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Supplemental Methods: 

Subject-level quality control with mriqc 

Participants were excluded from the analyses if visual inspection identified the presence of 

gross motion or scanner-related artifacts in the T1w or T2w images, or in the mriqc background 

noise images, (e.g., ghosting, blurring, ringing, banding, etc.). The distribution of mriqc image 

quality metrics (IQMs) reflecting scan noise in our study were compared to the distribution of 

IQMs collected by the mriqc server from other studies and available via its API, from 1046 T1w 

and 619 T2w images collected using similar parameters (1). Scans with IQMs beyond the 

interquartile range of the mriqc API data (median +/- 1.5 x 75% quartile – 25% quartile) were 

flagged as potential outliers and were re-inspected. The distributions of the mriqc IQMs for the 

remaining participants were not different from the distribution of IQMs from the mriqc API 

(Supplemental Figures 1&2). 

Group-level preprocessing 

Data quality in some brain regions is worse than in the other regions due to susceptibility 
artifacts (2). This inconsistent quality of data may increase variability in myelin values across 
participants. The distribution of myelin values across all participants in each of the 360 regions 
was examined to identify regions whose variability was an outlier relative to variability in other 
regions. The coefficient of variation (sd/|mean|) was used to summarize the variability within 
each region. Rosner’s test for outliers (3,4) identified 11 outlier parcels with excessively high 
variation (Supplemental Table 1) including parcels located in bilateral hippocampus, entorhinal 
cortex, presubiculum, piriform cortex, and posterior orbitofrontal cortex complex, and the right 
subgenual cingulate (bilateral H, EC, PreS, Pir, pOFC, and right 25).These regions, which are 
known to suffer from an excess of susceptibility artifacts (5,6), were removed from the analyses, 
leaving 349 parcels. 

Below is a step-by-step description of the nested-cross validation analysis. 

1. We identified all possible combinations of UD and HC participants to be held out in the 

nested analysis: 39 UD * 47 HC = 1833 combinations. This determined the number of 

loops of nested cross-validation.  

2. In each loop of nested cross-validation, one UD/HC participant pair was set aside. The 

remaining 84 participants were used in the elastic net analysis and were then used to 

run the linear discriminant analysis (LDA). The UD/HC pair that was set aside was then 

used to test the LDA model as the final step in each loop. As there were 1833 unique 

UD/HC participant pairs, the nested analysis was run 1833 times, with 84 participants in 

the training data and a different UD and HC pair set aside as testing data. Each of the 

1833 nested analyses was conducted in the following way: 

a. First, logistic elastic net was used to predict UD/HC status using cortical myelin 

values from n=349 parcels, age, IQ, and sex. Leave-one out cross validation (i.e., 

train the model on 83 participants, test on 1 participant, repeat 84 times) was 

used to identify the optimal λ that corresponded to the minimal mean cross-

validation error + 1 SE (7).  

b. Second, the optimal λ was used to fit an elastic net model and select variables 

important for UD vs. HC classification. 
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c. Third, this set of variables was used to train the LDA model on the same 84 

participants.  

d. Fourth, the LDA model was then tested on the two participants (1 UD and 1 HC) 

that were held out in each nested cross-validation loop. If elastic net did not 

identify any variables beyond the model intercept, then both participants were 

recorded as misclassified.  

3. As each participant was tested using LDA 84 times, participant-wise accuracy was 

computed as the mean of 84 LDA accuracies. Total model accuracy was computed as 

the average of the participant-wise accuracies. Model sensitivity and specificity were 

computed as the average of UD-only and HC-only participant accuracies, respectively.  

4. The list of all variables selected by at least one elastic net model was generated. For 

each variable on this list, the proportion of the n=1883 models in which it was selected 

by the elastic-net regression was computed (i.e., variables selected in every model 

would be 100%, while variables that were selected in one model would be 0.0545%).   

5. In order to identify the noise level for the frequency of variable selection as well as model 

fit, we repeated the same procedures described above while permuting UD/HC labels. In 

the permuted-labels analysis, each of 1833 loops was repeated 100 times for each set of 

84 retained (training set) + 2 held-out (testing set) participants. To ensure unique 

randomization of UD/HC labels in each training set, a different random seed was used 

for each of 1833*100=183300 loops. True labels were kept for participants in the testing 

set.  As UD/HC labels in the training sets were randomized, these classification results 

reflect model performance when myelin values do not carry useful information for 

distinguishing UD from HC (i.e., they reflect false-positive results and over-fitting). 

Accuracy and variable selection frequency were computed as described in the 

procedures for true-label analysis. 

6. To identify the variables most strongly predictive of case/control status, and which are 

less likely to reflect noise, the variable selection frequency with true case labels was 

compared to the variable selection frequency with permuted case labels. The variable in 

the true-label model was retained if it was above selection frequency for this variable in 

the permuted-label model plus 3.5 IQR. For example, if a variable was selected in 75% 

of models using the true case labels, but only in 2% of models with the permuted labels, 

then that variable was retained. 

 

 

 

 

 

 

 



5 
 

Supplemental References 

1.  Beard E. MRIQCeption. 2020.  

2.  Olman CA, Davachi L, Inati S. Distortion and signal loss in medial temporal lobe. PLoS 
ONE. 2009;4(12).  

3.  Rosner B. On the detection of many outliers. Technometrics. 1975;  

4.  Millard SP. EnvStats, an RPackage for Environmental Statistics. In: Wiley StatsRef: 
Statistics Reference Online. 2014.  

5.  Deichmann R, Gottfried JA, Hutton C, Turner R. Optimized EPI for fMRI studies of the 
orbitofrontal cortex. NeuroImage. 2003;19(2):430–41.  

6.  Weiskopf N, Hutton C, Josephs O, Deichmann R. Optimal EPI parameters for reduction 
of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T. 
NeuroImage. 2006;33(2):493–504.  

7.  Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via 
coordinate descent. Journal of Statistical Software. 2010;  

 



6 
 

Supplemental Figure 1. Comparison of T1 mriqc values between study data and API data 

 

a) Coefficient of joint variation between white matter and gray matter. Higher values indicate more head 

motion and/or intensity non-uniformity artifacts. b) Contrast-to-noise ratio, reflecting separation between 

GM & WM. Higher values indicate higher quality. c) Intensity non-uniformity (bias field) median. Values 

closer to 1 indicate higher quality; further from zero indicate greater RF field inhomogeneity. d) Intensity 

non-uniformity (bias field) range. Values closer to 1 indicate higher quality; further from zero indicate 

greater RF field inhomogeneity. e) Mortamet's quality index 2. A quality index accounting for effects of 

both clustered and subtle artifacts in the air background. Higher values indicate lower quality. f) Signal-to-

noise ratio within the CSF mask. Higher values indicate higher quality. g) Signal-to-noise ratio within the 

grey matter mask. Higher values indicate higher quality. h) Signal-to-noise ratio within the total mask. 

Higher values indicate higher quality. i) Signal-to-noise ratio within the white matter mask. Higher values 

indicate higher quality. 
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Supplemental Figure 2. Comparison of T2 mriqc values between study data and API data 

 

a) Coefficient of joint variation between white matter and gray matter. Higher values indicate more head 

motion and/or intensity non-uniformity artifacts. b) Contrast-to-noise ratio, reflecting separation between 

GM & WM. Higher values indicate higher quality. c) Intensity non-uniformity (bias field) median. Values 

closer to 1 indicate higher quality; further from zero indicate greater RF field inhomogeneity. d) Intensity 

non-uniformity (bias field) range. Values closer to 1 indicate higher quality; further from zero indicate 

greater RF field inhomogeneity. e) Mortamet's quality index 2. A quality index accounting for effects of 

both clustered and subtle artifacts in the air background. Higher values indicate lower quality. f) Signal-to-

noise ratio within the CSF mask. Higher values indicate higher quality. g) Signal-to-noise ratio within the 

grey matter mask. Higher values indicate higher quality. h) Signal-to-noise ratio within the total mask. 

Higher values indicate higher quality. i) Signal-to-noise ratio within the white matter mask. Higher values 

indicate higher quality. 
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Supplemental Figure 3. Association of antidepressant medication with cortical myelin 

 

In participants with UD (n=39), antidepressant medication (n=22 were taking antidepressants, 

n=17 were not) was nominally associated (p<0.05 uncorrected) with cortical myelin in 4 of the 

33 selected parcels.   


