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Distal mediator-enriched, placental transcriptome-wide analyses illustrate the 
Developmental Origins of Health and Disease 

SUPPLEMENTAL METHODS 

Data acquisition and quality control 

Genotype data 

Genomic DNA was isolated from umbilical cord blood and genotyping was performed using Illumina 1 
Million Quad and Human OmniExpression-12 v1.0 arrays1,2. Prior to imputation, from the original set of 
731,442 markers, we removed SNPs with call rate < 90% and MAF < 1%. We did not use deviation from 
Hardy-Weinberg equilibrium as an exclusion criterion since ELGAN is an admixed population. This 
resulted in 700,845 SNPs. We removed 4 individuals out of 733 with sample-level missingness > 10% 
using PLINK3. We first performed strand-flipping according to the TOPMed Freeze 5 reference panel and 
using eagle and minimac4 for phasing and imputation4–6. Genotypes were coded as dosages, 
representing 0, 1, and 2 copies of the minor allele. The minor allele was coded in accordance with the 
NCBI Database of Genetic Variation7. Overall, after QC and normalization, we considered a total of 
6,567,190 SNPs. We obtained processed genetic data from the Rhode Island Children's Health Study, as 
described before8. 

Expression data 

mRNA expression was determined using the Illumina QuantSeq 3' mRNA-Seq Library Prep Kit, a method 
with high strand specificity9. mRNA-sequencing libraries were pooled and sequenced (single-end 50 bp) 
on one lane of the Illumina HiSeq 2500. mRNA were quantified through pseudo-alignment with Salmon10 
mapped to the GENCODE Release 31 (GRCh37) reference transcriptome. miRNA expression profiles 
were assessed using the HTG EdgeSeq miRNA Whole Transcriptome Assay (HTG Molecular 
Diagnostics, Tucson, AZ). miRNA were aligned to probe sequences and quantified using the HTG 
EdgeSeq System11.  

Genes and miRNAs with less than 5 counts for each sample were filtered, resulting in 11,224 genes and 
2,047 miRNAs for downstream analysis. Distributional differences between lanes were first upper-quartile 
normalized12,13. Unwanted technical and biological variation (e.g. tissue heterogeneity) was then 
estimated using RUVSeq14, where we empirically defined transcripts not associated with outcomes of 
interest as negative control housekeeping probes15. One dimension of unwanted variation was removed 
from the variance-stabilized transformation of the gene expression data using the limma package14–17. We 
obtained processed RNA expression data from the Rhode Island Children's Health Study, as described 
before8. Overall, after QC and normalization, we considered 12,020 genes and 1,898 miRNAs. 

Methylation data 

Extracted DNA sequences were bisulfate-converted using the EZ DNA methylation kit (Zymo Research, 
Irvine, CA) and followed by quantification using the Infinium MethylationEPIC BeadChip (Illumina, San 
Diego, CA), which measures CpG loci at a single nucleotide resolution, as previously described18–21. 
Quality control and normalization were performed resulting in 856,832 CpG probes from downstream 
analysis, with methylation represented as the average methylation level at a single CpG site (𝛽-
value)19,22–25. DNA methylation data was imported into R for pre-processing using the minfi package23,24. 
Quality control was performed at the sample level, excluding samples that failed and technical duplicates; 
411 samples were retained for subsequent analyses.  

Functional normalization was performed with a preliminary step of normal-exponential out-of band (noob) 
correction method26 for background subtraction and dye normalization, followed by the typical functional 
normalization method with the top two principal components of the control matrix23,24. Quality control was 
performed on individual probes by computing a detection P value and excluded 806 (0.09%) probes with 
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non-significant detection (P > 0.01) for 5% or more of the samples. A total of 856,832 CpG sites were 
included in the final analyses. Lastly, the ComBat function was used from the sva package to adjust for 
batch effects from sample plate27. The data were visualized using density distributions at all processing 
steps. Each probe measured the average methylation level at a single CpG site. Methylation levels were 
calculated and expressed as 𝛽 values, with 

𝛽 =
𝑀

𝑈 + 𝑀 + 100
, 

where 𝑀is the intensity of the methylated allele and 𝑈 is the intensity of the unmethylated allele. 𝛽-values 
were logit transformed to 𝑀 values for statistical analyses28. Overall, after QC and normalization, we 
considered 846,233 CpG sites. 

QTL mapping 

We conducted genome-wide eQTL mapping between all genotypes and all genes in the transcriptome 
using a standard linear regression in MatrixeQTL29. Here, we ran an additive model with gene expression 
as the outcome, SNP dosage as the primary predictor of interest, with covariate adjustments for 10 
genotype PCs (for population stratification), sex, gestational duration, maternal age, maternal smoking 
status, and 20 expression PEER factors30. Mediators here are defined as RNA expression of genes that 
code for transcription factors, miRNAs, and CpG methylation sites. In sum, we call the expression or 
methylation of a mediator its intensity. We also conducted genome-wide mediator-QTL mapping with the 
intensity of mediators as the outcome with the same predictors as in the eQTL mapping. Lastly, we also 
assessed associations between mediators and gene expression using the same linear models, with 
mediator intensity as the main predictor. All intensities were scaled to zero mean and unit variance. 

Predictive models of expression using MOSTWAS 

Transcriptomic prediction using MeTWAS 

Here, we present mediator-enriched TWAS, or MeTWAS, one of the two tools in the MOSTWAS R 
package31. Across 𝑛 samples, consider the vector 𝑌𝐺 , the expression of a gene G of interest, the matrix 

𝑿𝐺  of local SNP dosages in a user-defined window around gene G (default of 1 Megabase), and 𝑚𝐺 
mediating biomarkers that we estimate to be significantly associated with the expression of gene G via a 
relevant one-way test of association. These mediating biomarkers can be DNA methylation sites, 
microRNAs, transcription factors (or genes that code for transcription factors), or any molecular profile 
that may be genetically heritable and affect transcription. Accordingly, let the matrix 𝑿𝑀𝑗

 by the local-

genotype dosages in a 1 Mb around mediator 𝑗, 1 ≤ 𝑗 ≤ 𝑚𝐺. Furthermore, let 𝑀𝑗 be the intensity of 

mediator 𝑗 (methylation 𝑀-value if 𝑗 is a CpG site, expression if 𝑗 is a miRNA or gene, etc). Prior to any 

modeling, we scale 𝑌𝐺  and all 𝑀𝑗 to zero mean and unit variance. We also residualized 𝑀𝑗 and 𝑌𝐺  with the 

covariates using limma16 to account for population stratification using principal components of the global 

genotype matrix and relevant clinical covariates to obtain �̃�𝑗 and �̃�𝐺 . 

Transcriptome prediction in MeTWAS draws from two-step regression, as indicated in Supplemental 
Figure S1. First, in the training set for a given training-test split, for 1 ≤ 𝑗 ≤ 𝑚𝐺 , we model the residualized 

intensity �̃�𝑗 of training-set specific mediator 𝑗 with the following additive model: 

�̃�𝑗 = 𝑿𝑀𝑗

𝑡𝑟𝑎𝑖𝑛𝑤𝑗 + 𝜖𝑚, 

where 𝑤𝑗 is the effect sizes of the SNPs on the mediator intensity in the training set. As in traditional, 

transcriptomic imputation models32,33, we find �̂�𝑗 using either (1) elastic net regression with mixing 

parameter 𝛼 = 0.5 and 𝜆 tuned over 5-fold cross validation using glmnet34 or (2) linear mixed modeling 
assuming random effects for the SNPs using rrBLUP35. Only significantly heritable (default 𝑃 < 0.05 for 

the likelihood ratio test36) and well-cross validated (default 𝑅2 ≥ 0.01) expression models are considered. 
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For all 𝑗, using these optimized predictive models for 𝑀𝑗, as denoted by �̂�𝑀𝑗
, we estimate the genetically 

regulated intensity (GRIn) of the mediator 𝑗, denoted 𝐺𝑅𝐼𝑛𝑚𝑗
, in the test set. Denote �̂� as the 𝑛 × 𝑚 

matrix of estimated GRIn, such that the 𝑗the column of �̂� is 𝐺𝑅𝐼𝑛𝑚𝑗
 across all 𝑛 samples. 

Next, we consider the following additive model for the residualized expression of gene G: 

�̃�𝐺 = �̂�𝛽𝑴 + 𝜖𝑌𝐺1
, 

�̃�𝐺 −  �̂��̂�𝑴 = 𝑋𝐺𝑤𝐺 + 𝜖𝑌𝐺2
, 

where 𝛽𝑴 is the fixed effect sizes of 𝐺𝑅𝐼𝑛𝑚𝑗
 on �̃�𝐺 , �̂� is the matrix of estimated GRIn for all 𝑚𝑗 mediators, 

𝑿𝐺  are the local-SNPs to gene G, and 𝑤𝐺  are the “random” or regularized effect sizes of the local-SNPs 

on expression of G. We first estimate �̂�𝑀  by traditional ordinary least squares. Next, using either elastic 

net or linear mixed modeling, we can estimate �̂�𝐺. 

Transcriptomic prediction using DePMA 

Expression prediction in distal eQTL Prioritization via Mediation Analysis (DePMA) hinges on assessing 
distal-eSNPs for inclusion in the design matrix via mediation analysis, adopting methods from previous 
studies37,38. We first split the data for gene expression, SNP dosages, and potential mediators into 𝑘 
training-test splits (default 3). 

In the training set, we identify mediation test triplets that consist of (1) a gene of interest G with 
expression 𝑌𝐺  (scaled to zero mean and unit variance), (2) a distal-eSNP 𝑠 in association with G at 𝑃 <
10−6 with dosages 𝑋𝑠, and (3) a set of 𝑚 biomarkers local to 𝑠 that are associated with 𝑠 at FDR-adjusted 
𝑃 < 0.05 with intensities in the 𝑚 columns of 𝑴. The columns of 𝑴 are scaled to zero mean and unit 
variance. Consider the following mediation model: 

𝑌𝐺 = 𝑿𝑠𝛽𝑠 + 𝑴𝛽𝑀 + 𝑿𝐶𝛽𝐶 + 𝜖𝑌𝐺
, 

𝑀𝑗 = 𝑿𝑠𝛼𝑀𝑗
+ 𝑿𝐶𝛼𝐶,𝑗 + 𝜖𝑀𝑗

, 1 ≤ 𝑗 ≤ 𝑚. 

Here, 𝛽𝑀 is the vector of effects of the mediators local to 𝑠 on 𝑌𝐺 , adjusted for the effects from 𝑠 and 

covariates, and 𝛼𝑴 as the effects of 𝑠 on mediators 𝑀𝑗 , 1 ≤ 𝑗 ≤ 𝑚. We assume that 𝜖𝑌𝑔
∼ 𝑁(0, 𝜎2) and 

𝜖𝑴 ∼ 𝑵𝑚(0, 𝚺𝑴), where 𝚺𝑴 may have non-zero off-diagonal elements that represent non-zero covariance 
between mediator intensities. We assume that these error terms are independent. We define the total 
mediation effect (TME)39 of SNP 𝑠 as 

𝑇𝑀𝐸 =  𝛼𝑴
𝑇 𝛽𝑴. 

We are interested in SNPs with large absolute TME, which we assess with a two-sided test of 𝐻0: 𝑇𝑀𝐸 =
0. We assess this hypothesis with a permutation test to obtain a permutation 𝑃-value, as more direct 
methods of computing standard errors for the estimated TM are often biased38,40. We also provide an 
option to estimate an asymptotic approximation to the standard error of TME for a Wald-type test (see 
Bhattacharya et al for a discussion31). Corresponding to the 𝑡 testing triplets identified, we obtain vectors 

of length 𝑡 of TMEs and 𝑃-values for each distal-eSNP to 𝐺. We estimate the FDR-adjusted 𝑃-value for 
each test, and those SNPs with significant TMEs are prioritized. Final DePMA model weights are 
estimated from the local SNPs to gene G and all prioritized distal-eSNPs using elastic net or linear mixed 
models. 

Tests of association 
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Overall TWAS test 

In an external GWAS panel, if individual SNPs are available, model weights from either MeTWAS or 
DePMA can be multiplied by their corresponding SNP dosages to construct the Genetically Regulated 
eXpression (GReX) for a given gene. This value represents the portion of expression (in the given tissue) 
that is directly predicted or regulated by germline genetics. We run a linear model or test of association 
with phenotype using this GReX value for the eventual TWAS test of association. 

If individual SNPs are not available, then the weighted burden Z-test, proposed by Gusev et al, can be 
employed using summary statistics32. Briefly, we compute 

𝑍 =  
𝑤𝐺𝑍

(𝑤𝐺𝚺𝑠,𝑠𝑤𝐺
𝑇)

1/2
. 

Here, 𝑍 is the vector of Z-scores of SNP-trait associations for SNPs used in predicting expression. The 

vector 𝑤𝐺  represents the vector of SNP-gene effects from MeTWAS or DePMA and 𝚺𝑠,𝑠 is the LD matrix 

between the SNPs represented in 𝑤𝐺 . The test statistic 𝑍 can be compared to the standard Normal 
distribution for inference. 

Permutation test 

We implement a permutation test, condition on the GWAS effect sizes, to assess whether the same 
distribution of SNP-gene effect sizes could yield a significant associations by chance32. We permute 𝑤𝐺  
1,000 times without replacement and recompute the weighted burden test to generate a null distribution 

for 𝑍. This permutation test is only conducted for overall associations at 𝑃 < 2.5 × 10−6. 

Distal-SNPs added-last test 

Lastly, we also implement a test to assess the information added from distal-eSNPs in the weighted 
burden test beyond what we find from local SNPs. This test is analogous to a group added-last test in 
regression analysis, applied here to GWAS summary statistics. Let 𝑍𝑙 and 𝑍𝑑 be the vector of Z-scores 
from GWAS summary statistics from local and distal-SNPs identified by a MOSTWAS model. The local 
and distal-SNP effects from the MOSTWAS model are represented in 𝑤𝑙 and 𝑤𝑑. Formally, we test 

whether the weighted Z-score 𝑍𝑑 = 𝑤𝑑𝑍𝑑 from distal-SNPs is significantly larger than 0 given the 

observed weighted Z-score from local SNPs 𝑍𝑙 = 𝑤𝑙𝑍𝑙. We draw from the assumption that (𝑍𝑑, 𝑍𝑙) follow a 
bivariate Normal distribution. Namely, we conduct a two-sided Wald-type test for the null hypothesis: 

𝐻0: 𝑤𝑑𝑍𝑑|𝑤𝑙𝑍𝑙 = 𝑍𝑙 = 0. 

We can derive a null distribution using conditional of bivariate Normal distributions (see Bhattacharya et 
al31) 

Genetic heritability and correlation estimation 

At the genome-wide genetic level, we estimated the heritability of and genetic correlation between traits 
via summary statistics using LD score regression41. On the predicted expression level, we adopted 

approaches from Gusev et al and Mancuso et al to quantify the heritability (ℎ𝐺𝐸
2 ) of and genetic 

correlations (𝜌𝐺𝐸) between traits at the predicted placental expression level32,42. We assume that the 

expected 𝜒2 statistic under a complex trait is a linear function of the LD score41. The effect size of the LD 

score on the 𝜒2 is proportional to ℎ𝐺𝐸
2 : 

𝐸[𝜒2] = 1 + (
𝑁𝑇𝑙

𝑀
) ℎ𝐺𝐸

2 + 𝑁𝑇𝑎, 
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where 𝑁𝑇 is the GWAS sample size, 𝑀 is the number of genes, 𝑙 is the LD scores for genes, and 𝑎 is the 
effect of population structure. We estimated the LD scores of each gene by predicting expression in 

European samples of 1000 Genomes and computing the sample correlations and inferred ℎ𝐺𝐸
2  using 

ordinary least squares. We employed ROHGE to estimate and test for significant genetic correlations 
between traits at the predicted expression level (details in Mancuso et al42). 
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