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Abstract 

Background:  

Malaria control and prevention programs are more efficient and cost-effective when they target 

hotspots or select the best periods of year to implement interventions. This study aimed to 

identify the spatial distribution of malaria hotspots at the village level in Diébougou health 

district, Burkina Faso, and to model the temporal dynamics of malaria cases as a function of 

meteorological conditions and of the distance between villages and health centers (HCs). 

Methods:  

Case data for 27 villages were collected in 13 HCs using continuous passive case detection. 

Meteorological data were obtained through remote sensing. Two synthetic meteorological 

indicators (SMIs) were created to summarize meteorological variables. Spatial hotspots were 

detected using the Kulldorf scanning method. A General Additive Model was used to determine 

the time lag between cases and SMIs and to evaluate the effect of SMIs and distance to HC 

on the temporal evolution of malaria cases. The multivariate model was fitted with data from 

the epidemic year to predict the number of cases in the following outbreak. 
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Results: 

Overall, the incidence rate in the area was 429.13 cases per 1,000 person-year with important 

spatial and temporal heterogeneities. Four spatial hotspots, involving 7 of the 27 villages, were 

detected, for an incidence rate of 854.02 cases per 1,000 person-year. The hotspot with the 

highest risk (relative risk = 4.06) consisted of a single village, with an incidence rate of 

1,750.75 cases per 1,000 person-years. The multivariate analysis found greater variability in 

incidence between HCs than between villages linked to the same HC. The epidemic year was 

characterized by a major peak during the second part of the rainy season and a secondary 

peak during the dry-hot season. The time lag that generated the better predictions of cases 

was 9 weeks for SMI1 (positively correlated with precipitation variables and associated with 

the first peak of cases) and 16 weeks for SMI2 (positively correlated with temperature variables 

and associated with the secondary peak of cases). Euclidian distance to HC was not found to 

be a predictor of malaria cases recorded in HC. The prediction followed the overall pattern of 

the time series of reported cases and predicted the onset of the following outbreak with a 

precision of less than 3 weeks. 

Conclusions: 

Our spatio-temporal analysis of malaria cases in Diébougou health district, Burkina Faso, 

provides a powerful prospective method for identifying and predicting high-risk areas and high-

transmission periods that could be targeted in future malaria control and prevention 

campaigns. 
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Introduction 

Malaria is one of the most life-threatening diseases and poses a great socio-economic burden 

worldwide [1]. According to World Health Organization (WHO) estimates, the global number 

of malaria cases was 228 million in 2018 (95% Confidence Interval (95% CI) = 206-258 

million) compared to 251 million in 2010 (95% CI = 231-278 million) and 214 million in 2015 

(95% CI = 149-303 million) [1]. Although the estimated number of cases decreased by 23 

million from 2010 to 2018, data for the period 2015-2018 highlight the lack of significant 

progress during this period. In 2018, the WHO African Region accounted for most cases (200 

million or 93% of all cases), far ahead of the WHO South-East Asian region (3.4%) and the 
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WHO Eastern Mediterranean Region (2.1%) [1]. At the time, nearly 80% of global malaria 

deaths were concentrated in 17 countries of the WHO African Region and in India. The WHO 

estimates that Burkina Faso carries about 6% of the global malaria burden [1]. Statistical data 

from the Ministry of Health of Burkina Faso for the year 2015 show that malaria is the main 

reason for consultation (45.7%), hospitalization (45.6%), and death (25.2%) in the country’s 

health facilities, and that pregnant women and children under 5 years are the most at risk of 

contracting malaria [2]. According to the Burkina Faso Malaria Indicator Survey [3], the 

average parasite prevalence in children under 5 years was 46% in 2014. In 2018, the number 

of confirmed cases reported in health facilities was 11,624,595 of which 4.14% were severe 

forms and 2.8% resulted in death. 

The National Malaria Control Program in Burkina Faso recommends the following control 

strategies [4]: early case management in health facilities and at the community level, with a 

particular focus on children aged 3 to 59 months [5]; intermittent preventive treatment (IPT) 

for pregnant women; universal access to rapid diagnostic tests (RDTs) and artemisinin-based 

combination therapies; seasonal malaria chemoprevention (SMC) for children under 5 years; 

and vector control using long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), 

larval control, and environmental sanitation. 

For strategic reasons or lack of resources, not all of these strategies are optimally implemented 

everywhere and all the time. Thus, in 2018, 25% of households reported not owning an LLIN 

(with coverage varying between 58% and 87% depending on the region) and 42% of pregnant 

women did not receive the recommended three doses of IPT, as reported by the Burkina Faso 

Malaria Indicator Survey [6].  

At the same time, new tools and strategies are being developed, including administration of 

ivermectin, bi-impregnated nets, transmission-blocking vaccines, and conventional vaccines 

[7,8,9]. In Burkina Faso, the REACT project (“Insecticide resistance management in Burkina 

Faso and Côte d’Ivoire: A study on vector control strategies”) conducted in 2016-2018 aimed 

to evaluate the efficacy of strategies designed to complement LLINs, namely pirimiphos 

methyl-based IRS, enhanced communication, and administration of ivermectin to domestic 

animals.  

Malaria control and prevention programs are more efficient and cost-effective when they target 

high-risk spatial clusters (hotspots) [10] or when they select the best times of year [11] to 

initiate interventions (e.g. SMC or LLIN distribution). Indeed, as numerous studies have shown, 

malaria incidence at the local level is heterogeneous and associated with spatio-temporal 
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clusters [12,13,14] that are likely to maintain transmission during low-risk periods and, 

consequently, to increase transmission during high-risk periods [15,16,17]. Identifying these 

clusters can therefore help to improve the fight against malaria and to anticipate future 

outbreaks.  

This study aimed to identify the spatial distribution of malaria hotspots at the village level in 

Diébougou health district, Burkina Faso, and to model the temporal dynamics of malaria cases 

as a function of meteorological conditions and of the Euclidean distance between villages and 

their corresponding health centers (HCs). Data on malaria cases were obtained through HC-

based passive case detection for the 27 villages included in the REACT project. 

 

 

Materials and methods 

Study area 

The study was conducted in 27 villages of Diébougou health district that were included in the 

REACT project. All included villages met two criteria: a population between 200 and 500 and 

a Euclidean distance of at least 2 km from the nearest village. A population census carried out 

in July 2016 by our research team found that the 27 villages were home to 7,408 inhabitants. 

The villages were linked to 13 HCs. Villages and HCs were geo-referenced using GPS (Figure 

1). 

Diébougou health district is located in South-Western Burkina Faso, a region characterized by 

a tropical climate with a dry season from October to April and a rainy season from May to 

September. The dry season is divided into a cold dry season lasting from December to February 

and a hot dry season lasting from March to April. Average daily minimum and maximum 

temperatures in the cold dry, hot dry, and rainy seasons are 18 and 36°C, 25 and 39°C, and 

23 and 33°C, respectively. Average annual rainfall is 1,200 mm. The natural vegetation is 

dominated by wooded savannah dotted with clear forest gallery [18,19].  
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 Figure 1: Map of the study area showing the location of villages (triangles) and health centers 

(red crosses). Background: OpenStreetMaps. MOU: moule; NIA: niaba; NIP: nipodja; BOH: 

bohero; NBR: niombripo; SAR: sarambour; NBO: niombouna; GBI: gongombiro; KPA: 

kpalbalo; DON: dontelo; SID: sidmoukar; DMB: dombouro; OUI: ouidiaro; TIA: tiakiro; NAV: 

nouvielgane; DIA: diagnon; PAL: palembera; KPE: kpedia; SOU: soussoubro; TDI: tordiero; 

YLE: yellela; YBE: yelbelela; SKI: sinkiro; DAN: dangbara; KOU: kouloh; LOB: lobignonao; PER: 

perglembiro. 

 
Passive case detection 

Case data for the 27 villages included in the REACT project were collected using continuous 

HC-based passive case detection during 2016 and the first 36 weeks of 2017, which 

corresponded to the period preceding the implementation of the interventions studied (i.e. 

pirimiphos methyl-based IRS, enhanced communication, and administration of ivermectin to 

domestic animals). Specifically, consultation data for village residents were retrieved from HC 

registries and recorded using tablets equipped with Open Data Kit collect forms. A malaria 

case was defined as a person who presented with fever and received a positive RDT result. 
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Study period 

Of the 88 weeks of data collection, 52 weeks corresponding to an epidemic year (a complete 

malaria epidemic) were considered for spatio-temporal analysis. The epidemic year ran from 

week 20 (in May) of 2016 to week 19 (in May) of 2017 (Figure 2). 

 

 

Figure 2: Time series of the number of malaria cases collected through passive case detection. 

The shaded (dark) area represents the epidemiological year considered for analysis. 

 

Meteorological data 

The meteorological data used in this study were drawn from the Era-5 dataset [20] published 

by the European Centre for Medium-Range Weather Forecasts, which provides hourly 

estimates of several atmospheric and land parameters at a spatial resolution of 0.25° [21]. 

These data were aggregated into weekly counts. The meteorological variables included in the 

analysis were: Weekly rainfall (mm), number of rainy days per week, weekly mean of daily 

average temperature (°C), weekly mean of daily minimum temperature (°C), weekly mean of 

daily maximum temperature (°C), weekly mean of daily average wind speed (km/h), weekly 

mean of daily average relative humidity (%), weekly mean of daily average atmospheric 

pressure (hPa), weekly mean of daily average cloud cover (%), and weekly mean of daily 

thermal amplitude (°C) (Table 1). 
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var Mean St. 
Dev. 

Min Pctl(25) Median Pctl(75) Max 

Tmean: weekly mean of daily 
average temperature (° C) 

28.7 2.2 25.7 26.6 28.8 30.2 33.9 

Re: number of rainy days per 
week    

4.8 2.9 0 2 7   7 7 

P: weekly mean of daily average 
atmospheric pressure (hPa) 

975.3 1.6 972.3 974.0 975.5 976.7 978 

Cl: weekly mean of daily average 
cloud cover (%) 

0.6 0.2   0.1 0.4 0.6 0.7 
 

0.9 

W: weekly mean of daily average 
wind speed (km/h) 

7.6 3.6   2.8 4.7 7.2   9.5 17.4 

H: weekly mean of daily average 
relative humidity (%)   

0.5 0.2   0.1 0.3   0.6   0.8 
 

0.8 

Tmax: weekly mean of daily 
maximum temperature (°C)   

34.4 3.5 28.6 31.2 35.4 36.6 40.7 

Tmin: weekly mean of daily 
minimum temperature (°C) 

23.3 
 

1.8 19.1 22.4 23.0 24.2 27.0 

Rc: weekly rainfall (mm)   14.4   
 
 

18.3   0.0 0.005 5.0   24.5 69.8 

tvar: weekly mean of daily 
thermal amplitude (° C)    

11.1 3.4 5.9 7.7 10.6 14.4 17.1 

Table 1: List of meteorological variables with their abbreviations and descriptive statistics.  

Var: Variables; St. Dev: Standard deviation; Min: Minimum; Pctl(25): First quartile; Pctl(75): 

Third quartile; Max: Maximum. 

 

To reduce the number of variables and avoid collinearity, we constructed synthetic 

meteorological indicators (SMIs) using a principal component analysis (PCA) of weekly 

meteorological variables. Principal components that met Kaiser's criterion [22] were selected 

as SMIs and included in the temporal analysis.  

 

Spatial Analyses 

Hotspots, i.e. high-risk clusters, were detected using the Kulldorf scanning method [23] with 

a Monte Carlo algorithm in a purely spatial analysis. The Kulldorf scanning method helps to 

identify spatial clusters based on geographical coordinates and to avoid the problem of multiple 

non-independent tests. [23]. We defined clusters as aggregates of cases with observed values 

higher than expected (i.e. unlikely to have been obtained by chance). The p-value (i.e. the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2021. ; https://doi.org/10.1101/2021.04.02.21254768doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.02.21254768
http://creativecommons.org/licenses/by-nc-nd/4.0/


probability, under the null hypothesis, that the expected number of cases is the same or higher 

than the observed number of cases) was calculated for each cluster. 

Scan parameters were: elliptical window, non-overlapping clusters, maximum cluster size set 

at 50% of the population at risk, Monte Carlo replication number set at 999. 

 

Temporal analyses 

 Lagged SMI selection 

Several studies have observed a lag between malaria time series and meteorological data time 

series [24,25,26]. In view of this, we decided to investigate the time lag (in weeks) between 

the time series of weekly malaria cases and the time series of SMIs. Using a generalized 

additive model (GAM) with a negative binomial distribution and a smoothing spline function, 

we modeled the time series of total malaria cases (for all villages) as a function of each SMI 

for time lags ranging from 1 to 30 weeks (thus generating 30 models per SMI). The GAM is an 

extension of the generalized linear model (GLM): while it includes random effects in the 

predictor like the GLM does, it can be used with nonparametric smoothing terms instead of 

constant parameters [27, 28, 29]. The usefulness of the GAM lies in the fact that it provides a 

flexible method to identify the effects of non-linear covariates in exponential family 

distributions and in likelihood-based methods [30,31,32]. However, instead of estimating a 

single parameter, the GAM provides an unspecified (non-parametric) general function that 

compares predicted response values to predictor values.  

We compared the 30 models generated for each SMI using the unbiased risk estimator (UBRE), 

i.e. an unbiased estimate of the mean square error of a non-linear biased estimator. For each 

SMI, the time lag associated with the best model (i.e. with the lowest UBRE) was selected for 

the multivariate analysis. 

 Multivariate time analysis 

To account for the non-linearity of the relationship between the response and predictor 

variables, we analyzed the time series of weekly cases reported in all villages during the 

epidemic year using a generalized additive mixed model (GAMM). To account for the non-

independence of data from the same village or HC, we fitted this model with nested random 

intercepts for villages and HCs. To account for the spatial auto-correlation of the data, we used 

a Gaussian field with a negative exponential variogram. A first-order auto-regressive temporal 
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auto-correlation structure was introduced to account for the temporal auto-correlation of 

malaria cases. 

We analyzed the time series of cases using selected lagged SMIs (with a smoothing spline 

function) and of the Euclidean distance between villages and their corresponding HCs as 

predictors. For each predictor, the standardized incidence ratio (SIR) was estimated by 

modeling the log-transformed population as the offset.  

To account for the non-linearity of the relationship between the response and predictor 

variables, we calculated SIRs according to the deciles of the distribution of values for each 

predictor. Indeed, SIRs cannot be calculated with GAMs as they are with GLMs, because when 

the relationship between the response and the predictor is non-linear, SIRs are not constant 

across the range of values of the predictor [28,32].  

Lastly, we tested the multivariate model fitted with data from the epidemic year to predict the 

number of cases in both 2016 and 2017. 

Software and packages  

Statistical analyses were performed using R software (version 3.6.1) [33]. The PCA was 

performed using the PCA function in the FactoMineR package [34]. The GAMs and the GAMM 

were generated using the “gam” and “gamm” functions in the mgcv package, respectively [30, 

31, 32]. Data overdispersion was tested using the “dispersiontest” function in the AER package 

[35]. The spatial analysis was performed using SatScan™ software (version 9.6). Maps were 

produced using QGIS software (version 3.10) [36]. 

 

Results 

Descriptive analysis 

A total of 3,179 malaria cases were reported in HCs during the epidemic year, corresponding 

to an incidence of 429.13 cases per 1,000 person-years. On average, 61.13 cases per week 

were reported, with a peak of 132 cases in week 31 of 2016 (week 1 of August; Figure 2). The 

curve of cases over the epidemic year shows two peaks (Figure 2): a very pronounced peak 

between weeks 27 and 45 of 2016 (August to November), which accounted for 60% of cases, 

and a less pronounced peak between weeks 7 and 11 of 2017 (mid-February to the end of 

March), which accounted for 12% of cases. 

Synthetic Meteorological Indicators  
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The PCA conducted using Kaiser’s criterion led us to construct and retain two SMIs that 

explained 85.4% of the total inertia (Figure 3A).  

The first SMI (i.e. the first principal component) explained 52.9% of the total inertia. The 

variables that most contributed to this SMI, henceforth called SMI1, were mainly correlated 

with precipitation variables: weekly mean of daily thermal amplitude (18.24%, correlation 

coefficient r = -0.98), weekly mean of daily average relative humidity (17.74%, r = 0.96), 

weekly rainfall (14. 5%, r = 0.8), weekly mean of daily average cloud cover (13.32%, r = 

0.83), number of rainy days per week (12.47%, r = 0.81), and weekly mean of daily maximum 

temperature (12.03%; r = -0.79) (Figure 3B). The second SMI (i.e. the second principal 

component) explained 32.5% of the total inertia. The variables that most contributed to this 

SMI, henceforth called SMI2, were mainly correlated with temperature variables: weekly mean 

of daily minimum temperature (25.83%; r = 0.91), weekly mean of daily average temperature 

(24.72%; r = 0.89), weekly mean of daily maximum temperature (10.51%; r = 0.58), and 

weekly mean of daily average atmospheric pressure (19.6%, r = -0.79) (Figure 3C).  

The values of SMI1 were positive between late June and early October, which corresponds to 

the rainy season (Figure 4). The values of SMI2 were positive between mid-February and mid-

June, which corresponds to the hot dry season (March - June), and between October and 

November, which corresponds to the transition period between the rainy season and the dry 

season. Both SMIs were negative throughout the cold dry season (December - mid-February) 

(Figure 4). 
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Figure 3: Principal Component Analysis of meteorological variables. Percentage of inertia 

explained by each principal component (Panel A). Contribution of meteorological variables to 

the first principal component (SMI1; panel B) and the second principal component (SMI2; 

panel C). SMI: Synthetic meteorological indicator. r: Correlation coefficient between the 

meteorological variable and the SMI. Abbreviations of variable names are detailed in Table 1. 

The dashed line represents the contribution that would have been expected if all variables had 

contributed equally to the SMI. 
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Figure 4: Time series of synthetic meteorological indicator 1 (mainly correlated with 

precipitation variables) and synthetic meteorological indicator 2 (mainly correlated with 

temperature variables) from 2016 to 2017. 

 

Spatial analysis: 

The spatial analysis allowed us to identify and map malaria hotspots for the epidemic year. A 

total of four hotspots were detected that accounted for 1,685 cases in 1,973 inhabitants, i.e. 

an average incidence rate of 854.02 cases per 1,000 person-years (Figure 5). These hotspots 

were mainly located in the southern and central parts of the study area. The hotspot with the 

highest risk (hotspot 1; relative risk (RR) = 4.06, p<0.0001) consisted of a single village 

(NIOMBOUNA) and accounted for 400 cases for 228 inhabitants, i.e. an incidence rate of 

1,750.75 cases per 1,000 person-years.  The second hotspot (hotspot 2; RR = 1.84, p<0.0001) 

was made up of three villages (SINKIRO, YELBELELA, and DANGBARA) and accounted for 604 

cases for 753 inhabitants, i.e. an incidence rate of 802.12 cases per 1,000 person-years. The 

third hotspot (hotspot 3; RR = 1.92, p<0.0001) was made up of a single village (NIOMBRIPO) 

and accounted for 326 cases for 376 inhabitants, i.e. an incidence rate of 867.02 cases per 

1,000 person-years. The fourth hotspot (hotspot 4; RR = 1.24, p=0.04) consisted of two 

villages (BOHERO and KPALBALO) and accounted for 355 cases for 616 inhabitants, i.e. an 

incidence rate of 576.2 cases per 1,000 person-years. 
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Figure 5: Map of malaria cases detected in 27 villages of Diébougou health district, Burkina 

Faso, for the epidemic year 2016-2017; hotspots identified with the Kulldorf scanning method. 

Background: OpenStreetMaps 

 

Temporal analysis 

The time lag that generated the model with the lowest UBRE was 9 weeks for SMI1 and 16 

weeks for SMI2.  

The multivariate analysis found greater variability in incidence between HCs (standard 

deviation (SD) = 5.74) than between villages linked to the same HC (SD = 0.69). The 

coefficient of the temporal autocorrelation structure indicated the presence of temporal 

autocorrelation between cases (Phi = 0.32, 95% CI [0.20,0.38]).  
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In the multivariate model, lagged SMI1 and lagged SMI2 were significantly associated with the 

number of malaria cases at the village level (p<0.001 and p<0.001, respectively). The 

relationship between the number of cases and SMI1 (consisting mainly of precipitation 

variables) was positive and almost linear (Figure 6A) across the range of values. A positive 

non-linear relationship was observed for SMI2 (consisting mainly of temperature variables), 

with the number of cases increasing for SMI2 values above zero (Figure 6C). Below zero, 

changes in SMI2 values did not influence the number of cases (Figure 6C). The Euclidean 

distance between villages and their corresponding HCs was not correlated to the recorded 

malaria incidence (p=0.78). 

The evolution of SIRs as a function of SMI values is presented in Figure 6. For SMI1, risk was 

constant over deciles 1 to 3 (SIR = 1.07, 95% CI [1.03, 1.10], [1.05, 1.08], and [1.06, 1.08], 

respectively), increased from decile 4 to 7, and then reached a plateau from decile 8 to 10 

(SIR = 1.14 [1.14, 1.14]) (Figure 6B). For SMI2, risk was constant over deciles 1 to 2 (SIR = 

0.99, 95% CI [0.93,1.05], and [0.98,1.00], respectively), increased from decile 4 to 8 (SIR = 

1.37 [1.36,1.37]), and then decreased from decile 9 to 10 (Figure 6D). 
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Figure 6: Relationship (red curve) between malaria cases and SMI1 (A), SMI2 (C), and 

Euclidean distance to health center (E) with 95% confidence intervals (shaded area). Evolution 

of the standard incidence ratio (SIR) as a function of SMI1 (mainly correlated with precipitation 

variables) (B), SMI2 (mainly correlated with temperature variables) (D), and Euclidean 

distance to health center (F). 

 

Prediction 

The multivariate model generated for the epidemiological year was used to predict the number 

of cases in the 27 villages for all of 2016 and for the first 36 weeks of 2017. The resulting 

prediction was superimposed on the time series of reported cases for graphical analysis (Figure 
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7). The prediction followed the overall pattern of the time series of reported cases but with a 

tendency for underestimation, especially during the second peak in early 2017. In addition, 

the model predicted the onset of the malaria outbreak for the 2017-2018 epidemic year with 

a delay of three weeks. 

   

 

Figure 7: Cumulative number of reported cases (black line) and predicted cases (orange line) 

in 27 villages of South-Western Burkina Faso using a meteorological model. 

 

 

Discussion 

In this study, we analyzed the spatio-temporal distribution of malaria cases in 27 villages of 

South-Western Burkina Faso.  

The spatial analysis conducted using the Kulldorf scanning method helped to identify four 

malaria hotspots. The first three hotspots were located in the southern part of the study area 

and the last one was located in the central part, reflecting spatial heterogeneity in the 

distribution of cases. A comparison of the spatial distribution of these hotspots with that of 

mosquito vector density [37] showed no correlation between the two, leading us to conclude 

that the spatial heterogeneity of vector density does not explain the distribution of hotspots in 

our study area.  
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A number of studies have found an association between spatial inequalities in access to care 

and spatial heterogeneity of malaria incidence [42,43]. Yet, contrary to what has been reported 

elsewhere [44], we failed to found a correlation between the number of malaria cases and the 

Euclidean distance between villages and their corresponding HC. We used Euclidean distance 

because it is considered to be the simplest proxy for travel time, which is considered a good 

measure of access to care. However, Euclidean distance may not have been the best option, 

as roads in our study area are in highly variable condition and some become impassable during 

the rainy season, with some villages left completely isolated. Future studies in the region 

should use better proxys for travel time in trying to explain the detected hotspots [45]. 

Since entomological factors and spatial inequalities in access to care failed to explain the 

distribution of hotspots in our study area, other potential explanatory factors should be 

investigated in the future, including socio-economic factors (level of education, income, 

professional activity, individual and societal behavior, etc.) [38,39,40,41] and factors linked to 

LLIN usage [46,47,48,49]. Such investigations could help to explain in particular why the two 

hotspots composed of a single village (Niombripo and Niombouna) had a much higher 

incidence than neighboring villages. Nevertheless, hotspot analyses like ours make it possible 

to identify, in a simple and cost-efficient manner, villages that can constitute priority areas for 

intervention. Indeed, studies conducted elsewhere have shown that targeting hotspots helps 

to reduce malaria transmission [50,51]. This strategy is appropriate in resource-limited 

countries like Burkina Faso as it allows for efficient allocation of prevention resources [25,26].  

Our analysis of the temporal dynamics of malaria cases found a strong correlation between 

malaria incidence and two SMIs with specific time lags. These SMIs were constructed through 

a PCA of meteorological data derived from readily and rapidly available satellite imagery. The 

first SMI (SMI1: positively correlated with cumulative rainfall, humidity, cloud cover, and 

number of rainy days, and negatively correlated with thermal amplitude) corresponded to the 

rainy season, while the second (SMI2: positively correlated with temperature and negatively 

correlated with atmospheric pressure) corresponded to the warm periods preceding and 

following the rainy season. We found that SMI1 and SMI2 predicted the number of cases with 

a time lag of 9 and 16 weeks, respectively, which is consistent with studies carried out in 

Burkina Faso, Mali, and Ethiopia [24,52,53].  

In our study, the relationship between rainfall (SMI1) and the number of cases was quasi-

linear, as was the case in a study performed in the Ouagadougou area of Burkina Faso [24]. 

By contrast, two studies conducted in the Sahel region – one in Mali (Niger River Valley, 

Timbuktu region) and the other in Senegal (Bambey and Fatick Health Districts) – found a 
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monotonic non-linear relationship between rainfall and malaria incidence [25,26]. The drop in 

the number of cases above a certain level of cumulative rainfall observed in Mali and Senegal 

may be explained by the flushing out of larval breeding sites, which can lead to high mortality 

in Anopheles larval populations [54,55] and can reduce the human biting rate [55]. Vector 

populations are almost monospecific in these two countries: They are largely dominated by 

An. Arabiensis in Senegal [56,57] and by An. coluzzii in Mali [58]. These two species are also 

present in our study area and in the Ouagadougou area of Burkina Faso [59]. However, in 

both these areas, they live in sympatry with both An. gambiae s.s. and An. funestus 

[37,60,61,62]. The quasi-linear relationship observed in our study between rainfall and the 

number of malaria cases may be explained by the fact that these species are not very 

susceptible to flushing out, due to rapid larval development in the case of An. gambiae s.s. 

[63,64] and to a preference for deeper environments in the case of An. funestus [65]. These 

species may therefore relay An. coluzzii when abundances of this later fall due to excessive 

rainfall. 

In our study, the relationship between the number of malaria cases and temperature (SMI2) 

was non-linear. This is consistent with findings from two other studies conducted in the Sahel 

region (in Mali and in the Ouagadougou area of Burkina Faso) [24,25]. However, unlike these 

studies, we found no negative relationship between the number of malaria cases and 

temperature at higher temperature values. This discrepancy may be explained by the fact that 

temperatures can reach higher values in Mali and in the Ouagadougou area (>34°C) than in 

the Diébougou region, which is sufficient to inhibit the development of Anopheles larvae [66] 

and to reduce the survival of adult Anopheles [67,68]. In addition, we found that below a 

certain temperature, an increase in temperature had no effect on the number of cases (a 

finding also observed by Cissoko et al. [16]). Our hypothesis is that the increase in 

temperature, which should favor the development of Anopheles, is compensated by another 

phenomenon at low SMI2 values. While this phenomenon has yet to be clearly identified, high 

levels of LLIN usage during cooler periods may be a contributing factor [47].  

Our spatio-temporal model fitted with two lagged SMIs and case data for a single 

epidemiological year helped to predict the start of the next outbreak nine weeks in advance, 

but with an error of three weeks (i.e. the actual outbreak began three weeks before the 

prediction). The prediction was good enough to make it possible to issue early warnings and 

to organize local prevention campaigns ahead of time. Our model could probably be improved 

with routine inclusion of new data and regular updated predictions. For this purpose, data from 

HC consultations should be made available quickly, ideally at the same pace as ERA5 
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meteorological data (i.e. within five days). This can easily be achieved by using connected 

tablets for data entry. 

 

Conclusion 

In this study, a spatial analysis was conducted that highlighted the spatial heterogeneity of 

malaria cases and helped to identify four malaria hotspots in South-Western Burkina Faso. In 

the temporal analysis, an effective predictive model was built with data obtained through 

passive case detection and with simple and accessible meteorological data. Future studies 

should further investigate the detected hotspots to identify the local determinants of 

transmission. Our spatio-temporal analysis provides a powerful prospective method to identify 

high-risk areas that may constitute priority areas during malaria prevention campaigns. 

 

Acronyms and Abbreviations: 

WHO: World Health Organization 

CI: Confidence Interval 

IPT: Intermittent Preventive Treatment 

RDT: Rapid Diagnostic Test 

SMC: Seasonal Malaria Chemoprevention 

LLIN: Long-Lasting Insecticidal Net 

IRS: Indoor Residual Spraying 

HC: Health Center 

SMI: Synthetic Meteorological Indicator 

PCA: Principal Component Analysis 

GAM: Generalized Additive Model 

GLM: Generalized Linear Model 

UBRE: Unbiased Risk Estimator  

GAMM: Generalized Additive Mixed Model 

SIR: Standardized Incidence Ratio 

RR: Relative Risk 

SD: Standard Deviation 
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