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Abstract 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for 

coronavirus disease 19 (COVID-19), is a single-stranded positive-sense ribonucleic acid (RNA) 

virus that typically undergoes one to two single nucleotide mutations per month. COVID-19 

continues to spread globally, with case fatality and test positivity rates often linked to locally 

circulating strains of SARS-CoV-2. Furthermore, mutations in this virus, in particular those 

occurring in the spike protein (involved in the virus binding to the host epithelial cells) have 

potential implications in current vaccination efforts. In Rwanda, more than twenty thousand 

cases have been confirmed as of March 14th 2021, with a case fatality rate of 1.4% and test 

positivity rate of 2.3% while the recovery rate is at 91.9%. Rwanda started its genomic 

surveillance efforts, taking advantage of pre-existing research projects and partnerships, to 

ensure early detection of SARS-CoV-2 variants and to potentially contain the spread of variants 

of concern (VOC). As a result of this initiative, we here present 203 SARS-CoV-2 whole 

genome sequences analyzed from strains circulating in the country from May 2020 to February 

2021. In particular, we report a shift in variant distribution towards the newly emerging sub-

lineage A.23.1 that is currently dominating. Furthermore, we report the detection of the first 

Rwandan cases of the VOCs, B.1.1.7 and B.1.351, among incoming travelers tested at Kigali 

International Airport. We also discuss the potential impact of COVID-19 control measures 

established in the country to control the spread of the virus. To assess the importance of viral 

introductions from neighboring countries and local transmission, we exploit available individual 

travel history metadata to inform spatio-temporal phylogeographic inference, enabling us to take 

into account infections from unsampled locations during the time frame of interest. We uncover 

an important role of neighboring countries in seeding introductions into Rwanda, including those 
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from which no genomic sequences are currently available or that no longer report positive cases. 

Our results point to the importance of systematically screening all incoming travelers, regardless 

of the origin of their travels as well as regional considerations for durable response to COVID-

19. 
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Introduction 

The coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) continues to impose a heavy death toll globally and represents a major global 

health challenge. Real-time whole-genome sequencing provides invaluable insights on the 

pandemic’s transmission dynamics and enables effective surveillance. Moreover, genomic data 

provides useful information required for the ongoing development of vaccines, therapeutics and 

diagnostic tools. Analysis of SARS-CoV-2 mutations is particularly crucial when these affect 

epitopes involved in the induction of host immune responses as they may lead to immune 

evasion, with potential implications for vaccine (and immunotherapy) efficacy.  

The global SARS-CoV-2 lineage nomenclature has already been proposed with A and B as the 

initial phylogenetic lineages (1), followed by a number of sub-lineages. Emerging SARS-CoV-2 

variants are circulating globally and a number of variants of concern (VOC) have been reported 

such as the B.1.1.7 VOC (also known as 20I/501Y.V1 or VOC 202012/01), which is 

characterized by twenty-three mutations (thirteen non-synonymous mutations, four deletions and 

six synonymous mutations), is associated with higher transmissibility (2) and increased mortality 

(3,4); and the B.1.351 VOC (known as 20H/501Y.V2), which emerged independently of B.1.1.7, 

shares some mutations with the B.1.1.7 VOC and has recently also been associated with low 

vaccine efficacy in South Africa(5). Another VOC known as P.1 was first identified in Brazil 

and is characterized by seventeen unique mutations, including three in the receptor binding 

domain of the spike protein (6). 
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In Rwanda, the first case of SARS-CoV-2 was confirmed in the capital city, Kigali, on March 

14th, 2020 following a series of testing at the borders and the Kigali International Airport, (KIA), 

and was linked to incoming travelers from Mumbai, India. Subsequently, a countrywide total 

lockdown, coupled with strict prevention measures including contact tracing, was enforced for 

nearly two months aiming to contain the spread of the virus. From May 2020, lockdown 

restrictions were lifted progressively, a number of commercial activities resumed and the KIA 

reopened on the 1st of August 2020. However, despite continued massive testing (7), contact 

tracing, hotspot mapping and preventive measures (8), the number of cases continued to increase, 

mainly associated with cross-border land travels through truck drivers (9) and imported cases. 

This culminated in a ‘first wave’ of local transmission between July and September 2020. 

Additional containment measures led to the decline of cases until November 2020 when schools 

and most activities resumed. Since December 2020, another ‘wave’ of infections hit the country, 

peaking in January-February 2021. As a result, new movement restrictions were enforced, 

including a total lockdown in the capital city and a seven days’ quarantine for international 

travelers in addition to two negative polymerase chain reaction (PCR) tests, one pre-departure 

and another one upon arrival.  

In this study, we describe the dynamics of transmission based on genomic analysis of isolates 

from the first and second waves of the epidemic in Rwanda. In particular, we highlight a shift 

from ancestral dominant B.1.380 lineage in the early stages of local transmission to a new 

lineage, A.23.1, that is currently dominating throughout the country. Combining the collected 

genomic sequence data with individual travel histories to perform travel history-aware 

phylogeographic inference, we infer introductions into Rwanda from all of its surrounding 

countries including those from which no genomic sequences are available. Given the importance 
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of these findings on regional surveillance of SARS COV-2, we emphasize the need for 

strengthening genomic surveillance at the country’s points of entry following the detection of the 

first cases of the B.1.1.7 and B.1.351 VOCs among travelers arriving at KIA 

Results 

Patient characteristics 

As of the 10th February 2021, a total of 16,865 cases have been confirmed in the country and the 

sequences analyzed represent 1.2% of the total cases. The proportion of daily confirmed cases 

versus the number of sequences taken is illustrated in Figure 1. We sampled a total of 203 cases 

(reflecting the national screening efforts at points of entry and emerging hotspots) with an 

average age of 36.7 years of whom 131 were males and 70 females (and two unknowns) in this 

study. Of these, location data was available for 152 individuals, of whom 99 lived in Kigali 

while others were living in different districts of the country (Figure 1). Significant efforts were 

made to obtain associated metadata for all cases, with specific attention to individual travel 

history data, as these may shed light on the origins of viral variants introduced from neighboring 

countries. Of the 203 cases, 28 had recorded travel history (mainly sampled at the airport and 

other points of entry through the national monitoring and testing efforts) from Tanzania (6), 

Kenya (4), Demographic Republic of Congo (3), Uganda (3), United States of America (2), 

United Arab Emirates (2), South Sudan (1), Italy (1), Morocco (1), Senegal (1), Canada (1), 

China (1), Gabon (1), and Burundi (1). We show the travel cases from neighboring countries in 

Figures 2 and 3. We provide the GISAID accession identifiers associated with these travel cases 

in Supplementary Table S1. 
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Figure 1. Comparison of the number of sequences taken and case counts over time and space. A) 

shows the number of sequences in this study by District of residence; B) log-transformed number 

of cumulative cases by district until the 10th of February, 2021; C) time series of month of 

sequence collection date (thicker bars), with thinner bars the daily new cases reported nationally 

until the 10th of February, 2021. 
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Figure 2. Map showing the number of sequences with recorded travel history per country 

(n=28). While there is travel into Rwanda recorded from across the world, most cases are from 

neighboring countries, notably Tanzania (6), Kenya (3), Demographic Republic of Congo (3), 

Uganda (3), South Sudan (1), Gabon (1), and Burundi (1). 
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Figure 3. Availability of whole genome sequences for African countries from which travelers 

entered Rwanda. Grey circles denote the number of sequences available in GISAID for each 

country on a given date. Blue circles correspond to the number of sequences included in our 

analyses. Red crosses mark the collection dates of Rwandan sequences with travel history from 

the respective countries. Although few to no sequences are available from Burundi, Gabon, 

South Sudan and Tanzania, these travel history data point to SARS-CoV-2 lineages circulating in 

these countries, to the extent that returning travelers from these countries import those lineages 

into Rwanda.  
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Phylogenetic analysis 

The genomes were analyzed using the Pangolin module. Overall, the majority of the SARS-

CoV-2 sequences in Rwanda belong to two distinct lineages, A.23.1 and B.1.380. However, the 

dynamics of their distribution changed over time (Figure 4). Indeed, the early stages of local 

transmission (May through November 2020) were characterized by circulation of a dominant 

B.1.380 lineage, which has only been observed in Rwanda and Uganda. The (limited) diversity 

of the viral strains observed in the period of May to July 2020 are most likely early imports from 

Europe and Asia before suppressive measures (such as the countrywide lockdown and the airport 

closure) were enforced. Nevertheless, an increased strain diversity is observed from the period 

August-October 2020, most likely reflecting introductions through cross-border land travels for 

goods and cargo (9). 

Towards the end of 2020, we observed a dramatic selective sweep, with a new lineage A.23.1 

taking over. This sub-lineage was first observed in Uganda late in 2020 and was described by 

Bugembe et al (10). Indeed, the sub-lineage A.23.1 virus’s sequence encodes 4 or 5 amino acid 

changes (R102I, F157L, V367F, Q613H, and P681R) in the spike protein plus additional protein 

changes in non-structural protein (Nsp) 3 (i.e. E95K), Nsp6 (i.e. M86I, 198 L98F), open reading 

frame (ORF) 8 (i.e. L84S, E92K), and ORF9 (i.e. S202N, Q418H). Additional changes in non-

spike regions define the A.23.1, including Nsp3: E95K, Nsp6: M86I, 198 L98F, ORF 8: L84S, 

E92K and ORF9 N: S202N, Q418H. The Q613H mutation is predicted to be functionally 

equivalent to the D614G mutation that arose early in 2020 and is associated with increased viral 

transmissibility (11). The P681R spike adds a basic amino acid adjacent to the spike furin 

cleavage site. This same change has been shown in vitro to enhance the fusion activity of the 
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SARS-CoV-2 spike protein, likely due to increased cleavage by the cellular furin protease (12). 

Mutations in nsp6 protein alter cellular autophagy pathways that promote replication (13), 

suggesting that it may be more transmissible than its parent lineages A and A.23. 

Bugembe et al describe a selective sweep across Uganda of this lineage, which is now the 

dominant lineage circulating in Uganda. Rwandan genome sequencing shows the presence of 

A.23.1 as early as 2020-10-21 and a dramatic sweep of this lineage was observed from late 

November (Figure 1). A.23.1 continues to be the dominant lineage within Rwanda up until 

February 2021. More recently a small number of cases associated with travel have been 

identified as lineages of concern. Import cases of B.1.1.7 and B.1.351 variants were sampled on 

2020-12-28 and 2021-01-04, respectively.  Although analysis by Volz et al (2) suggests B.1.1.7 

is a more transmissible lineage, data inclusive of this paper does not report onward transmission 

of these variants. Importantly, a recent study suggests that B.1.1.7 is not only more transmissible 

than preexisting SARS-CoV-2 variants, but it may also cause more severe illness, as indicated by 

a reported higher hazard of death (4).  
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Figure 4. Lineage diversity sampled in Rwanda across four time points: May-Jul 2020 (n=28), 

Aug-Oct 2020 (n=86), Nov-Dec 2020 (n=74), Jan-Feb 2021 (n=28). Lineage B.1.380, a Rwanda-

specific lineage, dominated the sampled diversity during the first wave. Lineage A.23.1 first 

appeared in Rwanda in October 2020 and quickly became a significant proportion of the sampled 

SARS-CoV-2 genome sequences. More recently, we detected and sequenced single cases of the 

B.1.1.7 and B.1.351 VOCs associated with incoming travelers from Burundi and the Democratic 

Republic of the Congo, respectively. 
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Phylogeographic reconstruction accommodating individual travel histories 

We made use of publicly available data and the newly sequenced Rwandan SARS-CoV-2 

genomes - all available in GISAID (14,15) - to infer a time-scaled phylogenetic tree using 

maximum-likelihood inference (see Methods). This phylogeny enabled us to identify two 

subtrees with predominantly Rwandan sequences. Both of these subtrees consist of genetically 

distinct variants, with the larger cluster belonging to lineage B.1.380 (and hence referred to as 

subtree B.1) and the smaller one to A.23.1 (referred to as subtree A). The considerable difference 

in sampling dates and genetic distance between the sequences suggests that the currently 

circulating SARS-CoV-2 Rwandan lineages are a result of at least two independent introduction 

events that established local transmission. Subtrees A and B.1 have 172 and 218 sequences, and 

contain a total of 49 and 134 Rwandan sequences, respectively. 

To more accurately understand the pattern of SARS-CoV-2 introduction into Rwanda, we 

performed a Bayesian discrete phylogeographic analysis on subtrees A and B.1. The 172 

genomes in subtree A originated from 33 locations, and included all sequences from lineage 

A.23.1. The 218 genomes in subtree B originated from 37 locations, and included the B.1.380 

lineage. In our analysis of both subtrees, we fit a travel history-aware asymmetric discrete-state 

diffusion process to model the spatial spread between countries. Our phylogeographic 

reconstructions included a total of 17 sequences with travel history, 11 for the analysis of subtree 

A and 6 for subtree B.1 (Table 1). Interestingly, some of these sequences have associated travel 

histories originating from Tanzania (4 in subtree A and 1 in subtree B.1), a country that has not 

reported any COVID-19 cases since May 8th, 2020 (16), and also has no publicly available 

genomes on GISAID. While Burundi and South Sudan have been consistently reporting case 

numbers, no genomic sequences are available on GISAID from these countries yet. Our 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.02.21254839doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254839
http://creativecommons.org/licenses/by-nc-nd/4.0/


phylogeographic reconstructions are able to include those countries as locations with SARS-

CoV-2 infections, by exploiting data on infected incoming travelers from those countries. 

 

Figures 5 and 6 show the estimated location-annotated phylogenies that enable to track the 

geographic spread of SARS-CoV-2 through time for subtrees A and B.1, with focus on the 

available Rwandan sequences. In our analysis of subtree A (Figure 5), which contains sequences 

from lineages A.23 and A.23.1, we inferred a minimum number of 22 (HPD 95%: [16-29]) 

introduction events into Rwanda, with respectively 13 and 4 of these events originating from 

Uganda and Kenya (Figure 7; Table S2). We found an expected number of two introduction 

events from Tanzania into Rwanda, corresponding to and being derived from the two arriving 

traveler cases, as well as single introduction events from South Sudan and China into Rwanda. 

Figure 5 also shows frequent mixing between Rwanda, Uganda and Kenya, with the latter two 

estimated to have seeded introductions into Tanzania, from where no genomic sequences are 

available to date (see Discussion). However, by employing a travel history-aware inference 

methodology, we are able to confirm the of lineage A.23.1 among travelers from Tanzania, 

despite the absence of genomic data. In our analysis of subtree B.1, which includes Rwandan 

lineage B.1.380, we inferred a minimum number of 9 (HPD 95%: [8-12]) introduction events 

into Rwanda, with 3 of these events originating from Kenya (Figure 7; Table S2). We also found 

an expected number of 2 introduction events from both Uganda and Italy.  

 

Using Bayesian stochastic search variable selection (BSSVS), we identified seven statistically 

supported (Bayes Factor >3) transition routes into Rwanda for subtree A and six for subtree B.1 

(Figure 7; Table S2). Our analysis on subtree A showed that Uganda accounted for the majority 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.02.21254839doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254839
http://creativecommons.org/licenses/by-nc-nd/4.0/


of SARS-CoV-2 introductions into Rwanda (mean number of Markov jumps: 13.1; 95% HPD: 

[7-20]), whereas our analysis on subtree B.1 identified Kenya as the main source of SARS-CoV-

2 introductions into Rwanda (mean number of Markov jumps: 3.2; 95% HPD: [0-5]).  

 

Consistent with previously published analyses of SARS-CoV-2, we observe that our discrete 

Bayesian phylogeographic reconstructions resulted in MCC trees of which the internal nodes can 

be poorly supported, a common phenomenon in SARS-CoV-2 phylogenies (Figures 5 and 6). 

The considerable uncertainty in phylogenetic clustering results in a variety of diverging 

phylogeographic histories, which end up not being captured in the MCC trees as these only 

represent point estimates of the posterior distribution. To this end, we explored the ancestral 

spatial histories of individual samples of interest using Markov jump trajectory plots (17,18) 

(Figure S3). In the case of subtree A, the travel-aware reconstructions showed four sequences 

consistently forming two clusters with posterior support >0.9. However, the first two of these 

four cases correspond to cross-border truck drivers of Tanzanian nationality (sampled on the 

same day on the same sampling location, i.e. the Rusumo border), with no such metadata 

available for the other two cases in subtree A. Hence, the two inferred introductions actually 

correspond to four introduction events from Tanzania into Rwanda, which are clustered together 

by location in our joint inference, likely as a result of additional samples currently lacking from 

the border region. Because of this, sequences in each cluster result in nearly identical spatial 

histories. Figure S3A and S3B show the Markov jump trajectory plots for these two 

introductions. Overall, we see considerable ambiguity in the ancestral locations prior to 

Tanzania, as seen by the density of lines landing in “Other” alternate locations. More broadly, we 

see that in both cases the Rwandan sequences diverged from ancestors in Tanzania, Kenya and 
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Uganda, with considerable uncertainty placed at the root, among the Democratic Republic of the 

Congo (DRC), Sierra Leone and Mali. The introduction in subtree B, on the other hand, presents 

us with a different ancestral relation with Tanzania (Figure S3C). Although we also generally 

observe considerable uncertainty in the ancestral paths, we observe a strong signal for an 

ancestry in Rwanda prior to the introduction from Tanzania. This would imply a transmission 

chain starting in Rwanda, spreading into Tanzania, and then being reintroduced into Rwanda. A 

similar dynamic of outflow and inflow of Rwandan lineages can be seen in the ancestral histories 

for the sequences with travel history to Morocco, Italy and the DRC (Figure S4). This suggests a 

bidirectional exchange of SARS-CoV-2 genomes between each of these countries and Rwanda. 

However, because of the differences in sequencing efforts across the globe, it remains difficult to 

conclude that such is the case, and the possibility of intermediary locations cannot be discarded. 

Nonetheless, all spatial trajectory plots imply the presence of SARS-CoV-2 lineages circulating 

in Tanzania after May 2020. The difference in ancestral histories coupled with the fact that these 

travel history sequences are genetically distant from each other imply that multiple SARS-CoV-2 

lineages have circulated in Tanzania to this day. 

 

In addition, subtree A contains a sequence with travel history to South Sudan. Although over 

9,000 COVID cases have been reported up to date (16), no genomic sequences are publicly 

available for South Sudan. The sample tested at arrival in Rwanda presents us with evidence of 

lineage A having circulated in South Sudan during the months of May and June 2020 (Figure 

S3D). As expected, the Markov jump trajectory plots for this sample also show considerable 

uncertainty in the reconstruction of the ancestral locations prior to South Sudan. Regardless, we 
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see some support for ancestry in Kenya, Uganda and the DRC, which provides further evidence 

for viral transmission between the neighboring countries in the area. 

 

Once introduced in Rwanda, our continuous phylogeographic analysis of SARS-CoV-2 lineages 

highlight an important inter-connection of those lineages centered around Kigali (Figure S5). 

Most sequences sampled outside the city appeared to be evolutionarily linked to sequences 

sampled within this city area, and would then correspond to independent dispersal events from 

Kigali. However, this phylogeographic pattern, i.e. the central importance of Kigali within the 

dispersal history of SARS-CoV-2 lineages, might to some extent result from the higher sampling 

effort within the capital city. Therefore, it is likely that a higher sampling effort outside Kigali 

would highlight more local transmission. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.02.21254839doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254839
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Figure 5. Maximum clade credibility phylogeny for subtree A, representing diversity of lineages 

A.23 and A.23.1. The phylogeny with associated ancestral locations was inferred using travel 

history-aware asymmetric discrete state phylogeographic inference. A total of 33 locations were 

considered in the analysis but are grouped for visualization purposes. The branches in the 

phylogeny are colored according to the geographical location of the reconstructed ancestral 

regions. Rwandan sequences are indicated as large tips, colored by associated travel histories 
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(available for 11 of the Rwandan sequences. The travel history-aware phylogeographic 

reconstruction on subtree A infers frequent mixing between Rwanda, Uganda and Kenya, with 

the latter seeing introduction events from both Uganda and Rwanda. Both Kenya and Uganda are 

estimated to have seeded introductions into Tanzania, with the former also seeding an 

introduction into South Sudan. Importantly, the travel history-aware approach includes (returning 

infections from) Tanzania in lineage A.23.1, which could not be inferred via other 

phylogeographic approaches. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.02.21254839doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254839
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 6. Maximum clade credibility tree for subtree B.1, which includes Rwandan lineage 

B.1.380. The phylogeny with associated ancestral locations was inferred using travel history 

aware asymmetric discrete state phylogeographic inference. A total of 37 locations were 

considered in the analysis. The branches in the phylogeny are colored according to the 

geographical location of the reconstructed ancestral regions. Rwandan sequences are indicated as 

large tips, coloured by their associated travel histories. A total of 6 Rwandan sequences with 

associated travel history are highlighted in this subtree. The travel history-aware 
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phylogeographic reconstruction on subtree B.1 infers a large local transmission cluster in 

Rwanda (subtree B.1.380). However, by incorporating individual travel histories into the 

phylogeographic reconstruction, we are able to infer that this subtree does not solely represent 

local transmission, but also introduction events into Rwanda from Tanzania, Morocco, South 

Sudan, and the Democratic Republic of the Congo.  

 

 

 

 
Figure 7. Supported transitions into Rwanda. Mean number of Markov jumps for supported 

transition rates into Rwanda (Bayes Factor >3) for subtrees A and B.1. Support for these rates 

was determined using BSSVS with a travel history-aware asymmetric discrete phylogeographic 

model on both subtrees A and B.1. In both analyses, the majority of introductions into Rwanda 

was inferred to originate from nearby countries in East Africa, suggesting a substantial exchange 

of viral lineages between neighboring countries in the region. We refer to Supplementary Table 

S2 for the Bayes factor support values for these reported transitions. 

 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.02.21254839doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254839
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Discussion 

In this genomic analysis, we describe the transmission patterns and genomic evolution of SARS-

CoV-2 in Rwanda from May 2020 to March 2021. In particular, we report the emergence and 

spread of a new SARS-CoV-2 variant of the A lineage (A.23.1) with 4 to 5 amino acid changes 

in the spike protein as well as several non-spike protein changes. Indeed, most SARS-CoV-2 

sequence diversity in Rwandan strains belong to two distinct lineages: A.23.1 and B.1.380. The 

latter dominated throughout the early stages of the pandemic before a dramatic shift towards the 

A.23.1 lineage occurred in November 2020. A similar pattern was observed in neighbouring 

Uganda as described by Bugembe et al (10). The authors describe the new variant as a variant of 

concern (VOC) in the sense that it shares mutations with the currently known B VOCs such as 

the changes in key spike protein regions (furin cleavage site and the 613/614 change) that may 

increase spike multimer formation. Functional analyses are still needed to determine whether 

these mutations have effects on immune evasion, vaccine efficacy and/or case fatality rates. 

 

In this study, we reported on the ongoing genomic sequencing efforts in Rwanda, which are 

complemented with careful collection of associated travel history metadata of incoming 

travelers. These efforts enabled us to exploit this information by performing joint Bayesian travel 

history- aware phylogeographic inference on these data. By applying this recently developed 

approach, we demonstrated considerable contributions of neighbouring countries’ sequence 

introductions into Rwanda (as well as possible bidirectional exchanges). Of particular interest to 

this study, we were able to include traveler cases from Tanzania, Burundi and South Sudan. 

Incorporating travel history information in phylogeographic analysis can mitigate sampling bias 

(from unsampled or under-sampled countries) (17), although this cannot fully replace the lack of 
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sequences from other countries. While none of these three countries have made any SARS-CoV-

2 genomes available throughout the pandemic. According to the data we collected, two infected 

Rwandan travelers returned from Tanzania on the 16th of June, 2020 and two more on 4th 

January, 2021. Our findings also complement reports from the WHO 

(https://www.who.int/news/) that a number of travelers from Tanzania who have travelled to 

neighboring countries and beyond have tested positive for COVID-19.  

 

The reported import into Rwanda of 2 VOCs, namely B.1.1.7 and B.1.351, sampled at the Kigali 

International Airport in late December 2020 and early January 2021 are also particularly 

interesting. The patient with the B.1.1.7 variant was a Burundian travelling from Burundi while 

the patient with the B.1.351 variant was a Zimbabwean coming from DRC, suggesting that 

VOCs may be circulating in neighboring countries. Indeed, although Burundi, South Sudan and 

Tanzania have currently no SARS-CoV-2 sequences published on GISAID, the DRC has 

published a total of 371 sequences, of which 3 are VOCs (two B.1.1.7 and one B.1.351), while 

Kenya has published a total of 686 sequences of which 5 are VOCs (one B.1.1.7 and 4 B.1.351).  

 

Ongoing genomic surveillance in Rwanda indicates additional samples from these VOCs (mostly 

B.1.351) from travelers sampled at the airport. In an effort to curb the spread of the variants, 

following the upsurge of cases in November-December 2020, several measures were taken by 

the Rwandan government including a 7-day quarantine to all incoming passengers followed by a 

RT-PCR test, in addition to presenting a COVID-19 negative test upon arrival. Furthermore, the 

capital city of Kigali (i.e., a major COVID-19 hotspot) went through a total lockdown from mid-

January to early February 2021, and travels between districts were prohibited until mid-March 
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2021. A 7pm to 4am curfew was instituted in early February 2021; public offices were closed 

and employees were working from their homes. All schools in Kigali were closed as well, and 

classes were being held online. Cafés and restaurants were only providing take-away services. 

Churches, public swimming pools and gyms were closed (Office of the Prime Minister - 

Republic of Rwanda 2021). Such suppression mechanisms (population-wide social distancing, 

school closure, case isolation) have proven the greatest impact (as far as non-pharmaceutical 

approaches are concerned) in terms of transmission control (19). Additionally, all public health 

facilities received free antigen rapid diagnostic tests for every single person presenting COVID 

related symptoms. Moreover, a vaccination campaign was initiated in March 2021, with a target 

to vaccinate all frontliners and vulnerable populations (elderly and people with other underlying 

health conditions) in the first phase. A rapid and efficacious vaccination coverage will ease the 

social and economic disruptions associated with non-pharmaceutical transmission suppression 

mechanisms.  

 

These results suggest that neighboring countries play an important role in establishing the 

circulation of (different strains of) SARS-CoV-2 in Rwanda. However, due to the unevenness in 

sampling across countries, with several not providing any genomic sequences, additional data 

would be required to accurately assess the effect of short-distance (e.g. crossing border with 

neighboring countries) versus long-distance travel in shaping the Rwandan epidemic. Low 

spread of mutant virus may be partly explained by the fact that Rwanda is relatively less affected 

by the spread of SARS COV-2 in the region consecutive to several public health measures 

implemented in light with regular bi-weekly surveillance surveys across the country conducted 

by RBC to monitor the trend of the pandemic.  
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Methods 

Study design 

This is an in-depth study of SARS-CoV-2 strains that circulate in Rwanda from May 2020 to 

February 2021, in which we describe the demography and epidemiology of 203 SARS-CoV-2 

genomes from collected SARS-CoV-2 positive oropharyngeal swabs. These swabs were 

obtained from two distinct groups: from individuals residing in different provinces of Rwanda 

(n=189) and from returning travelers, whose samples were collected at the airport (n=14). All 

samples were extracted from the biorepository of the National Reference Laboratory (NRL), in 

Kigali, Rwanda.  Samples with a cycle threshold (Ct) value below 33 were selected, ensuring a 

wide geographical representation as well as ports of entry, and case description variables (date 

and place of RT-PCR test, age, sex, occupation, residence, nationality, travel history) were 

reported.   

Sequencing 

RNA Extraction  

Ribonucleic acid (RNA) of the virus was extracted from confirmed SARS-CoV-2 positive 

clinical samples with Ct values ranging from 13.4 to 32.7 on a Maxwell 48 device using the 

Maxwell RSC viral RNA kit (Promega) following a viral inactivation step using proteinase K 

according to the manufacturer’s instructions.  

SARS-CoV-2 whole genome sequencing 

Reverse transcription was carried out using SuperScript IV VILO master mix, and 3.3 μl of RNA 

was combined with 1.2 μl of master mix and 1.5 μl of H2O. This was incubated at 25°C for 

10 min, 50°C for 10 min, and 85°C for 5 min. PCRs used the primers and conditions 
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recommended in the nCoV-2019 sequencing protocol (ARTIC Network, 2020) or the 1,200 bp 

amplicons described by Freed and colleagues (20). 

Primers from version 3 of the ARTIC Network and the 1,200 bp amplicons were used and were 

synthesized by Integrated DNA Technologies. Samples were multiplexed using the Oxford 

Nanopore native barcoding expansion kits 1-12, 13-24, or the native barcoding expansion 96 in 

combination with the ligation sequencing kit 109 (Oxford Nanopore). Sequencing was carried 

out on a MinION using R9.4.1 flow cells.   

Genome assembly 

The data generated via the Oxford Nanopore Technology (ONT) MinION was processed using 

the ARTIC bioinformatic protocol (https://artic.network/ncov-2019/ncov2019-bioinformatics-

sop.html). Briefly, the FAST5 sequence files were base called and demultiplexed using Guppy 

4.2.2 in high accuracy mode, requiring barcodes at both ends of the read. FASTQ reads 

associated with each sample were filtered and concatenated via the guppy plex module. 

Consensus SARS-CoV-2 sequences were generated via the ARTIC nanopolish pipeline and 

assembled for each sample by aligning the respective sample reads to the Wuhan-Hu-1 reference 

genome (GenBank Accession: MN908947.3) with the removal of sequencing primers, followed 

by a polishing step using the raw Fast5 signal files. Positions with insufficient genome coverage 

were masked with N. 

Phylogenetic and phylogeographic analysis 

We downloaded all SARS-CoV-2 genomes from the available nextstrain build (21) with Africa-

focused subsampling (https://nextstrain.org/ncov/africa) on February 23, 2021. These sequences 

were further complemented to include all 203 Rwandan sequences generated in this study and 
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available on GISAID on February 24, 2021. The 203 Rwandan whole genome SARS-CoV-2 

genomes were assigned Pango lineages, as described by Rambaut et al (1), using pangolin v2 and 

pangoLEARN model v2021-02-21 by O’Toole et al (https://github.com/cov-lineages/pangolin). 

We used Squarify to construct the square treemaps of lineage diversity across three time points 

(https://github.com/laserson/squarify). We mapped the combined data set against the canonical 

reference (GISAID ID: EPI_ISL_406801) using minimap2 (22) and trimmed the data to 

positions 265-29,674 and padded with Ns in order to mask out 3’ and 5’ UTRs. We used the 

resulting alignment to estimate an unrooted maximum-likelihood phylogeny using IQ-TREE 

v2.1.2 (23) using its automated model selection approach that identified the GTR+F+R8 model 

as best fitting the data. We subsequently calibrated this phylogeny in time using TreeTime (24) 

while estimating the molecular clock and skyline coalescent model parameters and using three 

SARS-CoV-2 genomes from Wuhan, 2019, as the outgroup. 

We went on to perform a discrete Bayesian phylogeographic analysis in BEAST 1.10.5 (25) 

using a recently developed model that is able to incorporate available individual travel history 

information associated with the newly sequenced Rwandan samples (17,18). Exploiting such 

information can yield more realistic reconstructions of virus spread, particularly when travelers 

from unsampled or under sampled locations are included to mitigate sampling bias. To this end, 

and given that it is not feasible to perform such an analysis on the full data set due to the large 

number of sequences, we selected two subtrees in the overall phylogeny (see Results section) 

that predominantly consisted of Rwandan sequences, consisting of 172 (subtree A) and 218 

sequences (subtree B.1), of which respectively 11 and 6 infected individuals have associated 

travel history information (see Table S1). We incorporated the collection dates for those 

sequences into our analyses, and treated the time when the traveler started the return journey to 
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Rwanda as a random variable given that the time of traveling to the sampling location (in 

Rwanda) was not known (with sufficient precision). We specify normal prior distributions over 

these 17 random variables informed by an estimate of time of infection and truncated to be 

positive (back-in-time) relative to sampling date. As in the work of Lemey et al. (2020), we use a 

mean of 10 days before sampling based on a mean incubation time of 5 days (26), and a constant 

ascertainment period of 5 days between symptom onset and testing (19) , and a standard 

deviation of 3 days to incorporate the uncertainty on the incubation time. We retrieved the 172 

and 218 sequences from the full alignment and performed joint discrete phylogeographic 

inference on each resulting data set using BEAST 1.10.5, employing the BEAGLE 3.2.0 high-

performance computational library (27) to improve performance. For each of these 

phylogeographic analyses, we make use of Bayesian stochastic search variable selection 

(BSSVS) to simultaneously determine which migration rates are zero depending on the evidence 

in the data and efficiently infer the ancestral locations, in addition to providing a Bayes factor 

test to identify significant non-zero migration rates (28). We also estimated the expected number 

of transitions (known as Markov jumps) (29,30) into Rwanda from all other countries in the data 

set. These analyses ran for a total of 200 and 250 million iterations, respectively, with the 

Markov chains being sampled every 100,000th iteration, in order to reach an effective sample 

size (ESS) for all relevant parameters of at least 200, as determined by Tracer 1.7 (31). We used 

TreeAnnotator to construct maximum clade credibility (MCC) trees for each subtree. 

To explore the spread of SARS-CoV-2 lineages introduced in Rwanda, we also performed a 

continuous phylogeographic analysis following a procedure similar to one defined by Dellicour 

et al. (32). Specifically, we used the relaxed random walk (RRW) diffusion model (33) available 

in BEAST 1.10.5 (25) to infer the dispersal history of Rwandan lineages along Rwandan clades 
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identified within the two subtree-specific MCC trees that resulted from the discrete Bayesian 

phylogeographic inference described above. To achieve a sufficient level of spatial precision, the 

continuous phylogeographic analysis was only based on those sampled genomes for which the 

Rwandan sector of origin was known, which is the maximal level of spatial precision available 

for these samples. For each sampled genome associated with this level of sampling precision, 

which corresponds to 57% of available Rwandan genomes, we retrieved geographic coordinates 

from a point randomly sampled within its sector of origin. The MCMC chain was run in BEAST 

1.10.5 for 30 million iterations and sampled every 10,000th iteration, its convergence/mixing 

properties were again assessed with Tracer (31), and an appropriate number of sampled trees was 

discarded as burn-in (10%). The resulting sets of plausible trees were used to obtain subtree-

specific MCC summary trees using TreeAnnotator, and we then used functions available in the R 

package “seraphim” (34) to extract spatio-temporal information embedded within posterior trees 

and visualize the continuous phylogeographic reconstructions. Finally, we used the baltic Python 

library to visualize the phylogenies (35). 
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Supplementary Materials 

Table S1. GISAID accession identifiers for the Rwandan sequences in this study for which individual 
travel history metadata is available. We list the collection date for each GISAID entry, along with the 
country from which infected travelers returned to Rwanda, and the subtree assignment based on Figure 
S1. 
 
Accession ID Collection date Travel history Subtree 

EPI_ISL_707771 2020-06-16 Tanzania A 

EPI_ISL_707772 2020-06-16 Tanzania A 

EPI_ISL_925865 2020-12-17 China A 

EPI_ISL_1063905 2020-12-14 Uganda A 

EPI_ISL_925848 2020-12-14 Kenya A 

EPI_ISL_925851 2020-12-15 Kenya A 

EPI_ISL_1064164 2021-01-4 Tanzania A 

EPI_ISL_1064163 2021-01-4 Tanzania A 

EPI_ISL_925850 2020-12-16 Uganda A 

EPI_ISL_1064154 2021-01-5 Kenya A 

EPI_ISL_707712 2020-06-8 South Sudan A 

EPI_ISL_735448 2020-10-19 Morocco B.1 

EPI_ISL_960250 2020-08-28 Tanzania B.1 

EPI_ISL_735445 2020-10-22 Italy B.1 

EPI_ISL_925896 2020-12-15 Democratic Republic of the Congo B.1 

EPI_ISL_1063900 2020-10-18 Kenya B.1 

EPI_ISL_707789 2020-10-19 Uganda B.1 
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Table S2.  

 

From Subtree Bayes factor 
Posterior 
probability 

Mean Markov 
jumps 

Uganda A 63104 1 13.1 

Tanzania A 63104 >0.99 2.6 

Kenya A 2396.3 0.99 4.4 

South Sudan A 242.5 0.88 1.1 

China A 234.4 0.88 1.0 

Nigeria A 14.5 0.31 0.4 

Denmark A 7.6 0.19 0.2 

Italy B.1 657.2 0.95 1.6 

Uganda B.1 469.0 0.93 1.5 

Kenya B.1 208.4 0.85 3.2 

Tanzania B.1 195.1 0.84 1.2 

Morocco B.1 156.5 0.81 1.1 

Democratic 
Republic of the 

Congo B.1 49.7 0.58 1.1 
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Supplementary Figure S1. Time-calibrated phylogenetic tree of Rwandan SARS-CoV-2 
genome sequences in the global context of the current SARS-CoV-2 pandemic. Two large 
clusters of Rwandan sequences can be identified, representing lineages A.23.1 and B.1.380, with 
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other individual Rwandan sequences scattered throughout the phylogeny. Subtrees encompassing 
lineages A.23.1 and B.1.380 (referred to as subtree A and subtree B.1) were selected to perform 
Bayesian phylogeographic reconstruction that accommodates individual travel histories. Two 
variants of concern (VOC) sequences were detected during sequencing: one from lineage 
B.1.1.7, a returning traveler from Burundi, and one from lineage B.1.351, a returning traveler 
from the Democratic Republic of the Congo. 
 
 
 

 
Supplementary Figure S2. Posterior number of introductions into Rwanda for subtrees A 
and B.1.  The total number of Markov jumps into Rwanda for each subtree was estimated via 
stochastic mapping on an asymmetric discrete state phylogeographic model.  Despite the lower 
number of Rwandan sequences (subtree A: 49; subtree B: 134), subtree A reveals a higher 
number of introduction events (mean=22.8; 95%HPD=[16-29]) compared to subtree B.1 
(mean=9.8; 95%HPD=[8-12]). 
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Supplementary Figure S3. Markov jump trajectory plots for four selected Rwandan 
infected individuals with travel history (returning) from Tanzania (A, B, C) and South 
Sudan (D). Each individual trajectory corresponds to the Markov jumps in a single tree from the 
posterior distribution, with each plot showing the uncertainty across a subsample of 1,000 
posterior trees. The horizontal dimension represents the time maintained at an ancestral location. 
Vertical lines represent a Markov jump between two locations. The seven most prominent 
locations across all ancestral paths in the posterior are displayed along the Y-axis, with “Other” 
representing the remaining locations. Trajectory plots A, B and D correspond to the isolates in 
subtree A, i.e. EPI_ISL_1064164, EPI_ISL_707772, and EPI_ISL_707712 respectively. 
Trajectory plot C corresponds to isolate EPI_ISL_960250 in subtree B.1. In all cases, 
considerable uncertainty in the ancestral reconstructions can be seen from the pattern of 
overlapping horizontal lines and the diffuse density of vertical lines, which indicate considerable 
support for different ancestral locations (i.e. uncertainty in the spatial reconstruction), and 
variance in the reconstructed timing of the introductions. For trajectory plots A, B and D, we 
observe similar patterns in the spatial paths reconstructed, where the isolates find ancestries in 
Mali / Sierra Leone / Democractic Republic of Congo, Uganda and Kenya prior to each 
corresponding travel location. In contrast, trajectory plot C shows support for an ancestry in 
Rwanda prior to the virus circulating in Tanzania and being reintroduced into Rwanda. This 
indicates a bidirectional exchange of viral lineages between the two countries, although the 
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possibility of an intermediary country being involved cannot be discarded due to unevenness in 
sampling efforts between countries. 
 

 

Supplementary Figure S4. Markov jump trajectory plots for three selected Rwandan 
infected individuals with travel history (returning) from Italy (A), Morocco (B) and the 
Democratic Republic of the Congo (C). Similar to Figure S3 C, the ancestral histories inferred 
for these three isolates show support for a bidirectional flow of viral lineages between each 
corresponding travel location and Rwanda.  
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Supplementary Figure S5. Spatially-explicit phylogeographic reconstruction of the 

dispersal history of SARS-CoV-2 lineages sampled in Rwanda. Spatially-explicit 

phylogeographic reconstruction was performed along the Rwandan clades identified within the 

two subtrees A and B.1. For each clade we mapped the maximum clade credibility (MCC) tree 

and overall, 80% highest posterior density (HPD) regions reflecting the uncertainty related to the 

phylogeographic inference. MCC trees and 80% HPD regions are based on 1,000 trees 

subsampled from each post burn-in posterior distribution. MCC tree nodes were colored 

according to their time of occurrence, and 80% HPD regions were computed for successive time 

layers and then superimposed using the same color scale reflecting time. Continuous 

phylogeographic reconstructions were only performed along clades linking at least three 

sequences sampled in Rwanda and for which the sector of origin was known. Besides the 

phylogenetic branches of MCC trees obtained by continuous phylogeographic inference, we also 

mapped sampled sequences belonging to clades linking less than three geo-referenced sequences. 

Sector borders are represented by white lines. 
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