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ABSTRACT 40 

Background: Wheeze is common in early life and often transient. It is difficult to identify which 41 

children will experience persistent symptoms and subsequently develop asthma. Machine 42 

learning approaches have the potential for better predictive performance and generalisability 43 

over existing childhood asthma prediction models. 44 

Objective: To apply machine learning approaches for predicting school-age asthma (age 10) in 45 

early life (Childhood Asthma Prediction in Early life, CAPE model) and at preschool age (Childhood 46 

Asthma Prediction at Preschool age, CAPP model). 47 

Methods:  Data on clinical symptoms and environmental exposures were collected from children 48 

enrolled in the Isle of Wight Birth Cohort (N=1368, ~15% asthma prevalence). Recursive Feature 49 

Elimination (RFE) identified the optimal subset of features predictive of school-age asthma for 50 

each model. Seven state-of-the-art machine learning classification algorithms were used to 51 

develop the models and the results were compared. To optimize the models, training was 52 

performed by applying 5-fold cross-validation, imputation and resampling. Predictive 53 

performances were evaluated on the test set and externally validated in the Manchester Asthma 54 

and Allergy Study (MAAS) cohort. 55 

Results: RFE identified eight and 12 predictors for the CAPE and CAPP models, respectively. The 56 

best predictive performance was demonstrated by a Support Vector Machine (SVM) algorithm 57 

for both the CAPE model (area under the receiver operating curve, AUC=0.71) and CAPP model 58 
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(AUC=0.82). Both models demonstrated good generalisability in MAAS (CAPE 8YR=0.71, 59 

11YR=0.71, CAPP 8YR=0.83, 11YR=0.79).  60 

Conclusion: Using machine learning approaches improved upon the predictive performance of 61 

existing regression-based models, with good generalisability and ability to rule in asthma.   62 
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Key Words: 63 

Childhood, Asthma, Prediction, Machine Learning 64 

Abbreviations:  65 

AUC: Area under the receiver operating curve 66 

BHR: Bronchial hyper-responsiveness 67 

RFE: Recursive feature elimination 68 

LR-: Negative likelihood ratio 69 

LR+: Positive likelihood ratio 70 

NPV: Negative predictive value 71 

PPV: Positive predictive value 72 

SPT: Skin prick test73 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.31.21254678doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.31.21254678
http://creativecommons.org/licenses/by/4.0/


 Kothalawala et al. 6 
 

 

INTRODUCTION 74 

Childhood asthma is highly heterogeneous, with numerous factors contributing towards its 75 

development, persistence and severity1-3. Despite approximately 80% of asthmatic children 76 

developing symptoms (such as wheeze) before the age of six, these clinical symptoms are neither 77 

universally present in early life among all future asthmatics nor specific to asthma4. With the 78 

added difficulty of making an objective asthma diagnosis before the age of five, both under-79 

treatment and over-treatment of wheezing disorders are common in early life5,6.  80 

The ability to predict the development of school-age asthma can help to identify high-risk pre-81 

school children and distinguish them from children whose symptoms are likely to be transient. 82 

Furthermore, early prediction of asthma susceptibility will be critical for the successful 83 

implementation of potential primary prevention strategies to reduce the risk of developing 84 

asthma.  85 

A recent systematic review identified twenty-one regression-based models for predicting 86 

childhood asthma7. However, none of these models have been implemented into standard 87 

clinical practice; this is possibly due to their relatively poor predictive power, poor generalisability 88 

upon independent validation and need for specialised clinical testing. The review further 89 

proposed that regression-based methods for predicting childhood asthma may have been 90 

exhausted, with the identified models offering similar predictive power to each other and being 91 

unable to be significantly improved upon7. 92 
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Machine learning approaches have increasingly been applied to address a wide range of 93 

healthcare problems due to their ability to integrate large quantities of heterogeneous data, 94 

handle complex interactions between variables and identify patterns within data compared to 95 

traditional statistical methods8. Particularly for disease prediction, where interactions between 96 

biological variables are complex, machine learning approaches have the potential to identify 97 

novel predictors which were previously overlooked by regression-based approaches8-10. 98 

Furthermore, the lack of application of methods to reduce model overfitting may address the 99 

poor generalisability of existing prediction models in independent populations. Machine learning 100 

approaches have shown promise in predicting a variety of clinical asthma outcomes, phenotypes 101 

and decisions11-15. However, there have been few reports of machine learning methods being 102 

applied for either the diagnostic or prognostic prediction of childhood asthma development16-20.  103 

This study aimed to explore whether machine learning approaches can offer an improvement 104 

over traditional regression-based methods for predicting school-age asthma. To predict school-105 

age asthma at 10 years, two models, the Childhood Asthma Prediction in Early-life (CAPE) and 106 

Childhood Asthma Prediction at Preschool-age (CAPP) models were developed within a general 107 

population based cohort using information available from the first two years and first four years 108 

of life, respectively.   109 
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METHODS 110 

Developmental Study Population 111 

Data was obtained from 1456 individuals enrolled in the Isle of Wight Birth Cohort (IOWBC). Study 112 

recruitment and participant details have been previously described21 (see Supplementary 113 

Methods).   114 

Prediction outcome 115 

School-age asthma, evaluated at age 10, was defined as “a doctor diagnosis of asthma ever and 116 

at least one episode of wheezing or use of asthma medication in the last 12 months”. Only 117 

individuals with a reported asthma status at the 10-year follow-up were included in the analyses. 118 

Candidate predictors 119 

Reported risk factors associated with childhood asthma in the literature were used to identify 54 120 

candidate predictors for which data was available in the IOWBC (Table E1) and underwent pre-121 

processing (see Supplementary Methods). Candidate predictors included data on subject 122 

demographics, lifestyle, clinical symptoms of allergy and asthma and environmental exposures 123 

collected across three time points: at birth (prenatal and perinatal data), early life (combined 124 

exposure at either the 1-year or the 2-year follow-ups) and at preschool age (4-year follow-up).  125 
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Model development  126 

All stages of model development were performed independently for the CAPE and CAPP models.  127 

Feature selection 128 

For each model, feature selection was performed on the complete dataset for all available 129 

candidate predictors (without any missing values) using Recursive Feature Elimination (RFE) with 130 

a random forest algorithm, using 5-fold cross-validation (see Supplementary Methods). As the 131 

random forest algorithm does not indicate the direction of risk associated with each predictor, 132 

this was estimated using univariate logistic regression analyses for each predictor.  133 

Model construction and optimisation 134 

To identify the best classification algorithm, seven state-of-the-art machine learning classifiers 135 

were implemented: two support vector machines (SVM) (linear and radial bias kernel functions), 136 

decision tree, random forest, naive Bayes, multilayer perceptron (MLP), and K-Nearest 137 

Neighbours (KNN) (see Supplementary Methods). 138 

Each of the seven machine learning algorithms were initially trained and evaluated on the subset 139 

of individuals who had complete data for the predictors selected through RFE. The dataset was 140 

split (ratio of 2:1, preserving class proportions) into a training and holdout test set for model 141 

development and validation, respectively.  Grid search was used to tune the hyperparameters 142 

for each model within a five-fold cross-validation, optimizing for its balanced accuracy (see 143 

Supplementary Methods, Table E2). 144 
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The training dataset was then optimised in an attempt to further improve the performance of 145 

the classification algorithms.  Multiple imputation using multivariate imputation by chain 146 

equations (MICE)22, oversampling using an adaptive synthetic sampling approach (ADASYN)23, 147 

and random under-sampling were implemented in a stepwise approach to address the degree of 148 

missing data and class imbalance in the training set (see Supplementary Methods). The seven 149 

algorithms were redeveloped, and the hyperparameters were tuned, on each optimised training 150 

set in order to identify the best asthma prediction models. As the test dataset was not modified, 151 

it acted as a single, unseen complete dataset to evaluate the predictive performance of each 152 

developed model.   153 

Model evaluation  154 

The predictive performance of each model was evaluated on the test set using measures of 155 

discrimination (area under the receiver operating curve (AUC)), sensitivity, specificity, positive 156 

and negative predictive values (PPV and NPV), positive and negative likelihood ratios (LR+ and 157 

LR-) and F1-score. The balanced accuracy of each model (which accounts for the prevalence of 158 

each class) was also reported. Performance measures were evaluated at the optimal threshold 159 

that maximized the Youden’s Index. The Brier score, which measures the mean squared 160 

difference between the predicted probability of the outcome and the observed outcome, was 161 

also calculated. 162 

The best CAPE and CAPP models were selected based on their discriminative performance in the 163 

test set. To calculate 95% confidence intervals for the performance measures in the test and 164 

independent validation datasets, 2000 bootstrap samples were used.   165 
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External Validation 166 

The best CAPE and CAPP models were validated in the Manchester Asthma and Allergy Study 167 

(MAAS) cohort24 (see Supplementary Methods). Data extracted from MAAS was closely matched 168 

to maximise the similarity of predictor and outcome definitions used in the development cohort 169 

(Table E3). The prediction outcome of school-age asthma was evaluated at both eight and eleven 170 

years.   171 

Model generalisability was assessed in MAAS among three risk groups: i) all individuals 172 

(unselected population); ii) individuals with at least one parent with allergic disease (asthma, 173 

eczema or allergic rhinitis); and iii) individuals with two parents with allergic disease.  174 

Sensitivity Analyses  175 

The robustness of the CAPE and CAPP models was evaluated using an alternative definition of 176 

school-age asthma that incorporated an objective outcome measure. Using this alternative 177 

asthma definition, a child was considered asthmatic if they presented with wheeze in the last 12 178 

months and had bronchial hyper-responsiveness (BHR), defined as a 20% reduction in forced 179 

expiratory volume in one second (FEV1) following a methacholine challenge test25.  180 

Additionally, the resolution of the asthma predictions to distinguish between individuals 181 

presenting with distinct wheeze phenotypes throughout childhood and adolescence was 182 

assessed. The identification and assignment of individuals in the IOWBC and MAAS into one of 183 

five distinct wheeze phenotypes through a latent class analysis has been previously described26 184 

(see Supplementary Methods).  185 
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Comparison with regression-based methods 186 

To evaluate the hypothesis that machine learning methods may offer greater predictions of 187 

childhood asthma than regression-based methods, the CAPE and CAPP machine learning models 188 

were directly compared with equivalent logistic regression models developed using the same 189 

predictors.  190 

Where data was available in the IOWBC, the performance of the machine learning models were 191 

also compared against their existing regression-based benchmark models, and differences in 192 

predictions were evaluated using reclassification tables and net reclassification indices (NRI) (see 193 

Supplementary Methods).  194 

Software 195 

Data cleaning, pre-processing and imputation were performed using R statistical programming 196 

language (version 3.5.1)27. All other data manipulation and modelling was performed using 197 

Python scripting language (version 3.6.8) and the machine learning libraries Scikit-learn28 and 198 

imbalanced-learn29. 199 
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RESULTS 200 

In the IOWBC, 1368 enrolled participants had a defined asthma outcome at age 10, of whom 201 201 

(14.69%) were classified as asthmatic.  Asthmatic children at age 10 were significantly more likely 202 

to be male, have a lower birthweight, be atopic and experience a range of asthma-like symptoms, 203 

both in early life and at preschool age (Table E4). Baseline characteristics between subjects with 204 

complete data used for feature selection were largely comparable with the full IOWBC dataset 205 

(Table E4).  206 

Childhood Asthma Prediction in Early-life (CAPE) Model 207 

Data on 39 of the 54 candidate predictors were collected by age two. Complete data on all 39 208 

predictors was available for 490 individuals. RFE identified a subset of eight predictors for 209 

inclusion in the CAPE model, with an average balanced accuracy of 64.49% (Table 1). Table E5 210 

details the direction of asthma risk for each selected predictor. Complete data for these eight 211 

predictors was available for 765 individuals; 510 (68 asthmatics) and 255 (34 asthmatics) subjects 212 

were allocated to the initial training and test sets, respectively. A SVM with a RBF kernel was the 213 

best performing classification algorithm for the CAPE model (Table 2A), with moderate predictive 214 

performance (AUC=0.71 and Brier score=0.21). 215 

External Validation of the CAPE Model 216 

To predict the development of asthma at the 8-year and 11-year time-points in MAAS, complete 217 

data on the eight CAPE predictors was available for 322 and 299 individuals, respectively. Table 218 

E6 compares the distribution of predictors in the IOWBC and MAAS. The CAPE model 219 

demonstrated moderate generalisability, with a reduction in PPV despite maintaining an 220 
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AUC=0.71 in the validation study at both 8 and 11 years (Table 2A, Figure 2).  In the high-risk 221 

subgroups, despite a slight increase in PPV, overall predictive performance decreased (Table 2A).  222 

Childhood Asthma Prediction at Preschool-age (CAPP) Model 223 

For the CAPP model, 373 individuals had complete data for all 54 candidate predictors available 224 

by age four. RFE identified an optimal subset of 12 predictors for inclusion in the model, with an 225 

average balanced accuracy of 74.93% (Table 1) and direction of asthma risk for each predictor 226 

detailed in Table E5. Complete data for these 12 predictors was available for 548 individuals, of 227 

whom 365 (51 asthmatics) and 183 (25 asthmatics) individuals were assigned to the initial 228 

training and test sets, respectively. The best performing classification algorithm for the CAPP 229 

model was a SVM with a linear kernel (Table 2B). The model demonstrated good predictive 230 

performance, with AUC=0.82 and Brier score=0.18. 231 

External Validation of the CAPP Model 232 

For validation of the CAPP model in MAAS at the 8-year and 11-year time-points, complete data 233 

for the 12 CAPP predictors was available for 282 and 267 individuals, respectively. The model 234 

demonstrated good generalisability in predicting asthma at both 8 and 11 years (AUC=0.83 and 235 

0.79, respectively) in the unselected MAAS subgroup (Table 2B). PPV remained comparable upon 236 

validation (PPV=0.45 and 0.41, respectively), with further improvements reported in both high-237 

risk subgroup validations at both time-points (Table 2B). 238 

Sensitivity analysis  239 

Asthma status, based on the alternative asthma definition, was available for 1312 of the 1368 240 

individuals analysed in the IOWBC (prevalence 8.61%). Despite an overall 92.3% agreement, 241 
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there was a statistically significant difference between the two asthma definitions (p<0.01). This 242 

stemmed from a 97.6% agreement for labelling non-asthmatics but only a 53.8% agreement for 243 

labelling asthmatics (Figure E1). 244 

A labelled asthma status using the alternative asthma definition incorporating BHR was available 245 

for 248 out of 255 individuals in the CAPE test dataset (20 asthmatic) and 179 out of 183 246 

individuals in the CAPP test dataset (18 asthmatic). The CAPE and CAPP models were less robust 247 

to predict the alternative asthma outcome (CAPE AUC=0.67 vs 0.71 and CAPP AUC=0.79 vs 0.82). 248 

Both models demonstrated an increased sensitivity to predict asthmatics, but the corresponding 249 

increase in false positive predictions resulted in PPV reducing by approximately 50% (Table E7). 250 

In the CAPE and CAPP test datasets, 213 and 167 individuals had a defined wheeze phenotype, 251 

respectively. For both models, individuals predicted as non-asthmatic at age 10 largely presented 252 

with the never/infrequent or late-onset wheeze phenotypes (Figure 3). Both models showed 253 

excellent power to predict the persistent wheeze phenotype, with 100% and 90% of individuals 254 

with persistent wheeze offered a positive prediction by the CAPE and CAPP models, respectively. 255 

Upon validation, the CAPE and CAPP models were able to positively predict 91% and 57% of 256 

persistent wheezers, respectively. 257 

Comparison with regression-based methods 258 

Both the CAPE and CAPP machine learning models outperformed their equivalent logistic 259 

regression models (Table 3, Figure 2). There was a substantial decline in predictive performance 260 

of the CAPE model when using a logistic regression model (AUC=0.59 vs 0.71), with predictions 261 

being no better than chance in MAAS at 8 and 11 years (AUC=0.47 and 0.49, respectively). Yet, 262 
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PPV remained comparable with the CAPE machine learning model (PPV=0.25 vs 0.26). Predictive 263 

power of the CAPP model also reduced when using a logistic regression model (AUC=0.76 vs 264 

0.82), with a 14% decline in PPV (PPV=0.33 vs 0.47). The CAPP equivalent logistic regression 265 

model demonstrated poor generalisability, with a further 11-13% decline in PPV in MAAS; the 266 

CAPP machine learning model demonstrated good generalisability upon validation, maintaining 267 

similar PPV to that observed in the developmental population. 268 

Of the existing validated regression-based models, the PAPS (Persistent Asthma Predictive 269 

Score)30 and PARS (Paediatric Asthma Risk Score)31 were considered the best performing models 270 

comparable with the CAPE and CAPP models, offering predictions in early life and at preschool 271 

age, respectively. The well-known Asthma Predictive Index was not replicable due to the absence 272 

of eosinophil data in the IOWBC. Similarly, PAPS was unable to be replicated as RAST tests were 273 

not performed in the IOWBC. However, data was available to replicate the PARS model (AUC 274 

IOWBC=0.77, MAAS 8YR=0.79, MAAS 11YR=0.76).  In individuals with predictions available from 275 

both the CAPP and PARS models in the IOWBC CAPP test set (n=174), 32% of asthmatic children 276 

at age 10 were correctly reclassified as asthmatic by the CAPP model whilst only 5% of non-277 

asthmatics were incorrectly reclassified as asthmatic compared to predictions made by the PARS 278 

model (Table 4).  Prediction classifications made by the CAPP model remained superior compared 279 

to PARS upon validation in MAAS (Table E8). 280 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.31.21254678doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.31.21254678
http://creativecommons.org/licenses/by/4.0/


  Kothalawala et al.   17 
 

DISCUSSION 281 

Summary of findings 282 

Two models predicting school-age asthma at age 10 within a general population were developed 283 

using machine learning classification methods.  The CAPE model uses a RBF SVM classifier and 284 

data from eight predictors to predict school-age asthma in early life. The CAPP model uses a linear 285 

SVM classifier and  information on twelve predictors available by age four. Both machine learning 286 

models offered superior predictive power and generalisability upon external validation 287 

compared to equivalent models developed using logistic regression methods as well as existing 288 

regression-based models. Whilst the primary prediction outcome was school-age asthma, both 289 

models demonstrated greater sensitivity in predicting individuals likely to experience persistent 290 

wheeze throughout childhood.  291 

Comparisons with Existing Models  292 

To date, twenty-one regression-based prediction models have been developed for childhood 293 

asthma (reviewed in Kothalawala et al.7), of which only six have been externally validated. Using 294 

machine learning approaches, both the CAPE and CAPP models were able to surpass the 295 

performance of their respective benchmark models based on AUC (CAPE=0.71 vs PAPS=0.66; and 296 

CAPP=0.82 vs PARS=0.80). The CAPP model further outperformed all six validated regression-297 

based models based on discrimination (Table E9). 298 

Similar to the CAPE and CAPP models, most published asthma prediction models are very good 299 

at ruling out asthma rather than ruling in asthma, resulting partly from low power due to low 300 

asthma prevalence7. Even if existing models offer good PPV, this often degrades upon validation7. 301 
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Arguably, the need for exploring novel methodologies for asthma prediction is to improve the 302 

ability to rule in asthma and improve model generalisability. Indeed, despite having similar 303 

asthma prevalence to existing studies, the machine learning-based  CAPP model was able to offer 304 

a 30% improvement in sensitivity compared to the loose API (sensitivity: CAPP=0.72, API=0.42) 305 

and further 10% improvement in PPV compared to its benchmark model, PARS. Importantly, the 306 

CAPP machine learning model was more generalisable and able to retain its positive predictive 307 

power upon validation compared to its equivalent logistic regression model. Furthermore, direct 308 

comparison between the classifications made by the CAPP and PARS models highlighted the 309 

improved power for the CAPP model to correctly predict future asthmatics. The moderate but 310 

limited predictive power of the CAPE model compared to the CAPP model was unsurprising given 311 

the known difficulty of predicting childhood asthma in the first few years of life32. 312 

Predictor selection and availability 313 

Both the CAPE and CAPP models include data collected across multiple time-points -at birth, in 314 

early life and at preschool-age (the latter for the CAPP model only) (Figure E2 and E3). Given the 315 

changeable nature of asthma development and risk throughout early childhood, the 316 

consideration of predictors across multiple time-points allowed the identification of a novel 317 

combination of predictors that together helped to improve current asthma predictions. Whilst 318 

data collected across multiple time-points may hinder the utility of the model, the required 319 

predictor data are typically reported during a child’s routine health visits or tracked in child health 320 

records, such as those provided for each newborn child in the UK. Only the predictors of atopy 321 

and polysensitisation, which require a skin prick test (SPT) to be performed, may hinder the 322 

applicability of the CAPP model. However, the exclusion of these predictors resulted in an 8% 323 
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reduction in model sensitivity (Table E10); hence, the predictive benefit offered by the inclusion 324 

of sensitisation was deemed to outweigh the potential loss in model applicability. 325 

Of the predictors selected for inclusion in the two models, some were well-established risk 326 

factors with a clear direction of asthma risk (Table E5). Others were novel predictors (maternal 327 

age at the time of the child’s birth, age of solid food introduction and total breastfeeding 328 

duration) that did not indicate a clear direction of asthma risk based on univariate logistic 329 

regression analysis.  The selection of these novel predictors, over other predictors that have more 330 

established biological relevance in the literature (such as parental asthma, eczema or allergic 331 

rhinitis), may be cautiously accepted by the clinical community. However, the aim of RFE is to 332 

identify the subset of features that collectively offer the best predictive accuracy rather than to 333 

devise a comprehensive list of risk factors of childhood asthma, which may be biologically sound 334 

but lacking in predictive power33. Therefore, the inclusion of these novel predictors may be 335 

indicative of the improved power for feature selection using machine learning methods to 336 

account for the relatedness between features, and uncover previously unidentified predictors, 337 

compared to traditional univariate or multivariate regression-based approaches. These 338 

predictors could also be surrogates for more biologically relevant features. It is also important to 339 

acknowledge the possibility that the selection of these novel predictors may stem from an 340 

inherent bias of the random forest algorithm to assign greater importance to features which are 341 

continuous or which have a large number of categories34. However, as the CAPE and CAPP models 342 

developed using these selected predictors demonstrated improved performance against existing 343 

prediction models, any bias stemming from the feature selection process did not appear to 344 

hinder the selection of features that were truly predictive of school-age asthma.  345 
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Prediction generalisability, robustness and resolution 346 

In the unselected MAAS cohort, the CAPE and CAPP models showed moderate-good 347 

generalisability to predict asthma across school ages (age 8 and 11), despite the marginal decline 348 

in the PPV of the CAPE model. Validation in high-risk MAAS subgroups showed the PPV of both 349 

models to increase with the number of allergic parents, suggesting that confidence in ruling in 350 

asthma improves in high-risk groups; but replication in a larger study population is required. 351 

In addition, the lack of a clear definition for asthma is an unavoidable limitation in 352 

epidemiological studies35. The asthma definition used in this study aimed to account for children 353 

with a clinical indication of asthma (physician diagnosed) who were actively symptomatic, but 354 

also those potentially asymptomatic at the time of assessment due to the use of symptom 355 

relieving medications. It is likely that the majority of children in the IOWBC with clinically relevant 356 

asthma were detected. Whilst the CAPE and CAPP models were robust in predicting non-357 

asthmatics using an alternative asthma definition of wheeze and BHR, they had reduced power 358 

to predict true asthmatics (~50% decline in PPV).  The latter may be explained by objective tests 359 

such as spirometry and BHR being influenced by treatment; potential asthmatics on controller 360 

medications, whom the models are trained to identify as asthmatic, may be considered as non-361 

asthmatic with the alternative definition, resulting in greater false positive predictions. 362 

Evidently, asthmatics, by either definition, identify a highly heterogeneous group; better 363 

definitions or explorations of asthma sub-phenotypes are warranted. As the aim of this study was 364 

to compare whether machine learning approaches could improve upon existing regression-based 365 

models that predict childhood asthma, the primary prediction outcome for this study was 366 
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restricted to school-age asthma rather than predicting asthma phenotypes. However, 367 

acknowledging the importance of exploring specific sub-phenotypes of asthma, the resolution of 368 

the machine learning models to inform on an individual’s future wheeze trajectory was also 369 

explored. Notably, both the CAPE and CAPP models showed excellent sensitivity to predict 370 

individuals with a persistent wheeze phenotype; these individuals would likely benefit from early 371 

primary or secondary asthma prevention/ management.  372 

 Strengths and limitations 373 

This study had a number of strengths. First, each model was developed to make timely 374 

predictions to identify future asthmatics within a general population, rather than among those 375 

whom physicians already consider to be at high-risk (mainly those experiencing wheeze or with 376 

a familial history of asthma/allergy). Second, by utilising machine learning methods, which have 377 

infrequently been applied for predicting childhood asthma, novel predictors of school-age 378 

asthma were identified and the developed models offered improved predictive performance 379 

over current regression-based methods, with an improvement in PPV when predicting asthma at 380 

preschool age. Third, both models were externally validated and demonstrated good 381 

generalisability to predict school-age asthma across multiple time-points, without degrading the 382 

predictive power to rule in asthma (particularly with the CAPP model). Finally, the two models 383 

displayed moderate resolution to inform on a child’s wheeze trajectory, with excellent sensitivity 384 

to predict persistent wheeze.  385 

However, this study was limited by both model development and validation being conducted in 386 

predominantly Caucasian populations; validation in ethnically diverse populations is warranted 387 
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to assess the widespread generalisability of the two models.  Machine learning also requires large 388 

datasets – the introduction of more data would undoubtedly improve the performance of the 389 

machine learning models further. Finally, whilst biological data was available in the IOWBC, only 390 

clinical and environmental predictors were considered. It is possible that the consideration of 391 

such predictors might significantly improve childhood asthma predictions further; however, the 392 

aim of this study was to explore whether machine learning methods could surpass the predictive 393 

ceiling that existing logistic regression methods appeared to be limited to. Hence, to provide a 394 

fair comparison with existing regression-based models, asthma biomarkers were not 395 

incorporated into this study.  396 

Conclusion and Future Work 397 

Using machine learning approaches, the CAPE and CAPP models were able to surpass the 398 

predictive performance of similar models developed using regression-based methods. Whilst 399 

both models were generalisable in an independent population, the CAPP model also 400 

demonstrated superior predictive power to rule in true asthmatics compared to its benchmark 401 

model, which was retained upon validation. Both models also demonstrated excellent sensitivity 402 

to predict a subgroup of persistent wheezers. Therefore, rather than developing an all-403 

encompassing asthma prediction tool, further research into predicting specific ‘asthmas’ using 404 

machine learning approaches may offer greater predictive insight. Finally, continued exploration 405 

of machine learning approaches and the identification and integration of novel biomarkers is 406 

warranted to further improve the power to predict future childhood asthma. 407 
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FIGURES 421 

Figure 1: Workflow for the development and validation of asthma prediction models using 422 

machine learning approaches. 423 

Model development was performed using data from the Isle of Wight Birth Cohort (IOWBC). The 424 

following process was performed independently for the construction of the CAPE and CAPP tools. 425 

(A) Feature selection was performed using only individuals with complete data for all available 426 

candidate predictors. (B-C) Seven machine learning classifiers (two support vector machines with 427 

different kernel functions (linear and radial bias function), naïve Bayes classifier, decision tree, 428 

multilayer perceptron, random forest and K-nearest neighbours) were developed. Models were 429 

first developed using only individuals with complete data for the subset of features identified 430 

from feature selection (B), and subsequently redeveloped using optimised training datasets (C). 431 

Optimisation of the training dataset consisted of the step-wise application of imputation and 432 

resampling (oversampling using ADASYN and random undersampling) to the dataset of all 433 

individuals in the IOWBC not allocated to the test dataset, including those with missing predictor 434 

data. (D) The best models for use in early life (CAPE tool) and at preschool age (CAPP tool) were 435 

selected based on their performance in the test set. (E) The selected models were externally 436 

validated in an independent population (Manchester Asthma and Allergy Study, MAAS).437 
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Figure 2: Discriminative performance of the CAPE and CAPP machine learning models, compared against their equivalent regression 438 

models and the PARS model. 439 

ROC curves comparing the generalisability of the five models in the IOWBC at age 10 (A) and upon validation in MAAS at age 8 years 440 

(B) and 11 years (C).441 
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Figure 3: CAPE and CAPP model predictions and corresponding wheeze trajectories. 442 

The proportion of individuals corresponding to their most probable wheeze phenotypes is 443 

presented for those offered a negative or positive prediction by either the CAPE (A) or CAPP 444 

model (B) in the IOWBC (predicted non-asthmatic or asthmatic at age 10, respectively). 445 
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TABLES 446 

Table 1 Optimal subset of predictors selected by RFE for inclusion in the CAPE and CAPP models 447 

Table 1. Predictors selected for inclusion in the model (n) Average balanced 
accuracy (%) 

CAPE (8) - Maternal age, birthweight, total breastfeeding duration, 
age of solid food introduction, BMI at 1 year, wheeze in early 
life, cough in early life and maternal socioeconomic status 

64.49  

CAPP (12) - Maternal age, birthweight, total breastfeeding duration, 
age of solid food introduction, BMI at 1 year, BMI at 4 years, 
wheeze, cough, nocturnal symptoms, atopy status, 
polysensitisation and maternal socioeconomic status 

74.93 

448 
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Table 2 Performance of the CAPE and CAPP models 449 

Table 2A. Performance of the CAPE Model  

 Dataset Sample size 
(no. asthmatic) 

Balanced 
Accuracy AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

Development -
IOWBC:  
10 years 

Training a 
136 
(68 asthmatic) 0.65 0.76 0.56 0.75 0.69 0.63 2.24 0.59 0.62 

Testing  
255 
(34 asthmatic) 

0.71 
(0.62-0.78) 

0.71 
(0.61-0.80) 

0.74 
(0.56-0.88) 

0.68 
(0.62-0.74) 

0.26 
(0.21-0.32) 

0.94 
(0.91-0.97) 

2.29 
(1.69-3.01) 

0.39 
(0.18-0.63) 

0.38 
(0.31-0.46) 

External 
Validation - 
MAAS:  
8 years 

Unselected 322  
(38 asthmatic) 

0.67 
(0.60-0.74) 

0.71 
(0.63-0.79) 

0.84 
(0.71-0.95) 

0.51 
(0.45-0.56) 

0.19 
(0.16-0.21) 

0.96 
(0.93-0.99) 

1.71 
(1.40-2.03) 

0.31 
(0.10-0.57) 

0.30 
(0.26-0.35) 

High-risk c 208  
(31 asthmatic) 

0.66 
(0.59-0.73) 

0.71 
(0.61-0.80) 

0.87 
(0.74-0.97) 

0.46 
(0.39-0.53) 

0.22 
(0.19-0.25) 

0.95 
(0.91-0.99) 

1.61 
(1.31-1.95) 

0.28 
(0.06-0.59) 

0.35 
(0.30-0.40) 

High-risk d 81  
(16 asthmatic) 

0.57 
(0.45-0.67) 

0.64 
(0.47-0.80) 

0.81 
(0.63-1.00) 

0.32 
(0.22-0.43) 

0.23 
(0.18-0.28) 

0.88 
(0.75-1.00) 

1.20 
(0.86-1.56) 

0.58 
(0.00-1.35) 

0.36 
(0.27-0.43) 

External  
Validation - 
MAAS:  
11 years 

Unselected 299  
(32 asthmatic) 

0.68 
(0.60-0.74) 

0.71 
(0.62-0.79) 

0.84 
(0.72-0.97) 

0.51 
(0.45-0.57) 

0.17 
(0.14-0.20) 

0.96 
(0.94-0.99) 

1.72 
(1.39-2.05) 

0.31 
(0.07-0.58) 

0.28 
(0.24-0.33) 

High-risk c 192  
(25 asthmatic) 

0.67 
(0.59-0.74) 

0.71 
(0.62-0.80) 

0.88 
(0.76-1.00) 

0.47 
(0.40-0.54) 

0.20 
(0.17-0.23) 

0.96 
(0.92-1.00) 

1.65 
(1.34-2.03) 

0.26 
(0.00-0.57) 

0.32 
(0.27-0.37) 

High-risk d 72  
(12 asthmatic) 

0.58 
(0.44-0.69) 

0.60 
(0.43-0.76) 

0.83 
(0.58-1.00) 

0.33 
(0.22-0.45) 

0.20 
(0.15-0.25) 

0.91 
(0.78-1.00) 

1.25 
(0.85-1.66) 

0.50 
(0.00-1.39) 

0.32 
(0.23-0.40) 
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Table 2B. Performance of the CAPP Model 

 Population Sample size 
(no. asthmatic) 

Balanced 
Accuracy AUC Sensitivity Specificity PPV NPV LR+ LR- F1 Score 

Development -
IOWBC:  
10 years 

Training b 
408 
(204 asthmatic) 0.78 0.85 0.80 0.77 0.78 0.79 3.47 0.26 0.79 

Testing  
183 
(25 asthmatic) 

0.80 
(0.70-0.89) 

0.82 
(0.71-0.91) 

0.72 
(0.52-0.88) 

0.88 
(0.83-0.92) 

0.47 
(0.38-0.62) 

0.95 
(0.92-0.98) 

5.99 
(3.79-10.11) 

0.32 
(0.13-0.54) 

0.56 
(0.45-0.70) 

External 
Validation - 
MAAS:  
8 years 

Unselected 282  
(33 asthmatic) 

0.73 
(0.64-0.81) 

0.83 
(0.75-0.90) 

0.55 
(0.36-0.70) 

0.91 
(0.88-0.95) 

0.45 
(0.33-0.59) 

0.94 
(0.92-0.96) 

6.17 
(3.64-10.69) 

0.50 
(0.33-0.69) 

0.49 
(0.36-0.62) 

High-risk c 178  
(26 asthmatic) 

0.70 
(0.60-0.80) 

0.80 
(0.70-0.88) 

0.50 
(0.31-0.69) 

0.90 
(0.85-0.95) 

0.46 
(0.32-0.63) 

0.91 
(0.89-0.94) 

5.07 
(2.77-9.95) 

0.55 
(0.34-0.77) 

0.48 
(0.32-0.63) 

High-risk d 70  
(13 asthmatic) 

0.73 
(0.59-0.87) 

0.80 
(0.62-0.94) 

0.54 
(0.23-0.77) 

0.93 
(0.86-0.98) 

0.64 
(0.40-0.90) 

0.90 
(0.84-0.95) 

7.67 
(2.92-39.46) 

0.50 
(0.24-0.81) 

0.58 
(0.32-0.78) 

External  
Validation - 
MAAS:  
11 years 

Unselected  267  
(29 asthmatic) 

0.73 
(0.63-0.82) 

0.79 
(0.68-0.88) 

0.55 
(0.38-0.72) 

0.90 
(0.87-0.94) 

0.41 
(0.29-0.55) 

0.94 
(0.92-0.96) 

5.71 
(3.44-9.85) 

0.50 
(0.30-0.71) 

0.47 
(0.33-0.62) 

High-risk c 169  
(22 asthmatic) 

0.72 
(0.61-0.82) 

0.76 
(0.61-0.88) 

0.55 
(0.36-0.73) 

0.89 
(0.84-0.94) 

0.43 
(0.29-0.59) 

0.93 
(0.90-0.96) 

5.01 
(2.75-9.65) 

0.51 
(0.30-0.74) 

0.48 
(0.32-0.63) 

High-risk d 64  
(10 asthmatic) 

0.75 
(0.59-0.90) 

0.73 
(0.47-0.94) 

0.60 
(0.30-0.90) 

0.91 
(0.83-0.98) 

0.55 
(0.31-0.86) 

0.92 
(0.87-0.98) 

6.48 
(2.40-32.40) 

0.44 
(0.11-0.80) 

0.57 
(0.30-0.78) 

a The CAPE model was developed using a SVM classification algorithm using a radial bias function kernel (C=45.1, gamma=0.0054). The 450 
model was trained on the training dataset consisting of individuals with complete data, with controls under-sampled to obtain a 1:1 451 
class ratio.  452 
b The CAPP model was developed using a SVM classification algorithm using a linear kernel (C=0.33), and was trained on the training 453 
dataset consisting of individuals with complete data, with cases oversampled by 300% and controls under-sampled to obtain a 1:1 454 
class ratio. 455 
Performance measures in the IOWBC test set and MAAS are evaluated at thresholds of 0.42 (CAPE model) and 0.73 (CAPP model).  456 
c High risk defined as the child having at least one parent with allergic disease (asthma, eczema or allergic rhinitis) 457 
d High risk defined as a child with both parents with allergic disease (asthma, eczema or allergic rhinitis)458 
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Table 3 Comparison of the prediction models developed using machine learning and traditional logistic regression algorithms  459 

 Algorithm 
(dataset) 

Balanced 
accuracy AUC Sensitivity Specificity  PPV NPV LR+ LR- F1 score 

CAPE 
Model 

SVM a   
(IOWBC test set) 

0.71 
(0.62-0.78) 

0.71 
(0.61-0.80) 

0.74 
(0.56-0.88) 

0.68 
(0.62-0.74) 

0.26 
(0.21-0.32) 

0.94 
(0.91-0.97) 

2.29 
(1.69-3.01) 

0.39 
(0.18-0.63) 

0.38 
(0.31-0.46) 

Logistic  regression b 
(IOWBC test set) 

0.62 
(0.54-0.71) 

0.59 
(0.48-0.70) 

0.44 
(0.27-0.59) 

0.80 
(0.75-0.85) 

0.25 
(0.17-0.35) 

0.90 
(0.88-0.93) 

2.22 
(1.33-3.43) 

0.70 
(0.49-0.91) 

0.32 
(0.21-0.43) 

Logistic  regression  
(MAAS 8YR) 

0.60 
(0.52-0.68) 

0.47 
(0.56-0.59) 

0.39 
(0.24-0.55) 

0.80 
(0.75-0.85) 

0.21 
(0.13-0.29) 

0.91 
(0.89-0.93) 

2.00 
(1.15-3.02) 

0.75 
(0.55-0.96) 

0.28 
(0.17-0.38) 

Logistic  regression  
(MAAS 8YR) 

0.58 
(0.50-0.67) 

0.49 
(0.36-0.61) 

0.38 
(0.22-0.53) 

0.79 
(0.74-0.84) 

0.18 
(0.10-0.25) 

0.91 
(0.89-0.94) 

1.79 
(0.96-2.84) 

0.79 
(0.57-1.01) 

0.24 
(0.14-0.34) 

CAPP 
Model 

SVM c 0.80 
(0.70-0.89) 

0.82 
(0.71-0.91) 

0.72 
(0.52-0.88) 

0.88 
(0.83-0.92) 

0.47 
(0.38-0.62) 

0.95 
(0.92-0.98) 

5.99 
(3.79-10.11) 

0.32 
(0.13-0.54) 

0.56 
(0.45-0.70) 

Logistic  regression d 
(IOWBC test set) 

0.77 
(0.68-0.85) 

0.76 
(0.63-0.88) 

0.80 
(0.64-0.96) 

0.74 
(0.67-0.80) 

0.33 
(0.26-0.41) 

0.96 
(0.93-0.99) 

3.08 
(2.24-4.34) 

0.27 
(0.05-0.50) 

0.47 
(0.38-0.56) 

Logistic  regression  
(MAAS 8YR) 

0.72  
(0.64-0.78) 

0.77 
(0.67-0.85) 

0.82 
(0.70-0.94) 

0.61 
(0.55-0.67) 

0.22 
(0.18-0.26) 

0.96 
(0.94-0.99) 

2.12 
(1.68-2.66) 

0.30 
(0.10-0.52) 

0.35 
(0.29-0.41) 

Logistic  regression  
(MAAS 8YR) 

0.71 
(0.62-0.78) 

0.76 
(0.64-0.86) 

0.79 
(0.66-0.93) 

0.62 
(0.56-0.68) 

0.20 
(0.17-0.25) 

0.96 
(0.93-0.99) 

2.10 
(1.62-2.67) 

0.33 
(0.11-0.59) 

0.32 
(0.26-0.39) 

The CAPE and CAPP machine learning and equivalent logistic regression models were evaluated at age 10 in the IOWBC, in individuals 460 
in the respective test sets for each model. Validation in MAAS was performed to evaluate the prediction of asthma at 8 years (MAAS 461 
8YR) and 11 years (MAAS 11YR).  462 
Performance measures were evaluated at the optimal model thresholds, which maximised the Youden’s Index: a=0.42, b=0.48, c=0.73, 463 
d=0.42.  464 
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Table 4 Reclassification table showing changes in prediction categorisation between the PARS and CAPP model 465 

  Predicted risk (CAPP model)   Reclassified by CAPP (%) 

Predicted risk  
(PARS model) 

No asthma  Asthma Total 
  

Increased risk Decreased risk 
Correctly 
reclassified 

NRI 

No asthma at age 10 (n=149) 

No asthma 130 9b 139       

Asthma 1a 9 10   9(6%) 1(<1%) 1(<1%) -0.05 

Total 131 18 149           

Asthma at age 10 (n=25) 

No asthma 7 8a 15       

Asthma 0b 10 10   8(32%) 0(0%) 8(32%) 0.32 

Total 7 18 25           

        Total 17 1 9   

Reclassification table comparing the change in individual asthma predictions with the CAPP model instead of the PARS model 466 
(reference model). For the PARS model, categorisations of predictions as asthmatic and non-asthmatic was based on the optimial 467 
threshold (cutoff=7) as defined in their original publication. Results are presented separately for individuals who were asthmatic and 468 
non-asthmatic at age 10. Values in bold identify the number of individuals who were reclassified into a more appropriate (a) or less 469 
appropriate (b) risk group by the CAPP model with respect to the risk classifications made by the PARS model. NRI=net reclassification 470 
index is given separately for true asthmatics and non-asthmatics.   471 
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STELAR/UNICORN Investigators  472 

Graham C Roberts, Human Development and Health, Faculty of Medicine, University of 473 

Southampton, David Hide Asthma and Allergy Research Centre, Isle of Wight and NIHR 474 

Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation 475 

Trust, Southampton, UK 476 

Steve W Turner, Child Health, University of Aberdeen, Aberdeen, UK 477 

Raquel Granell, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical 478 

School, University of Bristol, UK 479 

Sadia Haider, National Heart and Lung Institute, Imperial College London, UK 480 

Sara Fontanella, National Heart and Lung Institute, Imperial College London, UK  481 

Paul Cullinan, National Heart and Lung Institute, Imperial College London, UK 482 
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