Supplementary Material to

A polygenic risk score for coronary heart disease performs well in individuals aged 70 years and older

Contentsp

1. Supplementary Material, page 2
2. Supplementary Results, page 2
3. Supplementary References, page 2
4. Supplementary Tables, page 3
5. Supplementary Figures, page 13

1. Supplementary Material

The genetic ethnicity in the ASPREE cohort were determined through principal component analysis (PCA) using The 1000 Genomes Project as a reference population. ${ }^{1}$ Directly genotyped data from ASPREE and The 1000 Genomes Project phase 3 (liftover to hg38) were merged and LD pruned ($r^{2}<0.1$) using plink version 1.9^{2}, followed by using R package SNPrelate. ${ }^{3}$ We calculated the Z score for first 2 PCA and excluded samples with ± 2 SD (standard deviation) of Z score compared to their respective five major reference population groups from the 1000 Genomes Project that included: Caucasians (Non-Finish Europeans), South Asians, East Asians, African American and Hispanics (Figure S2).

The first PRS tertile ranged from -2.73 to <-1.35, the second PRS tertile ranged from $1-35$ to <-0.97 and the third PRS tertile ranged from -0.97 to 0.69 .

2. Supplementary Results

When aspirin treatment was added as covariate to the multivariable model, no significant effect on CHD events was found (HR $0.84,95 \% \mathrm{Cl} 0.64-1.10, \mathrm{p}=0.20$). In sensitivity analyses, including information on intake of antihypertensive drugs or statins, intake of antihypertensives showed to be a predictor for CHD events (HR 1.73, $95 \% \mathrm{Cl} 1.29-2.31$), but statin intake did not (HR $0.75,95 \% \mathrm{Cl} 0.53-1.07$). However, the PRS remained an independent predictor in the model (Table S7). In sensitivity analyses, including information on the ten PCAs, which were used to determine the genetic ethnicity, none of the PCAs was a significant predictor for CHD events and the PRS remained an independent predictor in the model (Table S8). We examined interaction effects between sex and model covariables but found no interaction effect between sex and the CHD PRS (HR 0.93, 95\%Cl 0.69-1.24, p=0.60; Table S9).

3. Supplementary References

1. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation. Nature 2015;526(7571):68-74.
2. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 2015;4:7.
3. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012;28(24):3326-8.

4. Supplementary Tables

Table S1: Estimated net reclassification improvement (NRI, continuous and categorical) for risk of 5 -year CHD event.

Continuous NRI	Estimate	$95 \% \mathbf{C l}$
NRI	0.25	$0.15-0.28$
NRI+	0.16	$0.08-0.20$
NRI-	0.09	$0.04-0.10$
P(Up\|Case)	0.58	$0.54-0.60$
P(Down\|Case)	0.42	$0.40-0.46$
P(Down\|Ctrl)	0.54	$0.52-0.55$
P(Up\|Ctrl)	0.46	$0.45-0.48$
Categorical NRI	0.063	$0.001-0.129$
NRI	0.044	$-0.007-0.105$
NRI+	0.019	$0.003-0.032$
NRI-	0.106	$0.031-0.154$
P(Up\|Case)	0.062	$0.027-0.096$
P(Down\|Case)	0.084	$0.046-0.116$
P(Down\|Ctrl)	0.066	$0.037-0.090$
P(Up\|Ctrl)		

Table S2: Baseline characteristics for males and females

	Male	Female	p-value
Number of participants	5,765	7,027	
Age (median (IQR))	$73.7(71.6,77.0)$	$74.0(71.7,77.6)$	0.001
Age categories (\%)			
$70-74$	$3,567(61.9)$	$4,131(58.8)$	
$75-79$	$1,426(24.7)$	$1,845(26.3)$	
$80-84$	$598(10.4)$	$816(11.6)$	
>85	$174(3.0)$	$235(3.3)$	0.028
Current Smoker (\%)	$198(3.4)$	$193(2.7)$	<0.001
Systolic Blood Pressure (mean (SD))	$141.41(15.78)$	$76.42(10.21)$	<0.001
Diastolic Blood Pressure (mean (SD))	$78.07(9.58)$	$540(7.7)$	<0.001
Diabetes (\%)	$646(11.2)$	$28.01(5.10)$	0.333
Body Mass Index (mean (SD))	$27.93(3.77)$	$1.74(0.46)$	<0.001
HDL in mmol/L (mean (SD))	$1.40(0.38)$	$3.73(0.96)$	<0.001
Non-HDL in mmol/L (mean (SD))	$3.63(0.90)$	$96.22(16.08)$	<0.001
Glucose in mg/dL (mean (SD))	$100.82(17.99)$	$0.81(0.17)$	<0.001
Creatinine in mg/dL (mean (SD))	$1.02(0.21)$	$214(3.0)$	0.003
Familiy history of MI (\%)	$126(2.2)$	$-1.14(0.45)$	<0.001
Polygenic Risk Score (mean (SD))	$-1.18(0.45)$		

Table S3: Baseline characteristics according to PRS tertiles

	First tertile	Second tertile	Third tertile	p-value
Number of participants	4,263	4,264	4,264	
Age (median (IQR))	74.1 (71.8, 77.7)	73.8 (71.7, 77.3)	73.7 (71.6, 76.9)	<0.001
Age categories (\%)				
70-74	2,458 (57.7)	2,589 (60.7)	2,651 (62.2)	
75-79	1,141 (26.8)	1,073 (25.2)	1,057 (24.8)	
80-84	522 (12.2)	455 (10.7)	436 (10.2)	
>85	142 (3.3)	147 (3.4)	120 (2.8)	
Female (\%)	2,239 (52.5)	2,338 (54.8)	2,450 (57.5)	<0.001
Current Smoker (\%)	127 (3.0)	132 (3.1)	132 (3.1)	0.937
Systolic Blood Pressure (mean (SD))	139.51 (16.36)	139.18 (15.79)	139.68 (16.65)	0.348
Diastolic Blood Pressure (mean (SD))	77.15 (10.00)	77.14 (9.83)	77.21 (10.07)	0.944
Diabetes (\%)	381 (8.9)	375 (8.8)	430 (10.1)	0.079
Body Mass Index (mean (SD))	27.88 (4.57)	27.96 (4.58)	28.07 (4.51)	0.159
HDL in mmol/L (mean (SD))	1.58 (0.46)	1.59 (0.46)	1.58 (0.45)	0.369
Non-HDL in mmol/L (mean (SD))	3.66 (0.91)	3.69 (0.95)	3.72 (0.94)	0.019
Glucose in mg/dL (mean (SD))	98.13 (17.10)	98.12 (17.09)	98.64 (17.19)	0.291
Creatinine in mg/dL (mean (SD))	0.91 (0.22)	0.91 (0.22)	0.90 (0.21)	0.113
Family history of MI (\%)	103 (2.4)	107 (2.5)	130 (3.0)	0.146
Polygenic Risk Score (mean (SD))	-1.65 (0.24)	-1.16 (0.11)	-0.67 (0.24)	<0.001

Table S4: Hazard ratios for the conventional model, conventional model + continuous PRS and conventional model + categorical PRS in males

	Conventional Model			Conventional Model + continuous PRS			Conventional Model + categorical PRS		
	HR	95\%CI	p-value	HR	95\%CI	p-value	HR	95\%CI	p-value
Age	1.05	(1.02-1.09)	0.004	1.06	(1.02-1.10)	0.002	1.06	(1.02-1.10)	0.002
Current Smoking	1.99	(0.97-4.07)	0.06	2.03	(0.99-4.15)	0.05	2.02	(0.99-4.13)	0.05
SBP per 10 mmHg increase	0.98	(0.89-1.09)	0.75	0.98	(0.88-1.09)	0.71	0.98	(0.89-1.09)	0.75
Non-HDL	1.58	(1.33-1.87)	<0.001	1.57	(1.32-1.86)	<0.001	1.56	(1.32-1.85)	<0.001
HDL	0.52	(0.31-0.88)	0.015	0.52	(0.31-0.88)	0.015	0.52	(0.31-0.87)	0.013
Diabetes	0.97	(0.54-1.74)	0.92	0.95	(0.53-1.71)	0.87	0.95	(0.53-1.70)	0.86
Creatinine	1.73	(0.88-3.38)	0.11	1.71	(0.87-3.36)	0.12	1.72	(0.88-3.37)	0.11
PRS (continuous per SD)				1.27	(1.08-1.50)	0.005			
PRS 1st Tertile							1.00	(Reference)	
PRS 2nd Tertile							1.49	(0.97-2.29)	0.07
PRS 3rd Tertile							1.79	(1.17-2.72)	0.007

Table S5: Hazard ratios for the conventional model, conventional model + continuous PRS and conventional model + categorical PRS in females

	Conventional Model			Conventional Model + continuous PRS			Conventional Model + categorical PRS		
	HR	95\%CI	p-value	HR	95\%CI	p-value	HR	95\%CI	p-value
Age	1.14	(1.09-1.20)	<0.001	1.15	(1.10-1.20)	<0.001	1.15	(1.10-1.20)	<0.001
Current Smoking	2.26	(0.71-7.24)	0.17	2.20	(0.69-7.04)	0.18	2.24	(0.70-7.17)	0.17
SBP per 10 mmHg increase	1.14	(0.99-1.31)	0.07	1.14	(0.99-1.31)	0.07	1.14	(0.99-1.31)	0.06
Non-HDL	1.00	(0.78-1.29)	1.00	1.00	(0.77-1.29)	0.99	1.00	(0.77-1.29)	0.99
HDL	0.77	(0.44-1.38)	0.39	0.78	(0.44-1.39)	0.40	0.77	(0.43-1.37)	0.38
Diabetes	0.52	(0.16-1.68)	0.27	0.51	(0.16-1.67)	0.27	0.51	(0.16-1.67)	0.27
Creatinine	1.81	(0.55-5.95)	0.33	1.78	(0.55-5.83)	0.34	1.78	(0.55-5.80)	0.34
PRS (continuous per SD)				1.18	(0.92-1.49)	0.19			
PRS 1st Tertile							1.00	(Reference)	
PRS 2nd Tertile							1.37	(0.75-2.52)	0.31
PRS 3rd Tertile							1.36	(0.74-2.49)	0.32

Table S6: AUC for each predictor, the conventional model and the PRS added to the conventional model in males and females

	Males		Females	
	AUC	95\%CI	AUC	$95 \% \mathrm{Cl}$
Age	53.41%	$(47.75-59.08)$	67.35%	$(60.06-74.65)$
Current Smoking	51.24%	$(49.26-53.22)$	51.37%	$(48.35-54.40)$
Systolic Blood Pressure	48.15%	$(42.96-53.34)$	57.32%	$(50.71-63.93)$
Non-HDL	63.85%	$(58.81-68.89)$	50.79%	$(43.58-58.00)$
HDL	58.30%	$(53.55-63.05)$	50.71%	$(43.35-58.08)$
Diabetes	49.86%	$(47.24-52.49)$	51.02%	$(48.42-53.62)$
Creatinine	54.99%	$(49.66-60.34)$	56.01%	$(49.72-62.30)$
PRS	57.15%	$(52.20-62.11)$	54.98%	$(48.21-61.77)$
Conventional Model	66.58%	$(61.89-71.29)$	70.07%	$(63.46-76.69)$
PRS added to Conventional Model	68.18%	$(63.64-72.73)$	71.00%	$(64.45-77.55)$

Table S7: AUC for each predictor, the conventional model and the PRS added to the conventional model in individuals from the lowest and highest PRS tertile

	Lowest PRS Tertile		Highest PRS Tertile	
	AUC	95% CI	AUC	95\%CI
Age	65.35%	$(56.82-73.88)$	50.62%	$(43.02-58.22)$
Sex	61.58%	$(55.28-67.89)$	64.76%	$(59.38-70.15)$
Current Smoking	49.99%	$(47.72-52.28)$	52.67%	$(49.58-55.78)$
Systolic Blood Pressure	52.86%	$(44.97-60.75)$	52.81%	$(46.34-59.29)$
Non-HDL	64.85%	$(57.54-72.16)$	61.68%	$(55.62-67.75)$
HDL	54.94%	$(47.13-62.76)$	67.20%	$(60.82-73.59)$
Diabetes	51.94%	$(49.67-54.23)$	50.61%	$(47.47-53.76)$
Creatinine	61.06%	$(53.22-68.91)$	59.35%	$(53.36-65.34)$
PRS	50.37%	$(42.60-58.15)$	51.55%	$(44.59-58.53)$
Conventional Model	76.62%	$(70.49-82.76)$	73.21%	$(67.39-79.03)$
PRS added to Conventional Model	77.15%	$(71.07-83.23)$	73.38%	$(67.63-79.15)$

Table S8: Sensitivity analyses including information on intake of antihypertensive drugs and statins for calculation of the multivariable Cox regression model.

	HR	95% Cl	p-value
Age	1.09	$(1.06-1.12)$	<0.001
Female Sex	0.44	$(0.31-0.61)$	<0.001
Current Smoking	2.05	$(1.12-3.77)$	0.021
SBP per 10 mmHg increase	1.02	$(0.94-1.11)$	0.57
Non-HDL	1.34	$(1.15-1.56)$	<0.001
HDL	0.67	$(0.46-0.99)$	0.043
Diabetes	0.79	$(0.47-1.34)$	0.38
Creatinine	1.58	$(0.88-2.83)$	0.13
PRS (continuous per SD)	1.23	$(1.08-1.41)$	0.003
Intake of antihypertensives	1.73	$(1.29-2.31)$	<0.001
Intake of statin	0.75	$(0.53-1.07)$	0.11

Table S9: Sensitivity analyses including information on PCAs for calculation of the multivariable Cox regression model.

	HR	95\%CI	p-value
Age	1.09	(1.06; 1.12)	<0.001
Female Sex	0.46	(0.33; 0.65)	<0.001
Current Smoking	2.02	(1.10; 3.71)	0.024
SBP per 10 mmHg increase	1.04	(0.96; 1.13)	0.36
Non-HDL	1.35	(1.17; 1.56)	<0.001
HDL	0.64	(0.44; 0.95)	0.025
Diabetes	0.81	(0.48; 1.36)	0.42
Creatinine	1.88	(1.05; 3.35)	0.033
PRS (continuous per SD)	1.25	(1.09; 1.43)	0.002
PCA1	0.87	(0.50; 1.51)	0.61
PCA2	1.00	(0.66; 1.53)	0.98
PCA3	1.14	(0.93; 1.40)	0.19
PCA4	1.12	(0.92; 1.36)	0.27
PCA5	0.98	(0.93; 1.02)	0.28
PCA6	0.98	(0.96; 1.01)	0.24
PCA7	1.00	(0.97; 1.02)	0.79
PCA8	0.99	(0.93; 1.05)	0.70
PCA9	1.00	(0.99; 1.02)	0.56
PCA10	1.01	(0.99; 1.03)	0.61

Table S10: Interaction of sex with model covariables.

	HR	95\% CI	p-value
Age	1.06	(1.02; 1.10)	0.002
Female Sex	0.00	(0.00; 0.06)	0.002
Current Smoking	2.02	(0.99; 4.14)	0.05
SBP per 10 mmHg increase	0.98	(0.88; 1.09)	0.72
Non-HDL	1.57	(1.32; 1.86)	<0.001
HDL	0.52	(0.31; 0.88)	0.015
Diabetes	0.95	(0.53; 1.70)	0.86
Creatinine	1.71	(0.87; 3.36)	0.12
PRS (continuous per SD)	1.27	(1.08; 1.50)	0.005
Female Sex * Age	1.08	(1.02; 1.15)	0.007
Female Sex * Current Smoking	1.09	(0.28; 4.27)	0.90
Female Sex * SBP per 10 mmHg increase	1.16	(0.98; 1.38)	0.09
Female Sex * Non-HDL	0.64	(0.47; 0.86)	0.004
Female Sex * HDL	1.49	(0.68; 3.24)	0.31
Female Sex * Diabetes	0.54	(0.15; 2.02)	0.36
Female Sex * Creatinine	1.04	(0.27; 4.08)	0.95
Female Sex * PRS (continuous per SD)	0.93	(0.69; 1.24)	0.60

5. Supplementary Figures

Figure S1: Study flow chart

Figure S2: Principal component analysis (PCA) of the ASPREE cohort compared with the 1000 Genome Project. A. Shows PCA plot of all ASPREE participants mapped with 1000 Genome populations. B. Shows PCA plot of ASPREE Europeans samples with 1000 Genome Europeans samples that were included in this study.

In Figure legend 1000 genome populations are: Europeans, South Asians, East Asians, African American and Hispanics. ASPREE_AA is African American samples.

Figure S3: Distribution of the Polygenic Risk Score in the study population

The distribution of the PRS in the study population is provided. The mean value was -1.16 (SD $0.45)$. The red dashed lines indicate the PRS tertiles. The first tertile ranged from -2.73 to <1.35, the second tertile ranged from $1-35$ to <-0.97 and the third tertile ranged from -0.97 to 0.69 .

A correlation matrix including only continuous variables is provided. The size and the color of the circles indicate the strength of correlation, ranging from $r=-1$ (red) to +1 (blue).

Figure S5: AUC for the conventional model and after addition of the PRS to the conventional model

The area under the curve is provided for the conventional model including age, sex, smoking status (current smoking versus former or never smoking), systolic blood pressure, non-HDL, HDL, diabetes and creatinine. In addition, the area under the curve is re-calculated after adding the PRS to the risk model to discriminate between CHD events and non-events.

Figure S6: Calibration of the conventional model + continuous PRS

In this figure the observed and predicted risk for CHD events is compared.

