with COVID-153 

19 infection, on which multiple cases of infection in healthcare workers (HCWs) were identified. 154 

Information collected for these individuals included genome sequence data from viral swabs, 155 

dates of symptom onset and dates on which individuals were present on the wards in question.  156 

 157 

Our method combines multiple types of data, using the information available to identify potentially 158 

linked cases of infection (Figure 1). We conducted two analyses of the data from wards X and Y, 159 

the first looking at the complete data collected for individuals, including dates of symptom onset, 160 

viral genomes and location data, and the second excluding location data, considering only times 161 

of symptom onset and the viral sequence data. 162 

 163 

Analysing the complete data from each ward identified potential transmission events in each case 164 

(Figure 2).  Outputs from our method are asymmetrical.  For example, the data is consistent with 165 

transmission from 7069 to 7074 having occurred, but transmission from 7074 to 7069 was ruled 166 

unlikely.  This is in part explained by 7069 reporting symptoms four days before 7074; the order 167 

of reporting symptoms provides information on the likely direction of transmission.  Examination 168 

of the output from our code can be used to identify potential clusters of linked transmission events.  169 

For example, data from ward X suggest that the ten infections for which data were available were 170 

potentially mutually connected by transmission, though some underlying structure can be seen.  171 

The bottom three individuals coded 7108, 7128, and 7074, could each have infected each other, 172 
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but have only borderline chances of having infected anyone else on the ward.  These individuals 173 

could have been infected by either 7069 or 7112 infecting 7074, leading to further transmission 174 

events.  The remainder of the individuals on the ward show multiple plausible transmission events, 175 

though we note that 7129 has only a borderline probability of having infected any other person.  176 

Examination of location data collected for the ward provides some insight into these findings 177 

(Figure 2B).  Individuals 7108 and 7128 were never present on ward X, but were mutually in 178 

contact with 7074 throughout the duration of the outbreak via known household contacts.  The 179 

health care worker 7129 was present on ward X at the same time as many of the other individuals, 180 

but became symptomatic at a later point; the later onset of symptoms suggests that 7129 was 181 

infected by another individual in the outbreak without passing the virus on within the ward. The 182 

overall picture we discover is what may be a single outbreak of linked cases on ward X, potentially 183 

started by a patient, but largely involving HCWs both on and off the ward. 184 

 185 

Analysis of data from ward Y revealed a less complex chain of events  (Figure 2C).  Precisely two 186 

clusters of individuals were inferred from the complete dataset, with individuals 1773, 2914, and 187 

4255 forming one mutually interconnected set of infections, and the individuals 4902, 4633, and 188 

4493 forming a second.  While location data was missing for the latter three individuals the mutual 189 

connections between individuals can again be understood from the location data that do exist 190 

(Figure 2D).  We note that in ward Y, cases were spread over a longer period of time than in ward 191 

X.  In this case, we find two potential outbreaks between HCWs on the ward, with other cases 192 

reported on the ward not being linked to these individuals.  Our results reflect the ‘green’ and ‘red’ 193 

natures of the two wards.  Where ward X was designated for patients who were in theory free 194 

from COVID-19 infection, a coherent cluster of infection, potentially indicating a single introduction 195 

of the virus into the ward, was responsible for all of the observed cases.  By contrast ward Y, 196 

being designated for COVID-19 cases, had multiple introductions of the virus onto the ward, 197 

perhaps two of those cases leading to ongoing nosocomial transmission.   198 
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 199 

Sensitivity analyses suggested that the measurement error has some effect on the outputs of our 200 

model.  Calculations performed with increased and decreased error parameters led to changes 201 

in which events were identified as ‘Consistent’, ‘Borderline’ or ‘Unlikely’ (S3 Figure).  Reducing 202 

the input error parameter to zero has the potential to induce more significant changes in our model 203 

output, as discussed further in the Methods section. 204 

 205 

In order to assess the value of location data we repeated our estimation in their absence, using 206 

only viral genome sequence data and the dates on which individuals first reported symptoms. 207 

Location data generally reduces the inferred potential for viral transmission; under the logic of our 208 

method, individuals who are not in the same place at the same time cannot infect one another. 209 

The value of location data in increasing the precision with which networks of links between cases 210 

of infection is shown by the results from ward X (Figure 3A). While the overall pattern of data 211 

shows multiple potential connections between individuals, the independence of the transmissions 212 

between 7108, 7128, and 7074 from the remainder of the network was lost in the absence of 213 

spatial data. Spatial data in our model was defined in terms of presence or absence on a ward, 214 

more refined information not being available. An analysis of data from ward Y showed an intriguing 215 

result, with previously unseen potential links between individual 2019 and the first cluster, and 216 

between 3327 and the second cluster (Figure 3B).  These HCW displayed symptoms earlier than 217 

the people in their respective clusters, consistent with being the original cases in each case.  218 

Further, phylogenetic reconstruction showed that the sequences from these individuals were 219 

consistent with their being linked (Figure 3C; similar data for ward X is shown in S4 Figure).  220 

However, the location data do not show them as working shifts on ward Y at the same time as 221 

any of the other linked individuals were present.  We suggest that unrecorded contacts may exist 222 

in this case.   223 

 224 
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The potential for missing location data to prevent the identification of linked individuals shows that 225 

measuring location can be difficult, more so for HCWs than patients.  While patients are unlikely 226 

to be highly mobile, HCWs move around the hospital outside of their shifts. Unless explicitly 227 

recorded, off-ward contacts between HCWs are unlikely to be noted, leading to the potential non-228 

inference of genuine links. While missing location data cannot be unambiguously diagnosed as 229 

the cause of our result, this case highlights the limitations intrinsic to our approach.  Our software 230 

may provide valuable insights, but does not replace the need for full epidemiological investigation. 231 

 232 

Discussion 233 

 234 

We have here set out a method for identifying potential cases of direct transmission between pairs 235 

of individuals, based upon the dynamics of SARS-CoV-2 infection, data describing times of co-236 

location between individuals, and genome sequence data collected during infection. In a first 237 

application of our method, we analysed data from two hospital wards. In each, we identified cases 238 

where the data were consistent with viral transmission occurring between either patients or HCWs 239 

on the ward. Our method builds upon information that can be obtained from a phylogenetic 240 

analysis, incorporating data from multiple sources to present an easily-interpretable map of 241 

potential linked cases of infection. It is likely to be valuable in the initial assessment of potential 242 

cases of nosocomial transmission, highlighting pairs or clusters of individuals for further 243 

epidemiological assessment, and allowing for a more strategic deployment of resources for 244 

outbreak investigation and targeted interventions. 245 

 246 

Our method brings together a variety of data, combining an evolutionary model for the analysis of 247 

sequence data with location information and details of the dynamics of viral infection. In contrast 248 

to standard phylogenetic approaches to sequence data, our model explicitly accounts for noise in 249 

the generation of a viral consensus sequence; using within-host data we identified a magnitude 250 
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of error of a fraction of one nucleotide per genome. In rapidly evolving viruses for which 251 

transmissions are separated by longer periods of time, the within-host evolution of viral 252 

populations is likely to overwhelm the effect of noise in the sequencing process. However, for 253 

cases of acute infection, separated by only a few days, the extent of noise may be close to the 254 

expected evolutionary change in the population, making it an important factor to consider. 255 

 256 

One limitation of our method is that it deals with consensus viral sequences rather than deep 257 

sequence data. Where available, detailed measurements of within-host viral diversity may lead to 258 

an improved picture of relationships between cases of viral infection.  We note further that our 259 

tool analyses data in a pairwise manner; while distinguishing plausible from implausible links 260 

between cases of infection, it does not attempt to infer a complete reconstruction of a transmission 261 

network. Unobserved cases of infection are not considered.    Our model used parameters which 262 

in some cases have been derived from early studies into SARS-CoV-2 spread.  To account for 263 

the event that further research leads to a better understanding of viral transmission we provide 264 

options to perform calculations with user-specified parameters.  We finally note that a statistical 265 

inference from our model does not describe the probability of transmission having occurred 266 

between two individuals.  Instead it describes how consistent the data are with transmission.  Our 267 

model is intended as a first step towards further epidemiological investigation. 268 

 269 

Our model has a range of features specifically tailoring it to the real-time analysis of data in a 270 

hospital context during an outbreak of a rapidly spreading viral disease.  Our method is designed 271 

for simplicity both in being easy to use and in rapidly producing an interpretable output.  To this 272 

extent our method is limited in what we try to infer, highlighting only pairs of individuals where the 273 

data are consistent with transmission.  For example, in a case where an individual A infects B and 274 

C, it could be that our method highlights not only the real transmission events, but also reports 275 

that the data from B and C is consistent with transmission occurring between them.  This does 276 
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not comprise an error in our method, but does require our method to be understood.  We note 277 

that, in a hospital environment, a positive output from our method could be followed up by 278 

investigative efforts and epidemiological follow up; such efforts have the potential to collect data 279 

beyond that considered by our method.   280 

 281 

We believe that the key application of our method will be in investigating nosocomial transmission 282 

of SARS-CoV-2. Within a hospital, potential cases of transmission may be obscured by a large 283 

number of cases of community-acquired infection. In a busy clinical setting, our tool has the ability 284 

to rapidly separate potentially linked cases from those which are likely to be unlinked. In this way 285 

we allow investigative efforts and epidemiological followup to be focused more precisely, 286 

concentrating effort on cases where transmission is a real possibility. 287 

 288 

Methods 289 

 290 

Model overview 291 

 292 

We here consider pairs of individuals, who for the purpose of notation, we describe as individuals 293 

A and B.  Given data on when the individuals  became symptomatic for SARS-CoV-2 infection, 294 

their locations, and their viral genome sequences, we generate a statistic to test whether the data 295 

are consistent with viral transmission having occurred from A to B. 296 

 297 

To outline this process, suppose that we have observed data y from this pair of individuals.  The 298 

null hypothesis of transmission is supported by the data if these data have high probability of 299 

having arisen given transmission from A to B.  More formally, the hypothesis is accepted at a 300 

confidence level ψ if the probability of observing y, or data that are “less extreme” (i.e. data that 301 
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are even more consistent with transmission than y) is at least ψ under the hypothesis of direct 302 

transmission from A to B.  We outline our method in detail below. 303 

 304 

Available data 305 

 306 

Notation 307 

 308 

An overview of the notation used in the description of our model is shown in Figure 4.  The dates 309 

of symptom onset and the dates when viral sequence data were collected are denoted SA and SB 310 

and DA and DB, respectively. These dates are assumed to be known, or in the case of symptom 311 

dates can be estimated from times at which individuals tested positive.  Further data described 312 

the locations of the individuals A and B on each day, with the binary indicator CA(L,T) denoting 313 

whether individual A was present in location L on day T.  The information describing the location 314 

of individuals may be uncertain, so we represent it by wA(L,T), the probability that individual A is 315 

present in location L on day T.  For example, if A is known to be in location L on day T we have 316 

wA(L,T)=1, while if A is known not to be in location L on day T we have wA(L,T)=0.  If the location 317 

of A at this time is unknown, wA(L,T) is defined as described below.  Analogously to this, the binary 318 

indicator CAB(T) denotes whether or not A and B were in contact on day T.  Uncertainty in this 319 

indicator is represented by the probability wAB(T) that A and B were present in the same location 320 

on this day.  In describing genomic data, HA and HB describe Hamming distances between the 321 

viral sequences collected from A and B and their mutual consensus.  The CT scores of the viral 322 

samples are denoted VA and VB. 323 

 324 

Symptom data 325 

 326 
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Due to extensive monitoring of individuals in hospital, we often had information on the dates of 327 

symptom onset for individuals.  When these were unknown we estimated them from positive test 328 

dates.  To perform this estimation we used symptom onset dates and positive test dates from 86 329 

health care workers and 393 patients from Cambridge University Hospitals, fitting an offset 330 

gamma distribution to these data (S5 Figure, S1 Table).  Where symptom dates were missing, 331 

the mean of this distribution was used to impute symptom onset dates from positive test dates.  332 

We write ŜA to denote an estimate for SA.  Where positive test dates are used in place of symptom 333 

onset dates, greater care is required in the interpretation of results. 334 

 335 

Location data 336 

 337 

In our study, time was measured in whole days.  For example, if an individual was known to be in 338 

location L for any part of day T, we set wA(L,T)=1.  Known location data were edited for health 339 

care workers to account for their increased mobility, night shifts which span more than one day, 340 

and uncertainties such as the potential for fomite transmission.  If for a healthcare worker we had 341 

that wA(L,T)=1 for some L and T we set wA(L,T-1) and wA(L,T+1) to be equal to a minimum value 342 

of 0.5.   343 

 344 

Where location data were missing it was necessary to specify values wA(L,T).  Data from our 345 

study were centred on cases from a specific part of the hospital, usually a single ward; this location 346 

was denoted L*.  Where location data were missing for a patient, we set wA(L*,T)=1 for all T, 347 

assuming that a patient was always on the most common ward.  Where location data were missing 348 

for health care workers, we set wA(L*,T)=4/7 for all T, reflecting shift patterns.  We note that in 349 

other circumstances (e.g. a dataset spanning an entire hospital), an alternative prior for the 350 

location of individuals could be more appropriate. 351 

   352 
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Contact information was derived from the location data.  For any two individuals we note that 353 

there could be multiple locations in which they could be in contact on a single day.  We combined 354 

probabilities of contact across potential locations,  calculating 355 

 356 

𝑤!"(𝑡) = 1 −()1 − 𝑤!(𝐿, 𝑡)𝑤"(𝐿, 𝑡),
#

 357 

 358 

Viral genome sequence data 359 

 360 

Consensus genome sequences were calculated from viral sequence data.  Sequences were 361 

subjected to two levels of quality control.  The first considered the coverage of the genome.  An 362 

unambiguous nucleotide is here defined as an instance in which sequencing describes an A, C, 363 

G, or T.  We applied the criterion that sequences had to unambiguously describe nucleotides at 364 

80% or more of the sites in the genome. 365 

 366 

The second level of quality control counted ambiguous nucleotides that were found at sites in the 367 

genome that were found to be polymorphic between the collected viral sequences.  These sites 368 

are more likely to be informative with regards to the number of genetic differences between two 369 

sequences; a genome with high overall coverage but ambiguity at multiple of these positions 370 

would in practice be quite uninformative.  Having identified polymorphic sites, we required 371 

sequences to have no more than one ambiguous nucleotide at these positions. 372 

 373 

In some cases, multiple viral samples were collected from the same individual.  Viral genomes 374 

collected from the same individual were usually extremely similar to one another (S1 Figure).  In 375 

such a case, we identified the earliest sequence with sufficient coverage of the viral genome, 376 

using this sequence for analysis.  Where positions in this genome were ambiguous, and where 377 
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other sequences from the same individual had unambiguous nucleotides at these positions, the 378 

other sequences were used to construct a more complete consensus sequence for the individual. 379 

 380 

Given viral sequences from the pair of individuals A and B we calculated Hamming distances from 381 

each sequence to a pairwise consensus sequence; we denote these distances as HA and HB.   382 

 383 

Assessing viral transmission 384 

 385 

We denote as XT an indicator for the event that transmission took place at time T, and as X an 386 

indicator for the event that transmission took place at all. To test the hypothesis of transmission, 387 

we calculated the probability of observing the data y under the null hypothesis that transmission 388 

occurred, p(y|X) = ΣT p(y|XT)P(XT|X), where P(XT|X) is the probability that transmission took place 389 

at T given transmission, which we abbreviate as P(T). 390 

 391 

Let Y represent the observable data.  Y consists of the symptom time SB, the Hamming distances 392 

HA and HB, and the set of CAB(T) for all T, denoted CAB.  We will write an expression for the 393 

probability of the observable data as follows: 394 

 395 

𝑝(𝑌|𝐷, 𝑋, 𝜃) = ∑ 𝑃(𝑇|𝑆!, 𝜃)𝑃(𝑆"|𝜃, 𝑋$)𝑃(𝐶!"|𝑋$)𝑃(𝐻!, 𝐻"|	𝜃, 𝐷, 𝐸, 𝑋$)$  (1) 396 

 397 

where D={DA, DB}, E is the error in sequencing, and θ represents the set of parameters that are 398 

assumed to be known.  We note that we condition on SA; an alternative approach would be to 399 

write the equation in terms of SB-SA.  We consider the parts of this equation in turn. 400 

 401 

Assessing viral transmission: Symptom and location data 402 

 403 
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In equation (1), P(T|SA,θ) describes the probability that transmission is at time T, where time is 404 

measured relative to SA, the time of onset of symptoms in A.  This term describes the infectivity 405 

profile of the virus, that is, the time from symptom onset to transmission.  We follow previously 406 

published work which has characterised this as an offset gamma distribution[16,17,35]. 407 

 408 

The term P(SB|θ,XT) describes the probability that B becomes symptomatic at time SB, given that 409 

transmission occurs at time T.  Again we have information from the same literature characterising  410 

this as a lognormal distribution.  We therefore write: 411 

 412 

𝑃(𝑇|𝑆!, 𝛼, 𝛽, 𝑠) =
%!(#!$%&')/*($'(%)*)+!,,!+

-(.)
, (2) 413 

 414 

where s is the offset and α=97.1875, β=0.2689, and s=25.625, and 415 

 416 

𝑃(𝑆"|𝜇, 𝜎, 𝑋$) =
%
!
-./0-$1!#2!32

4

454

((1'$)/√12
, (3) 417 

 418 

where μ=1.434, and σ=0.6612.  Each of these expressions treat T as a continuous variable ; we 419 

use an approximation to discretise the formula to a resolution of single days, obtaining 420 

 421 

𝑃(𝑇|𝑆!, 𝜃)𝑃(𝑆"|𝜃, 𝑋$) = @∫ %!(6&')/*(3)*)+!,,!+

-(.)
$'(%)4.6
$'(%'4.6

𝑑𝑥D E∫ %
!(./0(6)!3)

4

454

3/√12
(1'$)4.6
(1'$'4.6

𝑑𝑥F. (4) 422 

 423 

We next consider the term P(CAB|XT).  Where |C| is the length of the vector CAB, we note that there 424 

are 2|C| possible such vectors.  If CAB(T)=0, transmission cannot have occurred at time T, so that, 425 

if transmission occurred at time, then CAB(T), the Tth element of CAB, equals 1.  Regarding other 426 
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elements of CAB, we take a naive approach to contact patterns, assuming that P(CAB(t)=1|XT)=0.5 427 

for each t not equal to T.  This implies the result that P(CAB|XT)=0.5|C|-1 for any CAB with CAB(T)=1, 428 

with P(CAB|XT)=0 otherwise. 429 

 430 

Assessing viral transmission: Viral sequence data 431 

 432 

Finally, we consider the term P(HA,HB|θ,D,XT), which is derived from the viral genome sequence 433 

data.  In order to generate HA and HB, we first calculated a local consensus sequence across all 434 

of the viral genomes in our data.  Next, for each pair of sequences from individuals A and B, we 435 

calculated a pairwise consensus, defined as the nucleotide shared by the two sequences where 436 

the sequences agreed, and the nucleotide in the local consensus where the sequences differed.  437 

HA and HB were then calculated as the Hamming distances from each of the two sequences to 438 

the pairwise consensus sequence.  These distances describe the number of substitutions 439 

observed to have been gained by the viral population in each individual.   440 

 441 

In our analysis we assumed an infinite sites model; among our sequences any given mutation 442 

can be obtained only once, while the reversion of mutations back to the consensus never occurs.   443 

 444 

We used a Poisson model to compare the number of observed substitutions in each sequence 445 

with an expected rate of viral evolution.  Our model includes a term accounting for errors in the 446 

viral consensus sequences.  In the notation of Figure 4, we note that if DA is before T, any variants 447 

observed in sequence data from A but not in the data from B can only arise from error.  Under our 448 

infinite sites assumption, such variants cannot revert in the time between DA and DB so must be 449 

caused by error in the observation.  However, if DA is after T, such variants have the potential to 450 

evolve in the time between DA and T, in addition to being potentially caused by measurement 451 

error.   452 
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 453 

Similarly, variants observed in data from B but not from A can arise either from error, or as a result 454 

of evolution going back an assumed common ancestor at the earlier of the time of transmission 455 

T and the previous time of sequencing DA.  We can thus describe the probability of observing the 456 

data HA and HB under the assumption of transmission at time T: 457 

 458 

𝑃(𝐻!, 𝐻"	|	𝜃, 𝐷, 𝐸, 𝑋$)459 

= G
(𝐸/2 + 𝛾7𝑃!)8%𝑒'(9/1);7<%)

𝐻!!
N O

)𝐸/2 + 𝛾7(𝐷" − 𝑄!),
81𝑒'=9/1);7(>1'?%)@

𝐻"!
Q 460 

 461 

where PA = max{0, DA - T} and QA = min{DA, T}.  The rate of evolution γG describes the expected 462 

number of substitutions per genome per day, while the parameter E is the mean number of errors 463 

in the Hamming distance between two viral sequences, estimated as described below. 464 

 465 

Estimating noise in genome sequence data 466 

 467 

In order to estimate the extent of measurement error in a consensus viral genome, we examined 468 

cases among data collected at Cambridge University Hospitals (CUH) for which more than one 469 

viral sample was sequenced.  We identified 136 such patients, with between 2 and 9 samples 470 

collected from each individual and 336 samples in total.  Each sample gave rise to a consensus 471 

sequence; we filtered the data to remove sequences with less than 90% coverage of the genome.  472 

For each pair of samples i and j, collected from the same individual, we recorded Hij, the Hamming 473 

distance between them, ΔTij, the absolute difference in time between the dates on which the 474 

samples were collected, measured in days, and the viral load of each sample, as represented by 475 

the CT scores Vi and Vj. 476 

 477 
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Following in principle a previous approach to estimating noise and rates of evolution [32], we then 478 

fitted a Poisson model to the data, deriving for each pair the log likelihood 479 

 480 

𝑙𝑜𝑔	𝐿>)𝜀, 𝜆, 𝛾	|	𝐻AB , 𝛥𝑇AB , 𝑉A , 𝑉B, = 𝑙𝑜𝑔Y
Z𝜀2 )𝑉A + 𝑉B, + 𝜆 + 𝛾𝛥𝑇AB[

889
𝑒'C

D
1=E8)E 9@)F);G$89H

𝐻AB!
\ 481 

 482 

and estimating the parameters ε, λ and γ so as to maximise the sum of the log likelihoods across 483 

all pairs of sequences; we inferred the parameters 𝜖̂=0.0200, 𝜆_=-0.0693 and 𝛾̀=0.0453.  Here the 484 

value 𝐸a)𝑉A , 𝑉B, = 𝜆_ 	+ 𝜖̂(𝑉A	 + 𝑉B) provides a simple estimate of the extent of measurement error in 485 

a Hamming distance, expressed in terms of the CT scores of the two samples.  For the purposes 486 

of our model this function was evaluated at the mean CT score of 24.091.  This provided an 487 

estimate for the pairwise difference arising through measurement error, 𝐸a, of 0.414 nucleotides, 488 

equivalent to 0.207 nucleotide errors per genome sequence. The estimate 𝛾 describes the mean 489 

rate of within-host evolution calculated across the within-host sample.  It is expressed as a number 490 

of substitutions per genome per day, and is equivalent to a rate of 6.0 x 10-4 substitutions per 491 

locus per year, close to the value of 8 x 10-4 that has been calculated from global sequence data 492 

[33].  In so far as we require an estimated rate of evolution spanning both within-host and 493 

between-host evolution, we used in our model a rate 𝛾7b of 0.0655 nucleotides per day, equivalent 494 

to this latter, globally estimated, rate of evolution. 495 

 496 

To examine the effect of CT score upon our inference, a repeat calculation was performed in 497 

which these data were ignored; this gave a worse fit to the data under the Bayesian Information 498 

Criterion[34] (S2 Table). 499 

 500 
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In a case where no sequence data was observed for an individual, we excluded that individual 501 

from our calculation.  An option within our method allows for calculations to be performed between 502 

individuals where no sequence data was collected; under this option we set P(HA, HB|θ, D, E, 503 

XT)=1 for all A and B. 504 

 505 

Assessing viral transmission: Hypothesis testing 506 

 507 

Having derived the expression (1) for P(Y|D,X), we now derive the probability P(y|D,X) of the 508 

specific observed data y.  The data y consist of the symptom time SB, if it is known, the Hamming 509 

distances HA and HB, the set of those CAB(T) that are known, and the information about potential 510 

locations and contacts in cases where the CAB(T) are unknown, which are encapsulated in wAB(T).  511 

p(y|D,X) is defined by setting Y to equal the data y that are observed, and then integrating 512 

P(Y|D,X) over the potential values for any missing data. 513 

 514 

Integration was required with respect to the unknown contact dates, applying to the term 515 

P(CAB|XT).  We generalise the argument made for this term in the case of Y to show that in this 516 

case we have  517 

 518 

P(CAB | XT) = 0.5|C|-1wAB(T) 519 

 520 

A full derivation is given in S1 Text. 521 

 522 

We thus have the result 523 

 524 

𝑝(𝑦|𝐷, 𝑋) = ∑ 𝑃(𝑇|𝑆!d,𝜃)𝑃)𝑆"d|𝜃, 𝑋$,0.5|K|'L𝑤!"(𝑇)𝑃(𝐻!, 𝐻"|	𝜃, 𝐷, 𝑋$)$ , 525 
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 526 

where θ={α,β,s,μ,σ,Ê,γG}, and seek to compare this to potential values p(Y|D,X).  To achieve this, 527 

for confidence level ψ, we define a threshold pψ(D) by  528 

 529 

h 𝑝(𝑌|𝐷, 𝑋) = 𝜓
M∈O:

 530 

 531 

where Ωψ={Y: p(Y|D,X) ≥ pψ(D)}. Note that the threshold pψ(D) depends on the sample collection 532 

times D={DA,DB}. For values ψ=0.95 and ψ=0.99, the observed data y is deemed  ‘consistent’ with 533 

transmission if p(y|D,X) ≥ p95(D), ‘borderline’ if p95(D) > p(y|D,X) ≥ p99(D), and  unlikely if p99(D) > 534 

p(y|D,X). 535 

 536 

To identify these threshold values we calculated p(Y|D,X) across large numbers of sets of data 537 

Y, in which we assumed without loss of generality that SA=0.  Calculations were performed for all 538 

Y in which SB ∈ [-11, 87], and for all values HA and HB for which HA+HB ∈ [0, 10] and HA ∈ [0, 539 

HA+HB]; these ranges were chosen to return values of at least 10-6 from each component of 540 

p(Y|D,X). In our code these statistics are calculated for DA ∈ [-10, 40], and DB ∈ [SB-10, SB+40]; 541 

values outside of these parameters are unlikely. 542 

 543 

In the integral, we note that there are a large number of possible vectors CAB that indicate all times 544 

when a pair were in contact.  We approximated the sum by generating 100 random vectors CAB 545 

for each set of other parameters, and calculating the sum over these vectors, altering the value 546 

0.5|C|-1 in P(CAB|XT) so as to normalise the integral.  Reflecting our approach to contact patterns, 547 

we generated the CAB as random vectors of draws from a Bernoulli distribution with mean 0.5.  548 

Repeating this calculation with different sets of 100 vectors did not substantially change the 549 

thresholds obtained.  Our code allows for the generation of alternative thresholds with different 550 
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probabilities of an element of CAB being equal to 1.  We note that if this probability is higher, fewer 551 

datasets will be judged consistent with transmission. 552 

 553 

Study setting, participants and data collection 554 

 555 

This study was conducted at Cambridge University Hospitals NHS Foundation Trust (CUH), a 556 

secondary and tertiary referral centre in the East of England. SARS-CoV-2 positive cases tested 557 

at the on-site Public Health England (PHE) Clinical Microbiology and Public Health Laboratory 558 

(CMPHL)  were identified prospectively from 26th February to 17th June 2020. The CMPHL tests 559 

SARS-CoV-2 samples submitted from over thirty organisations across the East of England (EoE) 560 

region and all samples from CUH. The majority of samples were tested using an in-house 561 

validated qRT-PCR assay targeting the SARS-CoV-2 RdRp genes, as described in a previous 562 

publication [5], with more recent samples tested using the Hologic Panther™ platform [36]. Patient 563 

metadata were accessed via the electronic healthcare record system (Epic Systems, Verona, WI, 564 

USA). Metadata collected included patient demographic information, duration of symptoms, 565 

sample collection date and location (ward and hospital). Patients and samples were assigned 566 

unique anonymised study codes. Metadata manipulations were performed using the R 567 

programming language and the tidyverse packages installed on CUH Trust computers.  568 

 569 

Sample sequencing 570 

 571 

All samples collected at CUH and a randomised selection of samples from the EoE region were 572 

selected for nanopore sequencing on-site in the Division of Virology, Department of Pathology, 573 

University of Cambridge. This enabled us to rapidly investigate suspected hospital acquired 574 

infections at CUH as previously described [5]. Briefly, a multiplex PCR based approach was used 575 

according to the modified ARTIC version 2 protocol with version 3 primer set, and amplicon 576 
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libraries sequenced using MinION flow cells version 9.4.1 (Oxford Nanopore Technologies, 577 

Oxford, UK). Sequences were made publicly available as part of COG-UK 578 

(https://www.cogconsortium.uk/) via weekly uploads with linked metadata onto the MRC-CLIMB 579 

server (https://www.climb.ac.uk/). 580 

 581 

Samples collected via the CUH healthcare worker (HCW) screening programme were also  582 

prioritised for on-site nanopore sequencing, as previously described [37]. This programme 583 

entailed asymptomatic screening of selected wards, symptomatic testing of self-presenting HCW 584 

and testing of symptomatic contacts of positive HCW. After a HCW tested positive, members of 585 

the HCW screening team contacted the HCW and retrospectively collected data on symptom 586 

onset date, symptomatology, household contacts, their job role, and which wards they had worked 587 

in for the preceding two weeks. Most positive HCW could identify symptoms on retrospective 588 

questioning, even if they were identified in the asymptomatic screening arm; however, a small 589 

minority were genuinely asymptomatic and never went on to develop symptoms. HCW presenting 590 

acutely to medical services at CUH were not part of the HCW screening programme, but were 591 

identified as HCW from their medical records as part of hospital surveillance. 592 

 593 

Identifying hospital-associated outbreaks for investigation 594 

 595 

Patients tested at CUH were categorised on the basis of time between admission and first positive 596 

swab into different groups reflecting the likelihood that their infection was community or hospital 597 

acquired, as previously described (Meredith et al, LID 2020). The categories used were: 1) 598 

Community onset, community associated (first positive sample <48 hours from admission and no 599 

healthcare contact in the preceding 14 days); 2) Community onset, suspected healthcare 600 

associated (first positive sample <48 hours from admission with healthcare contact in the 601 

preceding 14 days); 3) Hospital onset, indeterminate healthcare associated (first positive sample 602 
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48 hours to 7 days post admission); 4) Hospital onset, suspected healthcare associated (first 603 

positive sample 8 to 14 days post admission); 5) Hospital onset, healthcare associated (first 604 

positive sample >14 days post admission); 6) HCW.  605 

 606 

All CUH patients in categories 3, 4, and 5 (hospital onset with indeterminate, suspected or definite 607 

healthcare associated COVID-19 infections) and 6 (HCW) were included for analysis and 608 

integrated into the HCW screening dataset of positive HCW. The main wards the HCW had 609 

worked in prior to testing positive and the ward where each patient had first tested positive were 610 

used to identify ward clusters of hospital-associated infections. The ward clusters are named 611 

anonymously here as Wards X and Y.    612 

 613 

Ethics statement 614 

 615 

This study was conducted as part of surveillance for COVID-19 infections under the auspices of 616 

Section 251 of the NHS Act 2006. It therefore did not require individual patient consent or ethical 617 

approval. The COG-UK study protocol was approved by the Public Health England Research 618 

Ethics Governance Group (reference: R&D NR0195).  619 

 620 

 621 

Figures 622 

 623 
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 624 

 625 

Figure 1: Overview of our method. Our approach estimates the likelihood that transmission 626 

could have occurred between pairs of individuals.  The model takes as input dates on which 627 

individuals became symptomatic for COVID-19 infection.  Further data which can be considered 628 

includes viral genome sequence data, and time-resolved location data for each individual.  Our 629 

model combines details of COVID-19 infection dynamics with a model of viral evolution, 630 

information about potential contacts between individuals, and measurement error in the sequence 631 

data.  Increasing amounts of data provide increasing amounts of resolution about the potential for 632 

viral transmission.   633 
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 634 

Figure 2: Analysis of the full datasets collected from wards X and Y.  A. Output from the 635 

a2bcovid package given data from ward X.  The plot shows potential links between cases, 636 

assessed in a pairwise fashion between potential donors (rows) and recipients (columns).  637 

Identifiers of individuals are coloured in either black (patients) or red (HCWs).  Squares in the grid 638 

indicate that transmission from one individual to another is consistent with our model (red), 639 

borderline (yellow) or unlikely (blue).  B.  Locations of individuals linked to the ward X outbreak.   640 

Black lines indicate presence on ward X.  Red lines indicate known household contacts between 641 

three individuals.  Dots show times at which individuals first reported symptoms.  C.  Output from 642 

the a2bcovid package given data from ward Y.  D. Locations of individuals linked to the ward Y 643 
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outbreak.   Black lines indicate presence on ward Y.  Red and blue lines show presence in 644 

locations other than ward Y. 645 

 646 

 647 

Figure 3: Analysis of the symptom onset and sequence data collected from wards X and 648 

Y.  A. Output from the a2bcovid package given data from ward X, omitting location data for 649 

individuals.  The plot shows potential links between infections.  Identifiers of individuals are 650 

coloured in either black (patients) or red (HCWs).  Squares in the grid indicate that transmission 651 

from one individual to another is consistent with our model (red), borderline (yellow) or unlikely 652 

(blue).  B. Output from the a2bcovid package given data from ward Y, omitting location data for 653 

individuals.  C. Phylogenetic relationship between sequences collected from individuals on ward 654 
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Y.  The tree was constructed manually using a principle of maximum parsimony[38].  Red digits 655 

indicate the number of substitutions between sequences from each individual. 656 

 657 

 658 

Figure 4: Notation used in our method.  An overview of our model for transmission events is 659 

shown in Figure 3.  We divide time into discrete days.  For the individual A, we denote by SA the 660 

date at which that individual became symptomatic, and by DA the date at which a sample of viruses 661 

were collected for genome sequencing.  For each pair of individuals A and B we denote by wAB(t) 662 

the probability that A and B were co-located on day t.  Within our model, we assume that dates of 663 

sample collection are known, while times of symptom onset are known or estimated.  Using these 664 

statistics, in combination with viral sequence data, we calculate a statistic describing the potential 665 

for individual A to infect individual B on any given day T.  Summing this statistic across T, we 666 

obtain an estimate of the consistency of our data with transmission having occurred between the 667 

two individuals. 668 

  669 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2021. ; https://doi.org/10.1101/2020.10.26.20219642doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.26.20219642
http://creativecommons.org/licenses/by/4.0/


Supporting Information 670 

 671 

 672 

S1 Figure: Analysis of Hamming distances between pairs of genome sequences collected from 673 

viral samples in the same host. Figures show projections through a multi-linear model fit to the 674 

data using a Poisson likelihood.  A. Relationship between the Hamming distance and time 675 

between samples.  The line shows the fit to the data at the mean CT score.  The size of a dot is 676 

proportional to the number of pairs with given parameters.  B.  Relationship between the Hamming 677 

distance and mean CT score of the two samples.  The line shows the fit to the data calculated at 678 

zero time between samples. 679 

 680 
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 681 

 682 

S2 Figure: Comparison between the expected rate of SARS-CoV-2 evolution within our model, 683 

and the expected difference between two sequences caused by noise.  The expected time 684 

between symptoms being reported from individuals in a transmission pair is 5.7 days, in which 685 

time the expected number of substitutions arising via evolution is 0.373.  The expected number 686 

of differences between two genome sequences resulting from error was estimated as 0.414.  687 

 688 

 689 

 690 

S3 Figure: Sensitivity of our results to changes in the noise parameter.  A. Inferences of 691 

potential transmission events for ward X given a noise parameter of zero.  B. Inferences of 692 
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potential transmission events for ward X given a noise parameter double that inferred from our 693 

data. 694 

 695 

 696 

 697 

 698 

 699 

S4 Figure: Phylogenetic relationship between sequences collected from individuals on ward X.  700 

The tree was constructed manually using a maximum parsimony method.  Red digits indicate the 701 

number of substitutions between sequences from each individual 702 

 703 

S5 Figure: Raw data (bars) and inferred model (red line) describing the distribution of the time 704 

between the onset of symptoms and receiving a positive test.  This model was used to impute? 705 
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equivalent symptom onset dates for individuals who were asymptomatic or for whom no data on 706 

symptom onset date were available. 707 

 708 

S1 Table: Parameters for the offset gamma distribution fitted to data describing intervals between 709 

times of reporting symptoms and positive test results.  Inferred values were generated using 710 

maximum likelihood; the range describes a window of size two likelihood units from the maximum. 711 

 712 

Model Inferred distribution 

Parameter Value (Range) 

α 2.593 (2.269, 2.976) 

β 3.776 (3.292, 4.353) 

Offset (o) 3.112 (3.011, 3.431) 

 713 

S2 Table: Error models fitted to Hamming distance data.  A model incorporating dependence 714 

upon the time between samples and upon viral load gave the best fit to the data.  The error 715 

parameter used was calculated at zero time between samples and at the mean viral load. 716 

 717 

Model Parameters BIC 

 Constant (λ) Time dependence 

(γ) 

CT dependence (α)  

Constant error 0.842   887.3 
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Time-dependent 0.385 0.0525  858.5 

Time and CT 

dependent 

-0.0692 0.0492 0.0200 857.8 

 718 

 719 

S1 Text: Further methodological details 720 

 721 

In the main text we stated that: 722 

 723 

P(CAB | XT) = 0.5|C|-1wAB(T) 724 

 725 

To derive this result we note that, if it is observed that CAB(T)=0, transmission cannot occur at 726 

time T, so that P(CAB|XT)=0.  If it is observed that CAB(T)=1, we next consider the element CAB(t) 727 

of CAB for a time t≠T.  If CAB(t) is observed, we apply our approach to contact patterns, assuming 728 

that P(CAB(t)=1|XT) = P(CAB(t)=0|XT) = 0.5, such that the probability of this observation is 0.5.  If 729 

CAB(t) is not observed, its probability is obtained by integration.  We have that P(CAB(t) | XT) = 730 

wAB(t)*  0.5 + (1  - wAB(t)) * 0.5 = 0.5.  Hence if CAB(T)=1, the probability P(CAB | XT) of the whole 731 

contact vector is equal to 0.5|C|-1.  Finally, we consider the case in which CAB(T) is missing data.  732 

Integrating over the missing value, we have that 733 

 734 

P(CAB(T) | XT) = wAB(T)* P(CAB | XT, CAB(T)= 1) + (1 - wAB(T))*P(CAB | XT, CAB(T)= 0) = wAB(T) 735 

 736 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2021. ; https://doi.org/10.1101/2020.10.26.20219642doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.26.20219642
http://creativecommons.org/licenses/by/4.0/


Applying again the reasoning above, this gives us the result P(CAB | XT) = 0.5|C|-1wAB(T).  As we 737 

defined wAB(T) = CAB(T) when CAB(T) was observed, we thus have that  P(CAB | XT) = 0.5|C|-1wAB(T) 738 

in every case. 739 

 740 

S2 Text: GISAID identifiers for sequences used in this study 741 

 742 

Ward X: EPI_ISL_473479, EPI_ISL_473505, EPI_ISL_473478, EPI_ISL_473470, 743 

EPI_ISL_473475, EPI_ISL_473464, EPI_ISL_473467, EPI_ISL_473466, EPI_ISL_473465, 744 

EPI_ISL_473472, EPI_ISL_473471 745 

 746 

Ward Y: EPI_ISL_425263, EPI_ISL_433686, EPI_ISL_444320, EPI_ISL_433740, 747 

EPI_ISL_444407, EPI_ISL_433479, EPI_ISL_433779, EPI_ISL_433481, EPI_ISL_448052, 748 

EPI_ISL_433492, EPI_ISL_433990 749 

 750 

Measurement error analysis: EPI_ISL_444341, EPI_ISL_434058, EPI_ISL_438599, 751 

EPI_ISL_425289, EPI_ISL_433900, EPI_ISL_425316, EPI_ISL_425424, EPI_ISL_433822, 752 

EPI_ISL_433820, EPI_ISL_425314, EPI_ISL_447952, EPI_ISL_433796, EPI_ISL_433814, 753 

EPI_ISL_433816, EPI_ISL_433666, EPI_ISL_425333, EPI_ISL_438723, EPI_ISL_433473, 754 

EPI_ISL_434042, EPI_ISL_425334, EPI_ISL_433978, EPI_ISL_438648, EPI_ISL_434020, 755 

EPI_ISL_444418, EPI_ISL_434059, EPI_ISL_438627, EPI_ISL_433671, EPI_ISL_433893, 756 

EPI_ISL_433827, EPI_ISL_434004, EPI_ISL_433775, EPI_ISL_434060, EPI_ISL_433938, 757 

EPI_ISL_444420, EPI_ISL_438714, EPI_ISL_448108, EPI_ISL_433895, EPI_ISL_438631, 758 

EPI_ISL_438594, EPI_ISL_433911, EPI_ISL_444425, EPI_ISL_425309, EPI_ISL_433899, 759 

EPI_ISL_433967, EPI_ISL_433681, EPI_ISL_425235, EPI_ISL_425259, EPI_ISL_425423, 760 

EPI_ISL_425252, EPI_ISL_425251, EPI_ISL_438650, EPI_ISL_425274, EPI_ISL_425427, 761 

EPI_ISL_425271, EPI_ISL_425270, EPI_ISL_425268, EPI_ISL_433673, EPI_ISL_433698, 762 
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EPI_ISL_433675, EPI_ISL_433697, EPI_ISL_425453, EPI_ISL_433679, EPI_ISL_433677, 763 

EPI_ISL_433748, EPI_ISL_433784, EPI_ISL_438669, EPI_ISL_433672, EPI_ISL_434057, 764 

EPI_ISL_433737, EPI_ISL_438580, EPI_ISL_438673, EPI_ISL_433477, EPI_ISL_433727, 765 

EPI_ISL_433750, EPI_ISL_433752, EPI_ISL_433706, EPI_ISL_433707, EPI_ISL_433846, 766 

EPI_ISL_433721, EPI_ISL_438706, EPI_ISL_433732, EPI_ISL_444416, EPI_ISL_433806, 767 

EPI_ISL_434039, EPI_ISL_433966, EPI_ISL_433761, EPI_ISL_433768, EPI_ISL_433792, 768 

EPI_ISL_433873, EPI_ISL_433881, EPI_ISL_433868, EPI_ISL_444329, EPI_ISL_444408, 769 

EPI_ISL_433867, EPI_ISL_433878, EPI_ISL_433863, EPI_ISL_433467, EPI_ISL_433864, 770 

EPI_ISL_433888, EPI_ISL_444403, EPI_ISL_434023, EPI_ISL_433892, EPI_ISL_433907, 771 

EPI_ISL_433904, EPI_ISL_433906, EPI_ISL_438583, EPI_ISL_438647, EPI_ISL_444427, 772 

EPI_ISL_433909, EPI_ISL_433920, EPI_ISL_438721, EPI_ISL_444413, EPI_ISL_433921, 773 

EPI_ISL_433919, EPI_ISL_433980, EPI_ISL_433937, EPI_ISL_433993, EPI_ISL_433940, 774 

EPI_ISL_434031, EPI_ISL_438586, EPI_ISL_433466, EPI_ISL_444419, EPI_ISL_433944, 775 

EPI_ISL_433943, EPI_ISL_438651, EPI_ISL_433945, EPI_ISL_433969, EPI_ISL_438595, 776 

EPI_ISL_434006, EPI_ISL_433972, EPI_ISL_434030, EPI_ISL_433986, EPI_ISL_434061, 777 

EPI_ISL_433992, EPI_ISL_438668, EPI_ISL_438702, EPI_ISL_438649, EPI_ISL_444428, 778 

EPI_ISL_434034, EPI_ISL_438578, EPI_ISL_438660, EPI_ISL_434036, EPI_ISL_438643, 779 

EPI_ISL_444417, EPI_ISL_434015, EPI_ISL_433493, EPI_ISL_444316, EPI_ISL_434044, 780 

EPI_ISL_438662, EPI_ISL_438622, EPI_ISL_438596, EPI_ISL_434045, EPI_ISL_444374, 781 

EPI_ISL_434041, EPI_ISL_448052, EPI_ISL_433481, EPI_ISL_438632, EPI_ISL_433471, 782 
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