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S1. Methods1

This work is one of a series of studies on modelling and analyses on issues in the last mile of eliminating transmission2

of gambiense human African trypanosomiasis (gHAT) in the Democratic Republic of Congo (DRC). The series of3

studies starts with a model fitting paper1 and to aid the reader of the present study, much of the same model information4

is provided here in the Methods section.5

S1.1. The compartmental gHAT model6

The gHAT model we considered in this study is a variant “Model 4” of the Warwick model presented in the litera-7

ture1,2,3,4. gHAT infections among hosts are described by equation (S1). Human hosts are modelled by the SEIIRS8

model with two infectious compartments, stage 1 disease, I1H , and stage 2 disease, I2H . Vectors are modelled by9

using compartments for appropriately modelling tsetse when used in a host-vector model with disease3. Pupal stage10

tsetse, PV , emerge into unfed susceptible adults, SV , and following a blood-meal become either exposed, EV , or11

have reduced susceptibility to the Trypanosoma brucei gambiense parasites, GV - this effect is known as the teneral12

phenomenon. Following an infection, tsetse have an extrinsic incubation period (EIP) before becoming onwardly13

infectious. To incorporate a more realistic EIP distribution, there are three exposed classes, E1V , E2V , E3V , which14

result in a gamma-distributed EIP (rather than an exponential with only one).15

In order to reduce the dimensionality of our ODE system (by one), the vector equations are non-dimensionalised using16

the scaling NH/NV , where NH is the total human population, and NV is the tsetse population size. This results in17

a new non-dimensionalised parameter, meff, which is
pHNV
NH

appearing in host equations (pH is the probability of a18

human being infected by a single infectious bloodmeal) and is referred to as the effective vector density.19

The proportion of tsetse bites taken on low-risk and high-risk humans are f1 and f4, depending on the relative avail-20

ability/attractiveness and the relative abundance of two risk groups. High-risk humans are assumed to be r-fold more21
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likely to receive bites, i.e. s1 = 1 and s4 = r. Therefore, fi’s can be calculated using fi =
siNHi∑
j sjNHj

.22
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(S1)

S1.2. Model assumptions and parameterisation23

Table S1 provides the estimates of fixed parameters available in the literature used in the previous gHAT model1,2,3.24

The parameters fitted during the model fitting are defined in Table S2. Posterior distributions for these parameters25

were based on the model fitting results1.26

S1.3. Active screening27

Screening data is aggregated by year and the exact dates and frequencies of conducting AS are unknown, therefore28

some assumptions were made on when AS takes place. Our model assumed only low-risk humans participate in AS and29

used the ratio of assumed number of people screened (NAS) and the number of low-risk humans (k1NH ) to decide the30

frequency of AS each year. When screening numbers were smaller than potential participants (NAS < k1NH ), a single31

AS event was assumed to take place at the beginning of those years. On the other hand, multiple AS events were evenly32

distributed over the time of the corresponding years, i.e. a second AS event in July when k1NH < NAS ≤ 2k1NH ; a33

second AS event in May and a third AS event in September when 2k1NH < NAS ≤ 3k1NH ; etc.34

S1.4. Formulation and parameterisation of improved passive detections in Bandundu and Bas Congo35

Previous analysis on provincial-level staged data (Lumbala et al. for 2000–201216 and WHO HAT Atlas data 2015–36

201617) indicated that improved passive detection has happened across former Bandundu province and in former Bas37
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Table S1: Model parameterisation (fixed parameters). Notation, a brief description, and the used values for fixed
parameters.

Notation Description Value
NH Total human population size

in 2015
Fixed for each health zone 5

µH Natural human mortality rate 5.4795×10−5 days−1 6

BH Total human birth rate = µHNH
σH Human incubation rate 0.0833 days−1 7

ϕH Stage 1 to 2 progression rate 0.0019 days−1 8,9

ωH Recovery rate or waning-immunity
rate

0.006 days−1 10

Sens Active screening diagnostic
sensitivity

0.91 11

BV Tsetse birth rate 0.0505 days−1 3

ξV Pupal death rate 0.037 days −1

K Pupal carrying capacity = 111.09NH
3

P(pupating) Probability of pupating 0.75
µV Tsetse mortality rate 0.03 days−1 7

σV Tsetse incubation rate 0.034 days−1 12,13

α Tsetse bite rate 0.333 days−1 14

pV Probability of tsetse infection
per single infective bite

0.065 7

ε Reduced non-teneral susceptibility
factor

0.05 2

fH Proportion of blood-meals on
humans

0.09 15

dispact Overdispersion parameter for
active detection

4×10−4 1

disppass Overdispersion parameter for
passive detection

2.8×10−5 1

1 Value of BV is chosen to maintain constant population size without interventions.
2 Value of K is chosen to reflect the observed bounce back rate.
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Table S2: Model parameterisation (posteriors of fitted parameters). Notation, a brief description, and representa-
tive percentiles of the posterior distributions for fitted parameters.

Notation Description Posterior (median [95% CI])
Kwamouth Tandala

R0 Basic reproduction number
(NGM approach)

1.09
[1.06, 1.14]

1.009
[1.006, 1.014]

r Relative bites taken on
high-risk humans

6.61
[3.15, 10.75]

2.04
[1.30, 4.26]

k1 Proportion of low-risk people 0.90
[0.82, 0.95]

0.95
[0.85, 0.99]

γpre
H Pre-1998 treatment rate

from stage 2 (days−1)
1.72 ×10−3

[0.38, 4.88] ×10−3
2.53 ×10−3

[1.03, 7.15] ×10−3

ηpost
H Post-1998 treatment rate

from stage 1 (days−1)
1.24 ×10−4

[0.60, 2.74] ×10−4
2.74 ×10−4

[1.11, 4.99] ×10−4

γpost
H Post-1998 treatment rate

from stage 2 (days−1)
1.88 ×10−3

[0.46, 5.42] ×10−3
3.60 ×10−3

[1.72, 8.98]×10−3

Spec Active screening diagnostic
specificity

0.9991
[0.9987, 0.9997]

0.9998
[0.9997, 0.9999]

u Proportion of stage 2
passive cases reported

0.27
[0.18, 0.40]

0.39
[0.29, 0.51]

dchange Midpoint year for passive
improvement

2005.8
[2004.4, 2007.3]

–

ηHamp Relative improvement in
passive stage 1 detection rate

2.52
[0.92, 5.46]

–

γHamp Relative improvement in
passive stage 2 detection rate

0.51
[0.24, 0.97]

–

dsteep Speed of improvement in
passive detection rate (years−1)

0.94
[0.68, 1.29]

–

1 See equation (S2) for improved passive detections formulated by dchange, ηHamp , γHamp and dsteep.
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Congo province1. Logistic functions shown in equation (S2) were used to formulate the improved passive detections38

in Bandundu and Bas Congo in year Y .39

ηH(Y ) = ηpost
H

[
1 +

ηHamp

1 + exp (−dsteep(Y − dchange))

]
,

γH(Y ) = γpost
H

[
1 +

γHamp

1 + exp (−dsteep(Y − dchange))

]
.

(S2)

Parameter definitions and their posteriors are provided in Table S2. N.B. It was assumed that improvements in both40

stages shared the same midpoint year and speed of improvement within a health zone. However, the amplitude of41

variation in each health zone came from the fitting of health-zone-specific data.42

S1.5. Formulation and parameterisation of additional tsetse mortality under vector control measures43

The function which describes the probability of both hitting a target and dying is time dependent (days) from when
the targets where placed:

fT (t) = fmax

(
1− 1

1 + exp(−0.068(mod(t, 182.5)− 127.75))

)
, (S3)

and fmax is chosen such that the tsetse population after one year is at the observed/assumed percentage reduction. For44

the simplified model this is given by fmax = 0.0305 for a 60% reduction, fmax = 0.0525 for an 80% reduction, and45

fmax = 0.0750 for a 90% reduction.46

S1.6. Simulations performed47

Simulations were performed based on 1,000 model realisations. Observation uncertainty was considered by drawing
ten random samples from the predicted mean dynamics for each set of parameters. A beta-binomial distribution in
which an overdispersion parameter ρ was introduced to the binomial distribution was used to account for larger vari-
ance than the binomial. The probability of obtaining m successes out of n trials with probability p and overdispersion
parameter ρ is

BetaBin(m;n, p, ρ) =
Γ(n+ 1)Γ(m+ a)Γ(n−m+ b)Γ(a+ b)

Γ(n−m+ 1)Γ(n+ a+ b)Γ(a)Γ(b)
, (S4)

where a = p(1/ρ− 1) and b = a(1− p)/p.48

Main observable outputs including active and passive cases each year were predicted by 10,000 samples. Unobservable49

outputs, such as new infections and the year of EOT, were predicted directly from the 1,000 model realisations without50

sampling (parameter uncertainty but no observation uncertainty). Our model also has the capability of outputting51

unreported deaths and person years spent in stage 1 and stage 2.52

S1.7. Uncertainty53

Model predictions propagate parameter and observation uncertainty (see above). We tried to represent this uncertainty54

in a variety of ways:55

• Time series box plots were used to display statistical summaries of model predictions – the median (the middle56

line in each box), the lower and upper quartiles (the edges of each box showing 50% prediction intervals) and57

95% prediction intervals (extended whiskers containing the middle 95% of outputs).58

• The median of YEOT was used to indicate the estimated elimination year for a series of model predictions59

because neither extreme values (outliers) nor truncation of simulation will affect the estimates.60

• Probability of EOT by 2030 (or any given year between 2020 and 2040 in GUI) was calculated as the proportion61

of model realisations that achieve EOT by 2030 or the given year. Its continuous spectrum shows how likely62

we are to achieve EOT by a particular year and highlights regions we are most uncertain about with respect to63

meeting this goal.64

• Sensitivity analysis for VC was performed to provide additional assessment of the VC reduction assumption65

(see results below).66
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S1.8. Proxy for EOT67

The gHAT model we used here is a deterministic model described by ODEs with transition rates between compart-68

ments. In the deterministic model, variables such as new infections, new cases and deaths can be non-integer and their69

values are continuous. The stochastic model, on the other hand, has dynamics driven by randomly occurring events70

with associated probabilities and its variables capture the discrete nature of the population. Despite good agreements71

on the mean dynamics in both models, even at very low prevalence, the dynamics at the endgame are different. Be-72

cause of the continuous nature of deterministic dynamics, the number of infected people asymptotes to zero rather73

than reaching it unlike the stochastic model. In this paper, an artificial EOT threshold i.e. one new infection per health74

zone per year was applied to new infections to determine whether EOT has been achieved or not. Other values of75

EOT thresholds, such as one new infection per 100,000 or per 1,000,000 people per year, can be found in the litera-76

ture18,19. Large variation in EOT threshold highlights the difficulty in choosing a proper threshold reflecting the reality.77

More detailed comparison between stochastic and deterministic model variants will be needed in the future to ensure78

robustness of year of EOT estimates arising from such a proxy threshold.79

S2. Results80

S2.1. Sensitivity analysis of the effectiveness of vector control81

The reported annual reductions in tsetse populations of vector control (VC) range from 80% to 99%4,20,21,22. The82

reductions are highly variable between locations due to differences in accessibility and the effectiveness of target83

deployments. In addition to the default tsetse reduction assumed here (80%), a conservative and a high but achievable84

reduction, 60% and 90%, are considered in the sensitivity analysis of VC. As shown in figure S1, the sensitivity85

analysis shows that the effectiveness of VC has a direct impact on the numbers of underlying new infections and86

leading to a delay to EOT when VC effectiveness is low.87
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Figure S1: Sensitivity analysis of vector control. The reductions in tsetse populations depend on the accessibility
and the effectiveness of target deployments. A conservative reduction (60%) and a high but achievable reduction
(90%) are considered in the sensitivity analysis of VC. VC efficiently stops the transmission from tsetse to humans
and therefore greatly reduces the number of new infections. The decreases in new infections reflect the effectiveness
of vector control, i.e. 90% VC (dark purple and dark green) has fewer expected new infections than 60% VC (light
purple and light green). As a result, time lags in achieving EOT for the less effective VC strategy are shown in both
high-risk and low-risk health zones.
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S3. Model Updates88

Variations on this “Warwick gHAT model” have been published previously (see Section 1.1). Key differences between89

this model and previous versions (notably19) have been described in the study when the model was fitted to data1 and90

are listed again here:91

• Improved passive detection: Improvement due to the introduction of CATT test (ηpre
H = 0 7→ ηpost

H and γpre
H =92

bγpre
H
γpost
H 7→ γpost

H in Crump et al1) is considered in 1998 in the entire DRC as well as gradual improvements93

of stage 1 and stage 2 passive detection rates over time (see Subsection 1.4 above) are taken into account in94

Bandundu and Bas Congo provinces.95

• MSF AS algorithm: The results of CATT 1:32, which has a higher sensitivity (MSF sensitivity = 0.95 in contrast96

to PNLTHA sensitivity = 0.91) and a lower fitted specificity (= bspecificity × specificity with targeted mean =97

0.991 in Crump et al1) than the PNLTHA-DRC algorithm, were used for case reporting and treatments in98

Orientale province in active screenings performed by MSF before 2013.99

• Perfect specificity in AS: Video confirmation was introduced in Mosango and Yasa Bonga since 2015 and100

therefore the specificity in active screenings became 1 since then. Perfect specificity is also assumed in the rest101

of Bandundu from 2018.102

• Overdispersion in case detections: Observation uncertainty is considered by adding overdispersion into case103

detections (see Subsection 1.6 above). To avoid overfitting, the overdispersion parameters were manually tuned104

to be appropriate for a health zone level fit, and thereafter left fixed across MCMC runs in Crump et al1.105

• EOT threshold: A proxy threshold (= 1) of new infection per health zone per year is used to identify when EOT106

has been reached within this deterministic framework. Previous versions of this model have used a variety of107

proxy thresholds, typically fewer than one new infection per 100,000 per year18,19.108

• No transmission after achieving EOT: Unlike previous Warwick gHAT model variants, once the EOT threshold109

is met we set transmission to zero in subsequent years and therefore no further new infections is possible. Pre-110

viously infected people can still be identified and reported (although there are typically extremely few reported111

cases at that point).112

S4. PRIME-NTD criteria113

It has been recommended that good modelling practises should meet the five key principles relating to communica-114

tion, quality and relevance of analyses – known as Policy-Relevant Items for Reporting Models in Epidemiology of115

Neglected Tropical Diseases (PRIME-NTD)23. We present how these PRIME-NTD criteria have each been addressed116

in Table S3.117
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Table S3: PRIME-NTD criteria fulfillment. We summarise how the NTD Modelling Consortium’s “5 key principles of good
modelling practice” have been met in the present study.

Principle and what has been done to satisfy the principle? Where in the manuscript is this described?
1. Stakeholder engagement
This study was lead by modellers and guided by members of the national
sleeping sickness control programme in DRC (PNLTHA-DRC) – coauthors
E Mwamba Miaka and S Chancy. PNLTHA-DRC have contributed to im-
proved modeller understanding of the epidemiological data and changes to
the programme over time and in different geographic regions, both of which
impacted model fitting over several rounds of revision (via in-person meet-
ings and email). The GUI (and several variants of it) was designed in con-
junction with PNLTHA-DRC to improve communication of the modelling
outputs to non-modellers. It has been refined through various in-person
meetings with different collaborators with the goal of providing understand-
able, policy-relevant outputs as well as scientific communication; over 20
non-modellers have had opportunities to interact with and provide feedback
on the GUI during development.

Authorship list

2. Complete model documentation
Full model (including the fitting code) and documentation are available
through Open Science Framework (OSF). The model is fully described in
this SI and in the fitting study of Crump et al1.

See Section S1 above in this document and
access the code via ProjOSF

3. Complete description of data used
The data used for fitting were described in detail in Crump et al1. Posteriors
used for the projections presented here are available on our OSF page.

Posteriors available at FittingOSF

4. Communicating uncertainty
Structural uncertainty:
The variant of the model presented here (“Model 4”) was chosen as it had
good support compared to other plausible model structures when fitting to
data sets from Yasa Bonga and Mosango health zones in DRC2 and in the
Mandoul focus, Chad4.

See Methods section in main text.

Parameter uncertainty:
In the fitting study1 key model parameters were fitted in an MCMC frame-
work by utilising regional data, we used these posterior parameter sets to
simulate forward projections in the present study. Sensitivity analysis was
performed on the assumed impact of tsetse reduction through vector control
(VC) with 60% and 90% reductions presented in addition to the default 80%
assumption.

See Methods section in main text and
Crump et al1, and posterior files are avail-
able at FittingOSF. Sensitivity analysis
for VC in Section S2.1 above and in GUI.

Prediction uncertainty:
Here, we represent uncertainty in our results in various ways - (i) by provid-
ing box and whisker plots for predictions (median, 50% and 95% prediction
intervals), (ii) by utilising probability maps (likelihood of meeting EOT goal
by 2030) in addition to median year of EOT maps, and (iii) by providing
prediction intervals for EOT years in the hoover feature of our GUI.

See Figures 1 and 3 in the main text and
maps in GUI.

5. Testable model outcomes
Predictions presented here include measurable, and routinely reported out-
comes such as active and passive case reporting by year. Outputs in the
GUI can be compared to new case data as it becomes avaliable. Our predic-
tions are dependant on the coverage of active screening each year and are
expected to perform better when the actual screening coverage is similar to
that assumed for predicting. In the future we plan to validate the predictions
based on at least two years of new case data to assess model performance.

Predictions presented in main text Figure 1
and in the GUI. Model code and posteri-
ors which could be used for validation are
available at ProjOSF and FittingOSF.

1 Hyperlink ProjOSF with full address: https://osf.io/jza27/?view_only=526344c12324492083db1e49c76136af.
2 Hyperlink FittingOSF with full address: https://osf.io/ck3tr/?view_only=526344c12324492083db1e49c76136af.
3 Hyperlink GUI with with full address: https://hatmepp.warwick.ac.uk/projections/v1
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