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Abstract 20 

Approximately 2.4 million patients need treatment for thyroid disease, including Graves’ disease 21 

and Hashimoto’s disease, in Japan. However, only 450,000 of them are receiving treatment, and 22 

many patients with thyroid dysfunction remain largely overlooked. In this retrospective study, 23 

we aimed to screen patients with hyperthyroidism and hypothyroidism who would greatly benefit 24 

from prompt medical treatment, and examined routine laboratory finding data and machine 25 

learning algorithms to investigate whether such accurate and robust screening is possible to 26 

prevent overlooking and misdiagnosing thyroid dysfunction. We succeeded in developing a 27 

machine learning method to construct the classification model for detecting hyperthyroidism and 28 

hypothyroidism in patients using 11 routine laboratory tests. We collected electronic health 29 

record and medical checkup data from four hospitals in Japan. As a result of cross-validation and 30 

external evaluation, we achieved a high classification accuracy for the hyperthyroidism and 31 

hypothyroidism models.  32 

33 
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Introduction 34 

Thyroid dysfunction is a leading endocrine disorder with major health implications, including an 35 

increased risk of heart disease and hypercholesterolemia. One of the greatest challenges in 36 

thyroid dysfunction treatment is to prevent overlooking and misdiagnosing these diseases. 37 

Thyroid hormone excess and deficiency are frequently misunderstood and are too often 38 

overlooked and misdiagnosed (1). For hyperthyroidism, the diagnosis may be delayed or missed 39 

because some symptoms can be easily attributed to other conditions such as stress (2), and often 40 

mistaken for  cardiac disease or gastrointestinal malignancies. Hypothyroidism can present with 41 

nonspecific constitutional and neuropsychiatric complaints (3), and patients with hypothyroidism 42 

are often misdiagnosed as dementia, cardiac disease, liver disease, or hyperlipidemia, and hence 43 

not given the proper treatment (4). The American Association of Clinical Endocrinologists has 44 

estimated that in the United States, approximately 4.78% of the population has misdiagnosed 45 

thyroid dysfunction (5). Another study argues that it can be calculated that approximately 15 46 

million adults have unrecognized thyroid disease (6). In Japan, it is estimated that approximately 47 

2.4 million patients need treatment for thyroid disease (7). However, only approximately 450,000 48 

of them are receiving treatment. Thus, patients with thyroid dysfunction are frequently 49 

overlooked and misdiagnosed (6,7). 50 

 Hyperthyroidism is the condition that occurs due to excessive production of thyroid 51 

hormones. The first step to diagnose hyperthyroidism is to measure free thyroxine (FT4) and free 52 

triiodothyronine (FT3) thyroid hormones and thyroid-stimulating hormone (TSH) (6). In 53 

contrast, hypothyroidism is a condition in which serum thyroid hormones decrease. Typical 54 

diseases of hypothyroidism include Hashimoto's disease and are diagnosed by anti-thyroid 55 

antibody tests such as anti-thyroid peroxidase antibody (TPO)  and anti-thyroglobulin antibody 56 
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(TgAb) (5). Despite their clinical significance, thyroid function tests and anti-thyroid antibody 57 

tests were not included in the Japanese national health checkups.  58 

 As popular and effective approaches to predictive analytics, machine learning is highly 59 

regarded due to their success in diagnosis, prediction, and choice of treatment. Recently, an 60 

emerging technique in the field of medical informatics has employed machine learning to 61 

accurately derive insights from medical records to support clinical screening and predict 62 

misdiagnosed disease (8). For instance, there is a study that emphasized the superiority of 63 

machine learning technology for predicting cardiovascular risk from routine clinical data (9). In 64 

another study, the incidence of myocardial infarction or cerebral infarction was predicted using 65 

the results of health checkup (10). Numerous studies have also attempted to assess the efficacy of 66 

detecting misdiagnosed diseases, including thyroid dysfunction (11-17). Aoki et al. (16,17) 67 

found that there were strong, multiple correlations between the set of routine clinical parameters 68 

and FT4 in patients with both overt hyperthyroidism and overt hypothyroidism. These studies 69 

used pattern recognition methods such as neural networks and predicted the likelihood of thyroid 70 

dysfunction from a set of routine clinical tests. 71 

 Despite such great efforts, there are still several concerns on the machine learning 72 

application to diagnosis of disease. Those includes the issues of data cleansing, missing value 73 

completion, dysfunction labeling criterion , integration of multiple hospital datasets, validation 74 

and interpretation of machine learning model.  In this study, we developed an explainable 75 

artificial intelligence diagnosis support system using machine learning algorithms to identify 76 

thyroid dysfunction with routine clinical data to improve medical screening and prevent 77 

overlooking and misdiagnosing thyroid dysfunction. Our study addresses those concerns on the 78 

machine learning application and provides some possible solutions.  79 
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 We devised two criteria for dysfunction labeling of data: thyroid test criterion and 80 

prescription criterion. Thyroid test criterion, which includes the thyroid function tests TSH and 81 

FT4, can be used to clearly model the overt and subclinical thyroid dysfunction. However, both 82 

TSH and FT4 tests are required so that the number of available data tends to be smaller. More 83 

data are available through prescription criterion based on the presence or absence of doctor’s 84 

prescriptions, though it can lead to a problem of confounding overt and subclinical thyroid 85 

dysfunction with euthyroidism. Second, we integrated data from four hospitals including 86 

electronic medical record of Wakayama Medical University hospital, Gunma University hospital, 87 

and Kuma hospital, and annual medical checkup data of Hidaka hospital. Among the four 88 

hospitals, a machine learning model was trained and evaluated via cross-validation by combining 89 

patient data of Wakayama Medical University hospital and Gunma University hospital with 90 

medical checkup data of healthy individuals in Hidaka hospital. Furthermore, electronic medical 91 

record data of Kuma hospital was used as the external evaluation for the trained models. Third, 92 

we examined four typical machine learning algorithms for the structured data: gradient boosting 93 

decision tree, support vector machines and neural networks used in related studies, as well as 94 

logistic regression, which is a common tool in medical studies. Fourth, in terms of the input 95 

feature used in machine learning models, features including AST (aspartate aminotransferase), 96 

ALT (alanine aminotransferase), γ-GTP, total cholesterol, hemoglobin, red blood cell count 97 

(RBC), creatinine, and sex were selected from the health checkup test list specific in Japan. 98 

alkaline phosphatase (ALP), uric acid (UA), and UA to serum creatinine (S-Cr) ratio were 99 

further added, and hence totally 11 features were used. To further verify the performance of 100 

models depending on the set of input features, we trained and evaluated models in the case 101 
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limited to five routine tests including AST, ALT, γ-GTP, total cholesterol, and sex. Finally, all 102 

24 laboratory findings available in this study were also applied and validated. 103 

 104 

Methods  105 

Data source 106 

In the present study, we acquired laboratory finding datasets from different clinical university 107 

medical institutions in Japan, including Wakayama Medical University Hospital, Gunma 108 

University Hospital, Hidaka Hospital, and Kuma Hospital. The anonymized electronic medical 109 

records include age, sex, diagnosis codes for insurance billing, prescribed drugs, and biochemical 110 

test results. The institutional ethical review boards of the three institutions at which the study was 111 

conducted gave their approval. 112 

A sample of 176,727 subjects in total were included in our study, aged between 13 and 88 113 

and from different regions in Japan between 2004 and 2019, as illustrated in Table 1.  Among the 114 

four institutions, Wakayama Medical University hospital and Gunma University hospital are 115 

hospitals affiliated with a medical college, Hidaka hospital is a regional medical care support 116 

hospital, and Kuma hospital is a hospital specialized on thyroid diseases.  The data of the 117 

176,727 subjects consisted of doctor evaluations, prescriptions, clinical examinations, and 118 

laboratory findings. The doctor evaluations addressed medical history, medication use, and 119 

differential diagnosis, among other topics. If a subject was prescribed medication, the name and 120 

dose of the prescription were recorded. The examinations involved anthropometric 121 

measurements and laboratory tests, among others. The institutional ethical review boards of the 122 

three institutions at which the study was conducted gave their approval (Approval Number of 123 

Wakayama Medical University Hospital: 2301, Hidaka Hospital: 257, Gunma University 124 

Hospital : HS2018-245) 125 
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 127 

 128 

Table 1. Summary of the data from each institution 129 

Institution Wakayama Medical 
University Gunma University Hidaka Hospital Kuma Hospital 

Number of 
prescriptions 8,249,286 34,561,268 23,450 61,590 

Number of 
patients 14,249 27,133 10,482 124,863 

Average age 60.9 51.7 47.7 50.3 

Male/female 
ratio 1.03 (5,888/5,723) 0.53 (8,143/15,296) 1.82 (15,125/8,325) 0.21 

Data period 2010-2018 2004-2019 2004-2007 2007-2020 

 130 
The K-nearest neighbor (KNN) algorithm was used to predict and complement the 131 

missing values, with k set to 3 in the data filling process. A previous study (11) has reported 132 

KNN to substantially increase the number of applicable subjects. Compared with missing value 133 

deletion, it is easily applied, performs well for nonparametric datasets and provides a larger 134 

sample size. Furthermore, since the age and sex distributions were different among the 135 

institutions, as shown in Table 1, we also conducted random under sampling to fix the gaps in 136 

these differences. From this dataset, the model was constructed using the thyroid patient data 137 

from Wakayama Medical University and Gunma University and the data of control groups from 138 

Hidaka hospital, and was evaluated using cross-validation. To validate on external data, the 139 

model was also evaluated on the dataset of Kuma hospital.  140 

 141 
Construction of machine learning model 142 
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As shown in Table 2, four verification items were devised in this study to improve the 143 

performance of our machine learning model. The criteria of data labeling and the combination of 144 

multiple institutions were evaluated at first. Then four different machine learning algorithms and 145 

three sets of input features were evaluated to achieve the best performance of our thyroid 146 

dysfunction classification models. 147 

Table 2. List of verification items 148 

No. 
 

Verification item Option 

1 Training data 
labeling 

Thyroid function test 
criterion  

Prescription 
criterion    

2 

Institution 
combination (for 
patient data and 

control group data) 

Institution  
combination 1 
(Inst. comb. 1) 

Institution 
combination 2 
(Inst. comb. 2) 

Institution 
combination 3 
(Inst. comb. 3) 

External 

3 Machine learning 
algorithm 

 
GBDT 

 
SVM Logistic 

regression ANN 

4 Input features Feature set 1 Feature set 2 Feature set 3  

 149 
 150 

Data labeling criterion  151 

According to the guidelines of Japanese Society of Laboratory Medicine for the diagnosis of 152 

hyperthyroidism and hypothyroidism, if the disorder is suspected from the clinical findings, first 153 

the thyroid function test (TSH and FT4 measurement) is conducted, from which the disorder is 154 

classified into three categories, hyperthyroidism, hypothyroidism, and euthyroidism (5). 155 

Therefore, we devised and compared the performance of two data labeling criteria.  156 

 We firstly devised the labeling criterion by using the result of the thyroid function test as 157 

a reference (hereinafter referred to as the “thyroid function test criterion”). Specifically, in the 158 

dataset of Wakayama Medical University, FT4 and TSH were measured with the ECLusys kits. 159 
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TSH < 0.5 and FT4 > 1.7 was defined as overt hyperthyroidism, TSH < 0.5 and 0.9 ≤ FT4 ≤ 1.7 160 

as subclinical hyperthyroidism, TSH > 5.0 and FT4<0.9 as overt hypothyroidism, and TSH > 5.0 161 

and 0.9 ≤ FT4 ≤ 1.7 as subclinical hypothyroidism (TSH unit: μIU/mL; FT4 unit: ng/dL). In the 162 

dataset of Gunma University, in which FT4 and TSH were measured with the Architect kit, TSH 163 

< 0.35 and FT4 > 1.48 was defined as overt hyperthyroidism, TSH < 0.35 and 0.7 ≤ FT4 ≤ 1.48 164 

as subclinical hyperthyroidism, TSH > 4.94 and FT4 < 0.7 as overt hypothyroidism, and TSH > 165 

4.94 and 0.7 ≤ FT4 ≤ 1.48 as subclinical hypothyroidism. In this study, overt and subclinical 166 

hyperthyroid patients are collectively referred to as the hyperthyroidism group, and overt and 167 

subclinical hypothyroid patients are collectively referred to as hypothyroidism group. 168 

Data for the control group were extracted from the third institution, Hidaka hospital, 169 

which consisted of the test results from regular medical examinations. We extracted 170 

comprehensive medical examination data for subject who did not have any symptoms suggesting 171 

thyroid dysfunction or abnormal values in the laboratory tests of thyroid-stimulating hormone 172 

(TSH) and serum free T4 (fT4) The normal ranges were set to 0.34-3.88 μIU/mL for TSH and 173 

0.95-1.74 ng/dL for fT4. Random under sampling was conducted for the control group in such a 174 

way that the sample size of the control group was equivalent to the size of the hyperthyroidism 175 

and hypothyroidism groups. The thyroid function test criterion required both TSH and FT4 test 176 

results, but a smaller number of patient records tended to have both of these levels. Therefore, as 177 

an alternative solution, we devised another criterion of labeling the training data according to the 178 

presence of prescription (hereinafter referred to as the “prescription criterion”) for thyroid 179 

disorder. Specifically, the procedure of prescription criterion satisfies the following conditions: 180 

(a) it includes patient records with standard prescribed medications for thyroid dysfunction 181 

(including thiamazole, propylthiouracil, and potassium iodide for the hyperthyroidism group, and 182 
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levothyroxin and thyronamine for the hypothyroidism group) obtained on the patient’s first 183 

visits, (b) the patient is not diagnosed with thyroid nodules, (c) patient records contain laboratory 184 

findings obtained within four weeks after the patient's first prescription, and (d) exclude  records 185 

with missing values of more than half of our selected features. Since the age distributions were 186 

different among the institutions, as shown in Table 1, we also conducted data under sampling to 187 

fix the gaps in these differences. 188 

In machine learning, a control group is generally used as negative label. Since 189 

hyperthyroidism and hypothyroidism are thyroid dysfunction, both often express similar 190 

symptoms and effects on some routine laboratory findings (e.g. Hb is decreased in both 191 

hyperthyroidism and hypothyroidism patients). Therefore, we consider the confounding of 192 

hyperthyroidism and hyperthyroidism as “crosstalk” and refined the labeling criteria in such a 193 

way that the negative label is set as both the healthy subjects of the control group and the patients 194 

of the opposite type of thyroid dysfunction. For instance, in the data labeling process of the 195 

hyperthyroidism classification model, hyperthyroidism group was set as positive label whereas 196 

both healthy subjects of the control group and hypothyroidism patients were set as negative 197 

label.  198 

 199 

Integrating multiple hospital datasets 200 

The demographics were different among the three institutions from different districts. To 201 

investigate the effect of integrating three hospital datasets, we explored three combinations of the 202 

datasets to increase the generalization ability of our models.  Specifically, three options on 203 

datasets, namely, thyroid dysfunction group data from both Wakayama Medical University and 204 

Gunma University and control group data from Hidaka hospital (referred to as Inst. comb. 1), 205 
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thyroid dysfunction group data from Wakayama Medical University and control group data from 206 

Hidaka hospital (referred to as Inst. comb. 2), and thyroid dysfunction group data from Gunma 207 

University and control group data from Hidaka hospital (referred to as Inst. comb. 3), were set to 208 

train and evaluate the models. 209 

 210 

Machine learning algorithms 211 

Four representative machine learning algorithms were applied and evaluated of the performance 212 

on thyroid dysfunction classification: 213 

 Gradient boosting decision tree (GBDT), as proposed by Friedman (18), produces a 214 

prediction model in the form of an ensemble of weak prediction models, typically decision trees. 215 

It is based on a machine learning technique that consists of an “ensemble” family of algorithms, 216 

creates multiple models (called weak learners), and combines them to increase the prediction 217 

accuracy. The main idea of this technique is to build a set of decision trees and use them to 218 

classify a new case. Each decision tree is generated using randomly selected variable subsets 219 

from all feature variables and a randomly selected subset of data combined by bootstrapping 220 

(19). In this study, we employed the most accurate algorithm, called CATBoost (20), in the 221 

GBDT family. 222 

 The artificial neural network (ANN) is a well-established classification technique that is 223 

widely used in pattern recognition studies. In general, an ANN consists of 3 layers: an input layer 224 

that receives information, a hidden layer that processes information, and an output layer that 225 

calculates the results (21). In the present study, a standard feed-forward ANN was applied due to 226 

its relative simplicity and stability. 227 
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 Support vector machine (SVM) is a supervised machine learning technique that is widely 228 

used in pattern recognition and classification problems (22). In the approach of this method, each 229 

data sample is a vector whose dimensions are equal to the number of features to be considered, 230 

and the SVM creates a hyperplane that separates samples into two categories. The induced 231 

hyperplane is constructed to maximize its distance from the samples of both classes. This 232 

algorithm achieves high classification performance by using special nonlinear functions called 233 

kernels to transform the input space into a multidimensional space (22). In this study, the radial 234 

basis function kernel is used.  235 

 Logistic regression is a statistical classifier that provides the probability for predicting the 236 

labeled class of categorical type by using a number of attributes. Logistic regression is frequently 237 

used to examine the risk relationship between disease and exposure, with the ability to test for 238 

statistical interaction and control for multi-variable confiding (23). It is a linear model and used 239 

as the baseline model for the performance comparison, 240 

 241 
Explanatory features (variables) for machine learning 242 

Features from a subject’s record were designed to sufficiently explain factors that were related to 243 

thyroid dysfunction. We used 11 variables as explanatory variables in this study as the first 244 

experimented set of features (referred to as Feature set 1) in this study, of which eight tests are 245 

tests measured in routine health checkup: sex, AST, ALT, γ-GTP, total cholesterol, Hemoglobin 246 

(Hb), RBC, and creatinine (S-Cr). In addition, since ALP, UA, and S-Cr ratio are reported to be 247 

highly relevant to thyroid dysfunction (24, 25), these were added to the above items. We also 248 

included UA/S-Cr ratio in this study considering that the reduction of S-Cr has been reported in 249 

hyperthyroidism, while UA has not been confirmed to fluctuate with thyroid dysfunction. To 250 

discriminate hyperthyroidism with renal dysfunction, which usually leads to the rise of both S-Cr 251 



13 

 

and UA, we introduced UA/S-Cr ratio as one of the features to improve the classification 252 

performance. 11 tests (Feature set 1) in total were used as features to train machine learning 253 

models in this study. 254 

With an aim to quantify the necessity of each of the 11 tests mentioned above, the 255 

performance of five items (referred to as Feature set 2) out of the 11 tests was checked. Feature 256 

set 2 excluded three items, Hb, S-Cr, and RBC, which are the tests measured only at the doctor’s 257 

discretion. 258 

 259 

Model validation 260 

Cross-validation was applied to evaluate the performance of our machine learning method in 261 

classifying patients. The evaluation was conducted by extracting 9/10 training data and 1/10 test 262 

data by conducting 10-fold cross-validation. This was repeated 10 times to extract the training 263 

and test data uniformly, and the average and standard deviation of each evaluation score of each 264 

time were calculated. During the model training and test process, we avoided including the same 265 

subject to both training dataset and test dataset. The following measures were used for the 266 

performance evaluation criteria: area under the receiver operating characteristic curve (AUROC), 267 

area under the precision-recall curve (AUPRC), sensitivity is defined by TP/(TP+FN), and 268 

specificity is defined by TN/(TN+FP), where TP is the number of true positives, TN is the 269 

number of true negatives, FP is the number of false positives, FN is the number of false 270 

negatives. Note that the cutoff value for classifying as positive or negative is determined by 271 

Youden index (26). Finally, the AUROC performance difference between models was verified as 272 

statistically significant by the Wilcoxon signed-rank test.  273 
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In addition, the data of Kuma hospital were employed as an external validation. The 274 

model was constructed using the hyperthyroidism group and the hypothyroidism group of 275 

Wakayama Medical University and Gunma University and the control group of Hidaka hospital 276 

as the training data. The model was evaluated using the hyperthyroidism group and 277 

hypothyroidism group of Kuma hospital and the control group of Hidaka hospital (referred to as 278 

External). 279 

 280 

Classification of subclinical thyroid dysfunction 281 

In the guideline of Japan Thyroid Association (27), subclinical hypothyroidism is defined as 282 

when FT4 is within the normal limit but the TSH measured is higher than normal .On the other 283 

hand subclinical hyperthyroidism is defined as when FT4 is within normal limit and TSH is 284 

lower than normal. Compared to the overt thyroid dysfunction where both TSH and FT4 are out 285 

of the standard ranges, it is difficult to classify subclinical thyroid dysfunction. This study 286 

evaluated the classification performance of the machine learning model by using subclinical 287 

standards in the thyroid function test criterion labeling method.  We further extended the feature 288 

set in the attempt of improving model performance and selected 24 tests (referred to as Feature 289 

set 3), which was the all the laboratory tests available in this study 1. 290 

 291 

Feature importance 292 

 
1 Feature set 3 includes sex, AST, ALT, γ-GTP, Total cholesterol, RBC, hemoglobin, uric acid, 
S-Cr, uric acid/S-Cr ratio, ALP, albumin-globulin ratio, albumin, blood urea nitrogen, C-reactive 
protein, hematocrit, lactate dehydrogenase, mean corpuscular hemoglobin, mean corpuscular 
hemoglobin concentration, mean corpuscular volume, platelet count, total bilirubin, total protein, 
white blood count. 
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To further understand how each feature contributes to the classification of patients in our model, 293 

we introduced feature importance. Feature importance represents the factor by which the model 294 

error is increased compared to the original model error. In the decision tree–based machine 295 

learning algorithms, including GBDT, impurities and the features at which the node is split are 296 

recorded for all the nodes when the decision tree learning is finished, and the decision tree 297 

calculates the features importance using this information (19). 298 

 299 

Results 300 

Model validation 301 

Table 3 is a summary of the performance results f of the machine learning model constructed in 302 

this study. As the result of 10-fold cross-validation, as shown in No. I of Table 3, the best 303 

classification model for overt hyperthyroidism achieved an accuracy of AUROC = 92.4%, 304 

sensitivity = 83.3%, and specificity = 90.9%. The best classification model for overt 305 

hypothyroidism achieved an accuracy of AUROC = 90.5%, sensitivity = 84.4%, and specificity 306 

= 86.4%. In the external evaluation, as shown in No. IX of Table 3, the classification model for 307 

overt hyperthyroidism achieved an accuracy of AUROC = 96.3%, and the classification model 308 

for overt hypothyroidism achieved an accuracy of AUROC = 92.9%. As shown in No. XI of 309 

Table 3, the classification model for subclinical hyperthyroidism achieved an accuracy of 310 

AUROC = 73.8%, and the classification model for subclinical hypothyroidism achieved an 311 

accuracy of AUROC = 75.2%.  312 

The result of comparing different labeling criteria is shown in No. Ⅰ and II of Table 3. 313 

When the prescription criterion was applied as the labeling criterion, the accuracy of the 314 

hyperthyroidism classification model achieved AUROC = 88.2%, and that of the hypothyroidism 315 

classification model achieved AUROC = 82.4%. On the other hand, as shown in No. I, when the 316 
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thyroid function test criterion was used, the accuracy of the hyperthyroidism classification model 317 

achieved AUROC = 92.4%, and that of the hypothyroidism classification model achieved 318 

AUROC = 90.5%.  The model trained on the thyroid function test criterion data achieved a 319 

superior performance, which was statistically significant by the Wilcoxon test at p-value 0.05. 320 

The result of comparing models built on different institution combinations is shown in No. I, III, 321 

and IV of Table 3, as the highest performance was obtained when institution combination 1 was 322 

used as training set, and the accuracy of the hyperthyroidism classification model achieved 323 

AUROC = 92.4%, while and that of the hypothyroidism classification model achieved AUROC 324 

= 90.5%. 325 

Among the four machine learning algorithms used in this study, including GBDT, SVM, 326 

logistic regression, and ANN, the highest performance was obtained when the GBDT method 327 

was applied as shown in No. I, V, VI, and VII of Table 3. The accuracy of the hyperthyroidism 328 

classification model achieved AUROC = 92.4%, while that of the hypothyroidism classification 329 

model achieved AUROC = 90.5%, which were statistically significant at p-value 0.05 by the 330 

Wilcoxon test. After comparing the performance of different feature sets, as shown in I and VIII 331 

of Table 3, when the feature set 3 was applied, the accuracy of the hyperthyroidism classification 332 

model was reduced to AUROC = 87.4%, and the performance of the hypothyroidism 333 

classification model was reduced to AUROC = 85.5%, which shows significant differences by 334 

the Wilcoxon test at p-value 0.05. 335 
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The model with the best performance was evaluated using the external dataset for Kuma 337 

Hospital, as shown in No. IX of Table 3. High classification performance was achieved using the 338 

external data: AUROC = 96.3%, sensitivity = 87.7%, and specificity = 93.5% for the 339 

hyperthyroidism classification model and AUROC = 92.9%, sensitivity = 75.7%, and specificity 340 

= 87.1% for the hypothyroidism classification model. No. X and XI of Table 3 show that using 341 

feature set 3 improved the classification performance: for subclinical thyroid dysfunction, 342 

AUROC = 73.8%, sensitivity = 78.7%, and specificity =61.6%; for hypothyroidism, AUROC = 343 

75.2%, sensitivity = 59.9%, and specificity = 77.7%. In particular, the significance of the 344 

hypothyroidism classification models was statistically confirmed by the Wilcoxon test at p-value 345 

0.05. 346 

 347 

Feature Importance 348 

The features importance of each model was examined using the feature set 1. The left picture of 349 

Figure 1 shows the features importance of the overt hyperthyroidism classification model and the 350 

overt hypothyroidism classification model. The three most important features in the overt 351 

hyperthyroidism model were ALP, UA/S-Cr ratio, and total cholesterol. The three most 352 

important features in the overt hypothyroidism model were AST, total cholesterol, and RBC. On 353 

the other hand, the right picture of Figure 1 shows the features importance of the subclinical 354 

hyperthyroidism classification model and the subclinical hypothyroidism classification model. 355 

The three most important features in the subclinical hyperthyroidism model were ALP, UA/S-Cr 356 

ratio, and S-Cr, and the three most important features in the subclinical hypothyroidism model 357 

were total cholesterol, AST, and RBC. For both overt and subclinical disease, ALP and S-Cr 358 
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were the top related features in the hyperthyroidism classification model, and total cholesterol, 359 

AST, and RBC were the top features in the hypothyroidism classification model. 360 

Furthermore, the features importance in the subclinical hyperthyroidism and subclinical 361 

hypothyroidism classification models using the feature set 3 was conducted. As shown in Figure 362 

2, ALP and the UA/S-Cr ratio were among the three most important features in the subclinical 363 

hyperthyroidism classification model when the feature set 1 was used, as well as when the 364 

feature set 3 was used. If the five most important features were considered, MCV and MCH, two 365 

features added to the feature set 3, were included. These findings suggest that these two features 366 

are also likely to be effective in hyperthyroidism classification. On the other hand, as shown on 367 

right side of Figure 2, a difference was seen in the subclinical hypothyroidism classification 368 

model when the feature set 1 was used vs. when the feature set 3 was used. The three most 369 

important features in the model that used the feature set 1 were total cholesterol, AST, and RBC, 370 

whereas the three most important features in the model that used the feature set 3 were total 371 

protein, total cholesterol, AST, and the UA/S-Cr ratio. These findings suggest that total protein is 372 

likely to be effective in classifying subclinical hypothyroidism. 373 

 374 

 375 



20 

 

 376 

Figure 1. Comparison of feature importance between overt and subclinical thyroid 377 
dysfunction classification models 378 

 379 

 380 

 381 
Figure 2.  Comparison of feature importance between models built on the Feature set 1 and 382 

Feature set 3 383 

 384 

 385 
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Discussion 386 
Feature importance 387 

The correlation of routine laboratory tests such as ALP, S-Cr, UA, and RBC, etc. with thyroid 388 

dysfunction has been pointed out in many previous studies. According to studies on the 389 

relationship between thyroid dysfunction and liver function (28, 29), a correlation was confirmed 390 

between the increase in ALP and hyperthyroidism, as the ALP value was significantly higher 391 

when bone metabolism increases in Graves’s disease, which is a typical disorder of 392 

hyperthyroidism. Sönmez (30) examined data from 433 patients and reported that S-Cr in the 393 

hyperthyroidism group was significantly lower than in the euthyroid group. TSH and S-Cr were 394 

also reported to have a significantly negative correlation with overt hypothyroidism (31). 395 

Dorgalaleh (32) suggested that thyroid dysfunction directly affects most of the blood values, 396 

including RBC, and health professionals must pay attention to such effects. The correlation 397 

between hypothyroidism and hyperuricemia has also been confirmed by in multiple studies (33, 398 

34). 399 

 400 

Comparison with related studies 401 

Several previous studies revealed promising results from the use of machine learning approaches 402 

for predicting thyroid dysfunction (16, 17).  403 

Similar to the present study, Aoki’s (17) study used pattern recognition methods such as 404 

neural networks to predict the likelihood of thyroid dysfunction from a set of routine test 405 

parameters such as ALP, S-Cr, and TC. Their results suggested that most patients with overt 406 

thyroid dysfunction could be screened by using a set of routine clinical data without measuring 407 

thyroid hormone levels. The correct rate of 91.3% was reported in the hyperthyroidism 408 

classification model, and the correct rate of 90.0% was reported in the hypothyroidism 409 
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classification model. Their results suggested that there is a high correlation between a set of 410 

routine laboratory tests and thyroid dysfunction. However, the model verification of these studies 411 

used the leave-one-out method instead of cross-validation and used the correct rate as the 412 

indicator instead of AUROC. Thus, the model evaluation was considered insufficient. 413 

Unlike the present study, one drawback of these previous studies is that those have not 414 

considered crosstalk in the data labeling process. For hyperthyroidism classification in this study, 415 

the hyperthyroidism group was used as a positive label, and both the control and hypothyroidism 416 

groups were negatively labeled. For the hypothyroidism classification in this study, the 417 

hypothyroidism group was used as a positive label, whereas both the control and 418 

hyperthyroidism groups were negatively labeled (referred to as “crosstalk on”). On the other 419 

hand, related studies (16, 17) performed classification by setting thyroid dysfunction patients 420 

(with hyperthyroidism or hypothyroidism) as positive label and only control group as negative 421 

label (referred to as “crosstalk off”). Therefore, we evaluated the performance of the models with 422 

similar settings as these studies. As shown in A-1 column of Table 4, when only control group 423 

was labeled negative in both the training data and validation data, a high classification 424 

performance of AUROC = 94.9% and AUROC = 91.3% was achieved in the classification of 425 

overt hyperthyroidism and overt hypothyroidism, respectively. However, as shown in A-2 426 

column of Table 4, when both control group and hypothyroidism group were labeled negative in 427 

the validation data of overt hyperthyroidism and when both control group and hyperthyroidism 428 

group were labeled negative in the validation data of overt hypothyroidism, the classification 429 

performance was reduced to AUROC = 78.5% and AUROC = 68.1%, respectively. The 430 

classification performance dropped significantly in the models in which crosstalk was not 431 

considered during the negative labeling process.  432 
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 433 

Table 4. Evaluation result obtained without considering crosstalk 434 

No. A-1 A-2 

Training 

Thyroid function test 
criterion  Overt + subclinical 

Negative label setting Crosstalk off 

Validation 

Thyroid function test 
criterion  Overt 

Negative label setting Crosstalk off Crosstalk on 

Hyperthyroidism  AUROC 94.9±2.4% 78.5±3.1% 

Hypothyroidism  AUROC 91.3±4.0% 68.1±3.1% 

The mean and standard deviation for the 10 folds are shown in AUROC scores. 435 

 436 

Limitations 437 

In the current study, subjects under medication may be included in the data extraction process of 438 

this study. Though we extracted only the laboratory tests at each subject’s first visit to avoid 439 

including the influence of thyroid dysfunction treatment, some subjects might be already on 440 

medication before being referred to the hospitals in our study. These subjects on medications 441 

may have an unexpected impact on the models we built in this study. 442 

  443 

Another limitation of this study is that the hypothyroidism classification models exhibited 444 

lower performance than the hyperthyroidism classification models. This result is attributed to 445 

differences in the respective serum hormones and underlying molecular mechanisms (35).  The 446 

various nonspecific symptoms of hypothyroidism may not manifest simultaneously, resulting its 447 

subclinical rate larger than that of hyperthyroidism. In addition, patients with hypothyroidism 448 

such as Hashimoto's thyroiditis are dependent upon long-term levothyroxine treatment, which 449 

may affect the manifestation of routine laboratory findings. 450 
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Furthermore, in the external evaluation of this study, the subclinical classification model 451 

showed lower overall results than the overt classification models. Among subclinical thyroid 452 

dysfunctions, the cause of subclinical hypothyroidism is associated with chronic thyroiditis 453 

(Hashimoto's disease), of which approximately 60-80% of cases are related thyroid 454 

autoantibodies (36). On the other hand, the causes of subclinical thyrotoxicosis are classified into 455 

extrinsic overdose of thyroid hormone drugs, and endogenous hyperthyroidism such as Graves' 456 

disease (37). Most of the subclinical thyroid dysfunctions such as subclinical thyrotoxicosis and 457 

subclinical hypothyroidism have no subjective symptoms and are usually considered to be 458 

transient (38, 39). Performance may have been limited due to the fact that symptoms of 459 

subclinical thyroid dysfunction are usually minor compared to overt thyroid dysfunction, and the 460 

phenotype of subclinical thyroid dysfunction may not be reflected in the results of routine 461 

laboratory examination. 462 

 463 

Conclusion 464 

This study evaluated the screening method to discriminate hyperthyroidism and hypothyroidism 465 

from the electronic medical records or routine laboratory finding data from health checkups 466 

using a machine learning method with an aim to prevent missed diagnosis of thyroid 467 

dysfunction. This is a versatile new screening method that was successfully developed from a 468 

machine learning model construction method to discriminate patients with hyperthyroidism and 469 

hypothyroidism using 11 features. High accuracy was achieved in the discrimination of evident 470 

hyperthyroidism or hypothyroidism, although the discrimination accuracy of subclinical 471 

hyperthyroidism or hypothyroidism was not satisfactory, these alerts can be useful for non-472 

specialists for thyroid diseases. 473 
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It is expected that the quality of life of patients will improve by applying the model 474 

developed in this study. If thyroid dysfunction is screened using our method in healthcare 475 

facilities, including hospitals and health checkup facilities, prompt and accurate diagnostic 476 

support can be provided from only routine laboratory tests. 477 

 478 
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