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1. Abstract 33 

Neuroscience studies require considerable bioinformatic support and expertise. Numerous 34 

high-dimensional and multimodal datasets must be preprocessed and integrated to create 35 

robust and reproducible analysis pipelines. We describe a common data elements and 36 

scalable data management infrastructure that allows multiple analytics workflows to facilitate 37 

preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain 38 

Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical and laboratory 39 

data. The infrastructure provides support for other datasets such as Fitbit and flexibility for 40 

developers to customize the integration of new types of data. Exemplar results from 200+ 41 

participants and 11 different pipelines demonstrate the utility of the infrastructure. 42 
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 44 

2. Introduction 45 

Neuroimaging studies such as ABCD, ADNI, Human Connectome, and Tulsa 1000 studies are 46 

significant contributors to the rapid growth of big data (Leow et al., 2009; Van Essen et al., 47 

2013; Jernigan et al., 2018; Victor et al., 2018). In addition to the usual high-dimensional data 48 

that accompany clinical studies (e.g., genetic, cellular and clinical assessments), neuroscience 49 

studies include multimodal data for the brain (e.g., MRI, Perfusion MRI [pMRI], diffusion MRI 50 

[dMRI], functional MRI [fMRI] and Electroencephalography [EEG]). The use of various data 51 

acquisition modalities and differences in studies’ experimental designs make it challenging to 52 

provide a common data architecture that would offer easy access, scalability, management 53 

and sharing, including the ability to build analytic workflows and to run large scale analyses 54 

with increasingly large numbers of subjects. Here, we propose possible solutions to these 55 

challenges and described our specific working implementation. 56 

As a part of the Neuroscience-Based Mental Health Assessment and Prediction (NeuroMAP) 57 

Center of Biomedical Research Excellence (CoBRE) award from National Institute of General 58 

Medical Sciences (NIGMS/NIH), the NeuroMAP Research Core provides research 59 

infrastructure to conduct advanced neuroscience research and also is responsible for providing 60 

active data management and analysis support, which includes standardization of all acquired 61 

data. Data collected for NeuroMAP consist of a core baseline assessment as well as 62 

subsequent individual projects sharing various common data elements. The research core 63 

protocol contains neuroimaging (e.g., MRI/pMRI/dMRI/fMRI/EEG), behavioral, self-report, 64 

biomarker, and actigraphy data acquired from large cohorts of participants who are then 65 

enrolled in the various other projects. Ongoing human recruitment into the core protocol is 66 
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roughly 100 participants per year in phase I (five years, with a possible extension to 10 years), 67 

so that this cohort is anticipated to reach 400+ participants. Currently at year 3, 310 68 

participants have been enrolled. A large and growing cohort size combined with several 69 

acquisition modalities amounts to a large and increasing set of heterogenous and complex 70 

data. 71 

Large-scale data collection pipelines are complex to establish while maintaining standardized 72 

experimental protocols on both the data-acquisition hardware level and on the clinical data 73 

management level. Follow-up analyses also require further standardization, which is often 74 

implemented in ad hoc software systems at different institutions and may even vary between 75 

labs within an institution. Home-grown solutions can work adequately, and over the past 76 

decade we have collected neuroimaging data from thousands of individuals using our own 77 

internal solutions. However, in recent years, progress has been made in the scientific 78 

community toward consensus solutions to improve data management and mechanisms for 79 

data sharing (Gorgolewski et al., 2016).   80 

There are a number of substantial costs when using custom data management solutions, not 81 

the least of which is developing the data processing standards, which can be difficult for 82 

researchers without informatics training. Idiosyncratic naming conventions and directory 83 

structures also add overhead when sharing datasets and analysis code that was developed for 84 

specific file structures. For example, a researcher unfamiliar with a particular dataset would 85 

need to learn about its conventions along with the details of the study. Sometimes, the first 86 

thing researchers do when working with a new dataset is reformat it to match a form they are 87 

familiar with, which is extra effort that could be avoided if standard formats were used. 88 

Similarly, reusing analysis code (e.g. scripts and software) often requires either extensive 89 
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reworking to be compatible with a new dataset, or reformatting the target data to be compatible 90 

with the existing code. 91 

One possible solution is the development of a complex data management system used to 92 

store, access, and even analyze neuroimaging and associated data. There have been several 93 

projects to produce such extensive systems over the past 15 years (Marcus et al., 2007; 94 

Keator et al., 2008; Van Horn and Toga, 2009; Ozyurt et al., 2010; Das et al., 2011; Scott et 95 

al., 2011; Book et al., 2013); however, they can come with significant overhead in installation, 96 

maintenance, and user training. In fact, our institute spent considerable time and resources 97 

attempting to implement one of these systems, a project which we ultimately abandoned due 98 

to excessive cost and technical difficulties. 99 

One of the main challenges is the need for a commonly accepted data structure format that 100 

would provide a consistent and standardized way to organize multi-level neuroimaging data. 101 

The Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016) was introduced in 2016 102 

and promises to alleviate some of the difficulties in organizing, documenting and sharing data 103 

and code while maintaining a simple, intuitive structure that is easy to understand and work 104 

with. With metadata stored directly on disk, either in the form of file names and locations or 105 

associated JSON sidecars, BIDS avoids requiring overly complex management software or 106 

databases.  The BIDS format is remarkably similar to our internally developed neuroimaging 107 

data organization solution and we decided to transition to BIDS for the NeuroMAP studies, 108 

common data elements and all new projects going forward. Wide acceptance of BIDS provides 109 

standardization across other datasets and facilitates sharing with the scientific community.  110 

 111 
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3. Methods  112 

3.1. Data Management Infrastructure Design 113 

The Common Data Elements and Scalable Data Managing Infrastructure can integrate 114 

neuroimage data with various other data types (Fig. 1).  The CDE data are in general 115 

composed from multimodal MRI, fMRI, EEG, physiological recordings, behavioral measures, 116 

self-reports measures, actigraphy from wearable devices, and biospecimen samples (e.g., 117 

blood and microbiome). Full details of the NeuroMAP core multilevel data collection are 118 

included in Supplementary Materials. All original data sources (left side of Fig. 1) are 119 

processed and stored in order to produce a BIDS-compliant dataset (right side of Fig. 1). The 120 

middle part of the figure shows intermediate steps and storage, while the right shows the final 121 

BIDS dataset. BIDS conversion of each element is described in detail in section 3.2. Colors are 122 

used to show which raw data and samples correspond to particular elements of the BIDS 123 

dataset in its final form.  124 

 125 

3.2. BIDS Conversion 126 

3.2.1. Self-report/REDCap 127 

Self-report and clinical measures (described in full in section S-1.1.1) stored in REDCap are 128 

exported into a BIDS-compliant format using the PyCap library built on top of the REDCap API. 129 

The inputs/outputs of this process appear in orange in Figure 1. In brief, an API key links a 130 

user and access rights to a single project. Data returned from REDCap include a table of 131 

subject data for the project as well as metadata about the project and data collection 132 

instruments. The data are converted to tsv format and stored in the phenotype folder following 133 
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BIDS specification. Similarly, the metadata describing the data collection instruments are 134 

stored in JSON formatted data dictionaries. The result is a json/tsv pair for each REDCap form. 135 

This script can be setup for other redcap projects and is available on GitHub 136 

(https://github.com/laureate-institute-for-brain-research/redcap-to-bids). 137 

3.2.2. Neuroimaging and associated physiological data 138 

Neuroimaging data are produced in two formats. Source DICOM images are reconstructed and 139 

generated by the scanner and permanently stored in a read-only central location. The default 140 

organization from GE DICOM file structure has each scan stored three-folders deep (e.g., 141 

pXXX/eYYY/sZZZ, where p, e, and s refer to patient, exam, and series). For each completed 142 

scan and patient exam, these DICOM images are automatically extracted, transferred to 143 

scanner-dedicated local storage and reorganized by custom developed real-time MRI scanner 144 

data management software. To reduce the storage burden associated with hundreds of 145 

thousands of individual files, DICOM folders are packaged in .tar.gz format at the exam 146 

directory level. This reduces the number of individual files stored by a factor of 105, and also 147 

saves significant storage space when individual files are smaller than the storage block size. 148 

Each DICOM image contains standard metadata indicating the subject ID, date, study, scan, 149 

and various imaging parameters: everything necessary to associate a scan with its final BIDS-150 

compliant name and location. However, parsing through the DICOM folders and extracting 151 

metadata is an expensive operation, even before considering the compressed format. We 152 

solved this problem by creating a REDCap project called the MRI Catalogue, which contains 153 

all relevant DICOM metadata. New DICOM images from MRI scans are processed and 154 

metadata describing them are imported into REDCap nightly. Our real-time MRI software also 155 

produces a unique exam folder (on scanner-attached and dedicated real-time processing Linux 156 

workstations), which contains AFNI formatted imaging data that are uploaded and created in 157 
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real time from a given session, along with any associated concurrent physiological recordings 158 

(pulse oximeter, respiratory belt, pre-processed EEG), electronic documentation for each scan 159 

with imaging parameters, DICOM file count and location on the local storage after extraction 160 

from the MRI scanner host computer and image database.  161 

Raw EEG data (without any preprocessing) acquired concurrent with fMRI are initially stored 162 

locally on a dedicated EEG recording computer and then synchronized and transferred to 163 

network storage nightly. Similarly, behavioral responses collected during scanning tasks are 164 

initially stored on a stimulus laptop and then moved to network storage immediately upon 165 

session completion. The decision to store data locally first, then move it to network storage 166 

was based on reliability and latency considerations, so that networking issues do not affect 167 

data collection. 168 

Neuroimaging and associated physiological data are organized and converted to BIDS format 169 

by a nightly batch process. This process handles the neuroimaging and behavioral data 170 

separately. In the first step, an export of all current MRI Catalogue data necessary for 171 

organization is extracted from REDCap. The organization process parses through these data 172 

looking for project and scan IDs matching lists for a particular project. Newly acquired 173 

matching scans are converted to nii.gz format and sent to the appropriate BIDS folder with an 174 

associated JSON sidecar. Importantly, the DICOM metadata also contains a pointer to the 175 

appropriate exam folder and series number, which is used to extract the associated 176 

physiological data. Technical issues often make data collection imperfect, e.g. scans may be 177 

aborted/restarted due to participant discomfort or imaging artifacts. Therefore, quality checks 178 

take place to help maintain data fidelity. The two most relevant checks include subject and 179 

duration matching. REDCap contains a list of subjects who have been consented for each 180 

study, so any subject ID in the MRI Catalogue that does not match a consented subject for the 181 
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study in question is not included. This happens, for example, with technical scans, which 182 

should not appear in the final dataset. The case where scans are repeated, producing multiple 183 

scans of the same type is handled by matching on expected duration. Any scan that does not 184 

have the expected duration is discarded, since shortened duration indicates an incomplete 185 

scan.  186 

The second part of the organization process handles new behavioral data found on network 187 

storage. These data are stored in a folder unique to the study and completion date/time of the 188 

session. Each behavioral folder should contain data from one subject at one visit, and any 189 

folders that contain multiple subjects or visits generate an error and are skipped until they are 190 

manually corrected. Reformatting raw behavioral data involves converting from csv to tsv, 191 

creation of a new header, and then placement in the final BIDS data structure. Raw EEG data 192 

are named according to subject ID, and quality control involves matching on subject ID, 193 

date/time, and duration, similar to what is done for imaging data.  194 

3.2.3. Behavioral data 195 

Data management for behavioral sessions completed outside the scanner mirrors that for the 196 

behavioral data from scanning sessions, where raw files are initially stored locally, moved to 197 

network storage at the end of the session, and then parsed/organized nightly. The behavioral 198 

session also includes physiological data acquired using Acknowledge software (BIOPAC 199 

Systems, Inc.). These data are initially stored as a single continuous file in .acq format 200 

covering the entire session. Bioread (https://github.com/uwmadison-chm/bioread) is used to 201 

convert to plain text format, which is then sliced into and saved as individual tsv.gz files for 202 

each task and run. Synchronization is done using the parallel port, with a unique code 203 
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indicating the start and end of each task. The appropriate header values are also extracted 204 

and stored in a JSON sidecar to be BIDS compliant. 205 

3.2.4. Biospecimens 206 

A detailed description of initial processing and storage of biospecimens is in the supplement (S 207 

1.1.5). Final processing of the collected samples may be carried out by a contract laboratory or 208 

done in-house and produces datasets of varying size. Blood samples are used to quantify a 209 

limited number of analytes (e.g. less than 50) describing inflammatory and metabolic states. 210 

These data are parsed and imported into REDCap for permanent storage, and then later 211 

exported into BIDS format in the same way as self-report scales. Blood samples are also sent 212 

for genotyping, which produces 650,000 or more values per participant. These data are not 213 

suitable for storage in REDCap, so they are stored in a separate repository where the location 214 

and genetic descriptors are identified in the BIDS data description. Microbiome samples 215 

produce similarly large datasets through 16S sequencing or other technologies, which again 216 

are identified in the data description to be BIDS compliant and do not have permanent storage 217 

within REDCap. 218 

3.2.5. Actigraphy/FitBit 219 

FitBit data are initially stored in a third-party database (Fitabase https://www.fitabase.com/, 220 

accessed 2/18/2021), which handles most of the overhead related to FitBit account 221 

creation/management and aggregation of many participants’ data. Data exported from 222 

Fitabase may be divided into daily summaries and momentary assessments. Due to account 223 

management details, daily summary data often include time periods outside of the assessment 224 

windows for each subject. Start and end dates, entered into REDCap by the researcher 225 

deploying the FitBit, are used to trim the summary data down to the appropriate timeframe. 226 
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These daily summaries are stored in a single table under the phenotype folder and include 227 

overall activity levels, sleep duration and quality. Momentary assessment data including 228 

minute-wise heart rate estimates are stored in each subject’s wearable folder and are in many 229 

ways similar to behavioral outputs. Fitabase provides FitBit data in four different time intervals: 230 

30 seconds, 1 minute, 1 hour, and 24 hours. 30-second interval data only includes sleep 231 

stages. Minute interval data include calories burned, activity intensity, metabolic equivalent of 232 

tasks (METs), current sleep stage, heart rate, and number of steps. One-hour interval data 233 

include calories burned, activity intensity, and number of steps. 24-hour interval data include 234 

activity summaries, calories burned, number of steps, and sleep.  235 

 236 

3.3.  Analytic Workflows 237 

Along with the conversion of raw data into BIDS format, the Research Core also provides a set 238 

of analysis pipelines, training, and support. 239 

3.3.1. Environment 240 

All data and analyses are hosted and completed on-site, providing full control of the systems’ 241 

configuration and operation. Our specific implementation of the primary data storage is 242 

accomplished using a network attached storage cluster running the open-source Ceph file 243 

system (CephFS). We would like to note that any modern storage hardware/solution and/or 244 

mixed local storage with cloud storage should provide alternative option for another site 245 

implementation. We selected CephFS as a scalable solution installed on commodity hardware, 246 

which allows administrators to add storage incrementally without rebuilding the entire cluster 247 

like some other solutions require. Performance scales with the size of the cluster, as data are 248 
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not accessed through a fixed set of head nodes. LIBR currently has 2 petabytes of raw 249 

storage, which is 1PB of usable space after data duplication. Additionally, there is a full off-site 250 

backup copy stored roughly 100 miles away on an identical Ceph cluster. As a final precaution, 251 

LIBR also sends periodic tape backups to Iron Mountain using a Spectra BlackPearl appliance. 252 

LIBR has 8 high-performance servers configured with the slurm workload manager 253 

(https://slurm.schedmd.com/). Each server has 24 physical cores, allowing up to 192 jobs to 254 

run in parallel and a total of over 24,000 GFlops/second. Jobs optimized to run on GPUs can 255 

take advantage of 4 Nvidia Tesla P100 cards, providing an additional 75,200 GFlops/second of 256 

computing power. Nodes are configured with 187 or 376 GB of RAM and overall networking 257 

throughput is 320 Gbps. This centralized processing infrastructure helps mitigate the 258 

bottleneck associated with network attached storage by providing 40 Gbps connections, which 259 

far outperform standard 1Gbps connections used in modern ethernet.  260 

The storage and computing infrastructure just described was designed and developed 261 

incrementally to balance cost with performance, security, and overhead for training and 262 

maintenance. As we noted above, our data organization and processing workflows, however, 263 

do not depend on the physical details of our environment and could be implemented on a 264 

variety of systems or in the cloud. 265 

3.3.2. Pipeline Architecture Overview 266 

Subject and group level analyses are conducted separately. Processing pipelines are 267 

implemented to service an individual subject and analysis, where an analysis typically deals 268 

with one task and set of processing parameters (Fig. 2). This allows for parallelization at the 269 

subject plus pipeline level, with separate jobs submitted for each subject.  270 

 271 
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All single-subject analyses are submitted to the batch scheduler using a script named 272 

preprocess-all-BIDS.py. This wrapper reads in a configuration file with pointers to the root of 273 

the source data directory (i.e., the root of one BIDS dataset), the desired root of the output 274 

directory tree and which pipeline to run. The output directory structure mirrors the BIDS 275 

formatted input, so that individual subject/session/pipeline results are stored in [Results 276 

Root]/sub-[subject]/ses-[session]/[leaf]. preprocess-all-BIDS.py traverses the input folder 277 

structure, and for every subject/session checks to see if a job has already been submitted, 278 

based on the existence of specially named status-indicating files in the output directory. If this 279 

subject/session combination has not been run for this pipeline, the output directory is created 280 

and a job is submitted. 281 

Results for an individual subject/session/task/pipeline include derived values to be tabulated, 282 

quality control images in png or jpg format, and larger format derived data, like voxelwise 283 

statistics. Derived values include metrics like subject head motion, subject performance 284 

including mean reaction times and accuracy, physiological measures including heart rate, and 285 

in the case of imaging tasks, extracted activations, contrasts, and volumes from atlas-based 286 

regions of interest. All derived values are stored in files ending in the .longformat suffix, where 287 

these are simple text files in attribute-value format. After processing data for all subjects, all 288 

values found in .longformat files are combined, producing a consolidated table with a single 289 

row per subject and session and one column per attribute. This consolidated format, ready for 290 

use in various statistics applications, is saved as in .csv and, RData formats, the later binary 291 

being preferable for large imaging datasets with tens of thousands of variables, which can lead 292 

to performance issues when reading in text data. 293 

Any manual quality control processes are simplified by storing appropriate images in jpg or png 294 

format. For examples, this may include EKG traces with identified R wave peaks, or montages 295 
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showing alignment and normalization of neuroimaging data. This allows the user to flip through 296 

QC images for a dataset relatively quickly without, for example, needing to open neuroimaging 297 

data in specialized software. 298 

3.3.3. Neuroimaging Pipeline Options 299 

fMRI Pipelines. Neuroimaging processing pipelines necessarily include numerous decisions, 300 

such as which software to use, whether to include linear or non-linear normalization to 301 

standard space, what smoothing kernel to apply, what nuisance regressors to use at the 302 

regression step and so on. These analysis decisions can impact the final results and 303 

interpretation of a study, which was recently illustrated through divergent results obtained by 304 

70 independent groups of researchers who all analyzed the same data (Botvinik-Nezer et al., 305 

2020). Therefore, frameworks like ours that allow the sharing of analysis workflows are 306 

essential for reproducibility and replicability. An individual researcher may customize a 307 

particular pipeline or use one of our 3 standard options for each fMRI task, labeled P01 308 

through P03. P01 is a traditional approach using AFNI (Cox and Hyde, 1997) and includes 309 

removal of the first 3 volumes, despiking, slice-timing correction, co-registration between 310 

functional and structural volumes, motion correction, 4mm of gaussian blur, and an affine 311 

transformation to standard space. P02 is similar to P01, except that it includes a non-linear 312 

warp to standard space and RETROICOR correction (Glover et al., 2000), which helps remove 313 

physiological noise but requires the collection of pulse oximeter and respiratory belt data.  314 

P03 takes a completely different approach, instead using fMRIPrep (Esteban et al., 2019) to do 315 

all preprocessing up until the regression step, which still uses AFNI’s 3dDeconvolve. 316 

Preprocessing with fMRIPrep uses mainly default parameters, so that a combination of tools  317 

are used to 1) select a reference fMRI volume (mean of high contrast available in initial pre T1-318 
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saturation or pre Steady State Free Precession fMRI volume); 2) perform boundary based 319 

registration with the T1-weighted images (Greve and Fischl, 2009); 3) estimate head motion 320 

prior to any spatiotemporal filtering using mcflirt in FSL 5.0.9 (Jenkinson et al., 2002); 4) 321 

perform slice timing correction using AFNI (Cox and Hyde, 1997); 5) perform nuisance 322 

regression including regressors for Framewise Displacement and DVARS (Power et al., 2014); 323 

average CSF, white matter, and whole brain signals, as well as physiological regressors using 324 

CompCor (Behzadi et al., 2007). Regardless of the pipeline, standard derived data from task-325 

based fMRI include regression coefficients and contrasts extracted for each ROI in several 326 

atlases and summaries of head motion for quality control. 327 

Resting state preprocessing P04 pipeline  includes the same options as task data, with the 328 

addition of a fourth option, which is similar to P02 pipeline but also includes additional motion 329 

correction prior to slice timing correction via an automatic EEG assisted slice-specific motion 330 

correction for fMRI (aEREMCOR) (Wong et al., 2016). While it would be possible to include 331 

this additional motion correction step for task-based data, it is particularly important in resting 332 

state, where the residual effects of head motion are well known, and they might differ for each 333 

acquired slice (Power et al., 2015). Standard derived data from resting-state fMRI include a 334 

correlation matrix between pairs of ROIs from multiple atlases (e.g. the Brainnetome (Fan et 335 

al., 2016)) and summaries of head motion. 336 

EEG pipelines: Simultaneous EEG-fMRI offers several benefits to measure and study the 337 

human brain's spatial and temporal dynamics in health and disease. However, EEG data 338 

collected during fMRI acquisition are contaminated with MRI gradients and ballistocardiogram 339 

artifacts, in addition to artifacts of physiological origin (eye blinks, muscle, motion), these 340 

artifacts need to be detected and suppressed before further data analysis (Mayeli et al., 2019). 341 

We have developed in house a comprehensive automated pipeline for EEG artifact reduction 342 
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(APPEAR) recorded during fMRI, which we have incorporated into the BIDS preprocessing 343 

pipeline architecture (Fig. 2). APPEAR is capable of reducing all main EEG artifacts, including 344 

MRI gradients, BCG, eye blinks, muscle, and motion artifacts, and can be applied to large (i.e., 345 

hundreds of subjects) EEG-fMRI datasets. APPEAR was evaluated, tested and compared to 346 

manual pre-processing EEG data for both resting EEG-fMRI recording as well as for event-347 

related potential or task-based EEG-fMRI experiments in an exemplar eight subject EEG-fMRI 348 

dataset.  349 

4. Results 350 

We provide examples illustrating pipelines P01 through P04 to help demonstrate the utility of 351 

the processing infrastructure. 352 

4.1. Task fMRI Results 353 

Exemplar CDE data have been processed for the Monetary Incentive Delay and Stop Signal 354 

tasks (see the supplementary material for tasks details). Figure 3a shows voxel-wise maps for 355 

the P5 - P0 contrast in the MID as produced by pipelines P01 through P03. Data from 93 356 

participants are included here, with pipelines P01 through P03 taking approximately 1.3, 4, and 357 

5 CPU hours per subject to complete. With the architecture detailed in 3.3.2, processing for all 358 

three sets of data could be completed in under one day when all resources are available. The 359 

alignment QC images produced by each pipeline make it possible to complete all manual QC 360 

for roughly 100 participants and one pipeline in less than one hour. Figure 3b shows voxelwise 361 

maps of the Stop – NoStop contrast from the stop signal task, again produced by pipelines 362 

P01 through P03. These maps include data from 49 participants.  363 

 364 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.16.21253726doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 365 

4.2. Resting State fMRI Results 366 

Exemplar CDE data have also been processed for resting-state fMRI using all four pipelines, 367 

P01-P04. Figure 4a shows the average connectivity matrix extracted from the Brainnetome 368 

atlas and organized by approximate networks identified using the Yeo 7-network atlas (Yeo et 369 

al., 2011). All pipelines produce qualitatively similar results at the group level.  370 

 371 

 372 

 373 

 374 

Figure 5 shows the relationship between individual features (correlation strengths) measured 375 

with different pipelines. Points on the 45 degree line indicate complete agreement between 376 

methods, while divergence from that line illustrates differences between pipelines.  377 

  378 
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 379 

   380 

4.3. EEG Preprocessing 381 

We have utilized the APPEAR pipeline to preprocess EEG data acquired concurrently with 382 

fMRI, and then applied comprehensive EEG feature extraction from five subsets of EEG 383 

features including amplitude, connectivity, fractal dimension (FD), range and spectral power 384 

features. Furthermore, each subset of features was applied to Alpha [8-13] Hz, Beta[15-30] Hz, 385 

Theta[4-7] Hz, Delta[0.5-4] Hz, Gamma [30-40] Hz and whole range of EEG frequency [0.5-40] 386 

Hz. An exemplar EEG feature correlation matrix is shown in Figure 6. The exemplar use of the 387 

extracted EEG features and automated EEG preprocessing can found elsewhere 388 

[https://github.com/obada-alzoubi/Comprehensive_EEG_Features_Extraction].   389 

 390 

5. 4. Discussion 391 

The proliferation of high-throughput data-generating technologies in biomedical research has 392 

led to data analytics challenges for creating easily reusable and reproducible pipelines. These 393 

challenges are especially salient for neuroscience studies, which not only involve the usual 394 

high-dimensional data but also include multiple neuroimage-specific data types and complex 395 

psychological trait data. The current study describes a scalable environment and set of 396 

software pipelines to preprocess neuroimaging (MRI, fMRI, and EEG) and behavioral data 397 

while integrating them with other subject-level high-dimensional data to perform sharable, 398 

reproducible analyses.  399 

The services and computational environment developed by the Research Core provide a set of 400 

tangible benefits to ongoing research. Massive amounts of complex neuroimaging data are put 401 
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into a standard (BIDS) format with minimal human interaction in an ongoing basis. The 402 

architecture for converting data to BIDS format is flexible and scalable, so that new studies 403 

often have compliant data from day 1. 404 

Once the data for a study are in BIDS format, running any of our standard preprocessing 405 

pipelines becomes a quick process. With relatively little human intervention, preprocessing 406 

jobs can be created for hundreds or thousands of participants, and the processing and network 407 

storage infrastructure can produce results in days rather than weeks. Having multiple pipelines 408 

available for the same tasks gives researchers the ability to verify that their results are robust 409 

to the details of the preprocessing pipeline, as others have shown the wide variation in 410 

analysis results to be a serious concern (Botvinik-Nezer et al., 2020). 411 

In this work, we provide exemplar results 11 different pipelines (3 pipelines on each of 2 fMRI 412 

tasks, 4 pipelines on resting-state fMRI, and one pipeline on resting EEG) to demonstrate the 413 

utility of our infrastructure. Additionally, ROI-level results from our standard pipelines have 414 

been used in studies of cannabis (Spechler et al., 2020) and stimulant/opioid use (Stewart et 415 

al., 2020), while voxelwise results have appeared in studies of neighborhood effects (Feng et 416 

al., 2019) and inflammation (Burrows et al., 2021), and clinical data have been used to predict 417 

head motion during scanning (Ekhtiari et al., 2019). We have also used EEG derived features 418 

have to differentiate participants with mood and anxiety disorders from healthy controls (Al 419 

Zoubi et al., 2019) and to predict participant age (Al Zoubi et al., 2018).  420 

Our workflow incorporates many diverse processing and analysis tools such as afni, freesurfer, 421 

fmriprep and uses the BIDS format. However, it has been noted that the large number of 422 

analysis degrees of freedom in neuroscience increases the risk of false discoveries due 423 

(Wicherts et al., 2016). Each analysis step can result in an expanding decision tree of potential 424 

analyses. Determining the best workflow software or pipeline option for a given experiment is 425 
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an ongoing question, but the current software provides standard selections for the many 426 

analysis options. As the field evolves and standards consolidate, the default processing and 427 

analysis parameters will converge to standards with lower variation and increased replicability.   428 

In addition to neuroimaging data, our current pipelines include other common data types and 429 

can be easily extended to other high-throughput data, such as genetic and gene expression. 430 

Many neuroscience studies also include large non-neuroimage datasets, such as GWAS, 431 

which has its own relatively complex file format known as Plink. BIDS is opensource and under 432 

active development, and integration with these other datasets will be straightforward 433 

extensions of BIDS.   434 

 435 
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Figure Captions: 558 

Figure 1.  Common Data Elements and Scalable Data Management Infrastructure. Data 559 

generated and represented with different colors (left) are converted into the BIDS file structure 560 

(right), where colors of directories correspond to data types on left.  561 

Figure 2. Preprocessing pipelines operate on BIDS-formatted inputs and create output in 562 

tabulated form for group level analysis. Derived data are colored to match raw data sources. 563 

Figure 3. Exemplar voxel-wise task activation maps produced by three different pipelines. A) 564 

Monetary Incentive Delay P5 – P0 contrast from n=93 participants at p < 0.001. B) Stop Signal 565 

Stop – NoStop contrast from n=49 subjects at p < 0.001.  566 

Figure 4. The set of group average correlation matrices from resting state with: P01 (linear 567 

registration), P02 (nonlinear registration+RETROICOR correction), P03 (fMRIPrep), P04 (P02 568 

+ aEREMCOR).  569 

Figure 5. Node-to-node correlations measured for individual subjects. Each point represents 570 

the connectivity measured for one pair of ROIs and one subject, with the X and Y values 571 

representing the connectivity measured obtained with two different pipelines. 20,000 points 572 

were randomly sampled for plotting. 573 

Figure 6. The correlation matrix of 3032 EEG features extracted using comprehensive EEG 574 

features extraction for resting-state condition. Five different subsets of features were extracted 575 

including Amplitude (31 Channels × 5 bands× 6 types = 930 features), connectivity (24 576 

features), FD (31 Channels × 1 Feature=31 ), range (31 Channels × 5 bands× 8 types = 1240 577 

features) and spectral power features (31 Channels × 5 bands× 5 types + 31 Channels ×1 578 

Feature = 806 features).  For more details about each subset of features, please see (Al Zoubi 579 

et al., 2018).   580 
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