Contents

Supplementary Tables2
Supplementary table 1. Baseline characteristics of the study cohort2
Supplementary table 2. Flow cytometry antibody reagents
Supplementary Table 3. Genes comprising the T cell proliferation module derived from BCG stimulated PBMC4
Supplementary Figures5
Supplementary Figure 1. Study consort diagram5
Supplementary Figure 2. Principal component analysis of blood transcriptional profiles stratified by sample processing batch
Supplementary Figure 3. Blood transcriptomic perturbation in symptomatic and asymptomatic SARS-CoV-2 infection7
Supplementary Figure 4. Identification of co-regulated modules in blood transcriptomic data8
Supplementary Figure 5. Bioinformatic analysis of modules derived from upstream regulator analysis of differentially expressed genes in blood transcriptome associated with SARS-CoV-2 infection9
Supplementary Figure 6. STAT1 and CCND1 regulated module expression over time in blood transcriptomic data from individuals experimentally infected with acute respiratory viruses10
Supplementary Figure 7. Multiparametric flow cytometry of PBMC samples from individuals with co- incident SARS-CoV-2 infection and uninfected controls
Supplementary Figure 8. Frequency of selected lymphocytes and their activation/proliferative state.
Supplementary Figure 9. TCR sequence analysis13
Supplementary Figure 10. Expansion of TCR beta chain sequences and abundance of MAIT/iNKT cell sequences in SARS-CoV-2 infection14

Characteristic	Overall, N = 96	Cases, $N = 41^1$	Controls, N = 55 ¹
Age	36 (27, 47)	36 (28, 46)	36 (26, 50)
Sex			
Female	69 (72%)	28 (68%)	41 (75%)
Male	27 (28%)	13 (32%)	14 (25%)
Ethnicity			
White	66 (69%)	25 (62%)	41 (75%)
Black	6 (6.3%)	5 (12%)	1 (1.8%)
Asian	18 (19%)	9 (22%)	9 (16%)
Other	5 (5.3%)	1 (2·5%)	4 (7.3%)
Unknown	1	1	0
Samples			
1	67 (70%)	12 (29%)	55 (100%)
2	7 (7.3%)	7 (17%)	0 (0%)
3	6 (6·2%)	6 (15%)	0 (0%)
4	10 (10%)	10 (24%)	0 (0%)
5	6 (6·2%)	6 (15%)	0 (0%)
Case-defining symptoms	36 (38%)	31 (76%)	5 (9.1%)

Supplementary Tables

¹Statistics presented: median (IQR); n (%)

Target	rget Fluorochrome		Manufacturer	Catalogue no		
TCR Va7.2	BV785	3C10	Biolegend	351722		
CCR7	FITC	150503	BD	561271		
CD45RA	BV711	HI100	BD	563733		
CD4	BUV395	SK3	BD	563550		
CD56	Pe-Dazzle594	QA17A16	Biolegend	392410		
HLA-DR	V500	G46-6	BD	561224		
CD3	BUV805	UCHT1	BD	612895		
CD161	Pe	191B8	Miltenyi	130-092-677		
CD8a	AlexaFluor700	RPA-T8	Biolegend	301028		
Ki67	Pe-Cy7	20Raj1	ThermoFisher	25-5699-42		
OX40	AlexFluor647	Ber-ACT35	Biolegend	350018		
PD-1	BB700	EH12.1	BD	566460		
CD69	BV605	FN50	Biolegend	310938		
CD71	APC-Cy7	CY1G4	Biolegend	334110		
4-1BB	BV421	4B4-1	Biolegend 309820			

Supplementary table 2. Flow cytometry antibody reagents

Supplementary	Table 3	3. Genes	comprising	the 1	r cell	proliferation	module	derived	from	BCG
stimulated PBM	С.					-				

Gene symbol	Ensembl gene ID
AURKA	ENSG0000087586
BUB1	ENSG00000169679
BUB1B	ENSG00000156970
CCNA2	ENSG00000145386
CCNB1	ENSG00000134057
CCNB2	ENSG00000157456
CDCA5	ENSG00000146670
CDCA8	ENSG00000134690
CDK1	ENSG00000170312
CDK6	ENSG00000105810
CDKN2C	ENSG00000123080
CDT1	ENSG00000167513
CENPM	ENSG00000100162
CENPN	ENSG00000166451
GINS2	ENSG00000131153
H2AC14	ENSG00000276368
H2AFX	ENSG00000188486
H3C10	ENSG00000278828
H3C12	ENSG00000197153
H3C15	ENSG00000203852
H3C4	ENSG00000197409
HIST2H3D	ENSG00000183598
KIF2C	ENSG00000142945
LMNB1	ENSG00000113368
MLF1IP	ENSG00000151725
NDC80	ENSG0000080986
PCNA	ENSG00000132646
PTTG1	ENSG00000164611
SMC4	ENSG00000113810

Supplementary Figures

Supplementary Figure 1. Study consort diagram

(A) Consort diagram of nested case-control study. (B) Molecular degree of perturbation of blood transcriptomes from participants with co-incident PCR+ve SARS-CoV-2 infection with and without contemporary case defining symptoms compared to non-infected controls.

Supplementary data- Non-severe SARS-CoV-2 infection is characterised by very early T cell proliferation independent of type 1 interferon responses and distinct from other acute respiratory viruses.

Supplementary Figure 2. Principal component analysis of blood transcriptional profiles stratified by sample processing batch.

Supplementary Figure 3. Blood transcriptomic perturbation in symptomatic and asymptomatic SARS-CoV-2 infection.

Molecular degree of perturbation (MDP) in blood transcriptomes for each individual expressed as the mean of genome-wide standard deviations (Z scores) >2 from the mean of non-infection controls (NIC), among samples from non-infection controls and samples from individuals with co-incident PCR+ve infection with (Yes) or without (No) case-defining symptoms. Individual data points shown with violin plots depicting median, IQR and frequency distributions. P values derived from Mann-Whitney tests.

Supplementary Figure 4. Identification of co-regulated modules in blood transcriptomic data

Z-scores derived from the distribution of average correlation coefficients obtained from 100 iterations of randomly selecting groups of genes from blood transcriptomic data are shown in light blue (z-score=1), green (z-score=2) and orange (z-score=3). Average correlation coefficients of molecular networks associated with upstream regulators of differentially expressed genes between individuals with incident SARS-CoV-2 infection and noninfection controls are shown in dark blue (z-score ≥2, false discovery rate ≤0.05) and grey (z-score ≤2 +/- FDR ≥0.05) compared to equivalent sized random gene networks.

Supplementary Figure 5. Bioinformatic analysis of modules derived from upstream regulator analysis of differentially expressed genes in blood transcriptome associated with SARS-CoV-2 infection.

(A) Enrichment of Reactome pathways among the two clusters of predicted upstream regulators associated with co-incident infection (depicted main manuscript Figure 1 and listed Supplementary Data File 1). Node size represents number of upstream regulators associated with each pathway and statistical enrichment represented by Z score. (B) Correlation of STAT1-regulated transcriptional module with interferon (IFN) α and IFN γ modules, and (C) correlation of CCND1-regulated transcriptional module with independently derived proliferation module in all time points (-3 to +3 weeks) from individuals with SARS-CoV-2 infection.

Supplementary Figure 6. STAT1 and CCND1 regulated module expression over time in blood transcriptomic data from individuals experimentally infected with acute respiratory viruses.

(A) Comparison of peak STAT-1 and CCND1-regulated module expression in samples from individuals with SARS-CoV-2 infection and non-infection controls showing area under the receiver operating curve \pm 95% confidence intervals for these modules to discriminate between the two groups. (B) Expression scores for STAT1 and CCND1 modules in publicly available data from seven human viral challenge studies (GSE73072). Analysis restricted to participants with evidence of infection following inoculation, as per original study definition (total n=92 participants). Colours represent individual participants with longitudinal sampling. Each column represents a different challenge study, with the virus and study year shown in the column headers. HRV = human rhinovirus; RSV = respiratory syncytial virus.

Supplementary Figure 7. Multiparametric flow cytometry of PBMC samples from individuals with co-incident SARS-CoV-2 infection and uninfected controls.

(A) Example gating strategy for flow cytometric data showing gating for; lymphocytes, singlets, live cells (fixable live dead-), MAIT cells (CD161++ TCR Va7.2+) and non-MAIT cells, CD3+CD56- T cells, CD3+CD56+ NKT cells, CD3-CD56- lymphocytes, CD3-CD56+ NK cells, CD4+ and CD8+ T cells, CD45RA vs. CCR7 co-staining, and HLA-DR vs. Ki67 co-staining.

Supplementary Figure 8. Frequency of selected lymphocytes and their activation/proliferative state.

(A) Frequency of non-T cell lymphocyte subsets expressing selected activation markers (CD71 and HLA-DR) and the cell proliferation marker (Ki67), and (B) frequency of selected lymphocyte subsets among participants with co-incident infection (PCR+) and non-infection controls (NIC). Data points with median values (red). (*p<0.05 by Mann-Whitney Test for each group compared to NIC).

Supplementary data- Non-severe SARS-CoV-2 infection is characterised by very early T cell proliferation independent of type 1 interferon responses and distinct from other acute respiratory viruses.

Supplementary Figure 9. TCR sequence analysis

(A) Correlation of numbers of alpha and beta chain TCR sequences per sample. (B) Representative examples of identification of statistically expanded alpha, and beta chain TCR sequences by comparison of abundance of individual TCR sequences between two time points (blue dashed boundaries represent the thresholds for abundance of TCR sequences with false discovery rate of <1 in 1000).

Supplementary Figure 10. Expansion of TCR beta chain sequences and abundance of MAIT/iNKT cell sequences in SARS-CoV-2 infection

(A) Enumeration of expanded TCR alpha chain sequences (per million total sequences) in non-infection controls and samples from infected individuals stratified by time from first positive PCR. (B) Abundance of MAIT and iNKT cell associated alpha chain sequence in non-infection controls and samples from infected individuals stratified by time from first positive PCR. Individual data points shown with violin plots depicting median, IQR and frequency distributions. (*FDR<0.05 by Kruskal-Wallis Test for each group compared to NIC).