Original article

Sleep, pain, and neurodegeneration: A Mendelian randomization study

Running head: Sleep, pain, and neurodegeneration

Sandeep Grover, PhD¹, International Age-related Macular Degeneration Consortium

(IAMDGC), Manu Sharma, PhD¹

¹Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry,

University of Tübingen, Tübingen, Germany

Corresponding Author:

Dr. Manu Sharma

E-Mail: manu.sharma@uni-tuebingen.de

Phone: 0049-7071-2978259

Fax:0049-7071-295075

Character count:

Title: 96, Running head: 39

Number of words:

Abstract: 299; Body of the Manuscript: 4743 (Excluding abstract and references)

Number of Figures: 1; Number of Tables: 6; Number of Supplementary Tables: 3

Abstract

Objective

To examine whether sleep and pain-related traits have a causal effect on the risk of neurodegeneration.

Design

Two-sample Mendelian randomization using an inverse-variance weighted (IVW) estimate of the summary effect estimates.

Setting

Genetic data on sleep and pain-related traits and neurodegenerative disorders (NDD) from various cohorts comprising individuals predominantly of European ancestry.

Participants

Participants from the International Sleep Genetic Epidemiology Consortium (ISGEC), UK Biobank sleep and chronotype research group, International Genomics of Alzheimer's patients (IGAP), project MinE, International Age-related Macular Degeneration Consortium (IAMDGC), International Multiple Sclerosis Genetics Consortium (IMSGC), International Parkinson's Disease Genomics Consortium (IPDGC)

Exposures

Self-reported chronotype (CHR), morning preference (MP), insomnia symptoms (INS), sleep duration (SP), short sleep (SS), long sleep (LS), and multisite chronic pain (MCP)

Main outcome measures

Age-related macular degeneration (AMD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS), and Parkinson's disease (PD)

Results

We considered a threshold of P=0.00142 as significant accounting for multiple testing, and P<0.05 was considered to be suggestive evidence for a potential association. Using direct MR, MP was observed as the strongest risk factor for AMD ($OR_{IVW} = 1.19, 95\%$ CI 1.08, 1.32, P = 0.00073). We observed suggestive evidence of influence of different sleep traits on neurodegeneration: CHR on AMD ($OR_{IVW} = 1.27, 95\%$ CI 1.08, 1.49, P = 0.0034), SS on AD ($OR_{IVW} 1.26, 95\%$ CI 1.08, 1.46, P = 0.0044), and INS on ALS ($OR_{IVW} 1.55, 95\%$ CI 1.12, 2.14, P = 0.0123). The association of SS with AD was, however, lost after the exclusion of overlapping UKB samples. Using pain as exposure, our study failed to observe any role of pain in neurodegeneration. Results were largely robust to reverse causal analyses and sensitivity analyses accounting for horizontal pleiotropy.

Conclusions

Our study highlighted the role of morning preference as a risk factor for AMD and provided suggestive evidence of different sleep traits on a wide spectrum of neurodegenerative diseases. **Keywords:** Mendelian randomization, Causal inference, Neurodegenerative disorders, Sleep, Pain, Chronotype

Introduction

Patients with neurodegenerative diseases (NDD) often experience changes in circadian rhythmic activities¹². It has been observed that such changes often appear at an early stage of neurodegeneration and might be even a risk factor in younger healthy adults³⁻⁷. Many of the NDD patients with circadian disruptions also complain of painful symptoms of variable origin and intensity⁸. While chronically painful conditions are often associated with sleep disturbances in healthy individuals, the relationship between sleep and pain in NDD is poorly understood ^{9 10}. Similar to sleep disturbances, it has also been suggested that pain could be present even in the

early phase of the disease and could even worsen the other symptoms¹¹⁻¹⁴. However, both sleep and pain could often be treated and thereby can help maintain a stable quality of life in the absence of any disease-modifying treatments for NDD¹⁵. A greater understanding of the etiological relationship between sleep, pain, and neurodegeneration could thereby enable better management of NDD.

It is well recognized that circadian dysfunction in old age is due to degeneration of the suprachiasmatic nucleus (SCN) in the anterior hypothalamus, directly connected to the light-sensing retina¹⁶. Several behavioral markers, including sleep timing, daytime sleepiness, and rest-activity rhythmicity, can robustly identify any such disruption in circadian rhythms. However, individuals with neurodegeneration exhibit severe circadian disruptions compared to healthy adults of the same age¹². Different NDDs further exhibit marked heterogeneity in the manifestation of such disruptions, which could be attributed to the loss of different neuronal subpopulations in the SCN.

Several studies have shown the adverse impact of sleep deprivation in NDDs. For example, sleep deprivation has been shown to increase Amyloid-β and tau pathology in the Alzheimers' disease (AD) mouse model ¹⁷. Similarly, disruption of non-24-h light-dark cycles in mouse models of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) is associated with increased glial activation and neuroinflammation ^{18 19}. Clinically, patients with AD often show sleep-wake rhythm disorder, and patients with PD show a reduction in the amplitude of the circadian rhythm^{20 21}. A limited number of longitudinal studies have demonstrated the potential influence of circadian disruptions on predisposition to AD, PD, and related markers of neurodegeneration^{7 22-24}. For example, a 17 years follow-up study in 11247 adults showed an increased risk of dementia in individuals rising late in the morning²⁴. Similarly, an 11 years

follow-up study in 2920 older men without PD demonstrated an association of long-day sleepiness with increased risk of PD⁷.

Similar to the involvement of specific brain regions directly influencing the circadian rhythms, several brain regions also referred to as pain matrix, have been shown to be activated during pain perception^{25 26}. The pain matrix comprises of primary (S1) and secondary (S2) somatosensory cortex, insula, anterior cingulate cortex (ACC), amygdala, prefrontal cortex (PFC), and thalamus further show differential activation during acute and chronic pain²⁷. Aging is specifically known to increase the likelihood of chronic pain and may amplify the neurodegeneration process^{28 29}.

However, the sparse number of large longitudinal studies and clinical trials have limited our progress in understanding the relationship between sleep, pain, and onset or progression of neurodegeneration, necessitating the need for searching alternative approaches for judging the causality. Mendelian randomization (MR) is one such approach that relies on using instruments or proxy markers of risk factors of interest in one population to judge causality with outcome in an independent population³⁰. Such an approach could thereby eliminate the need for the co-existence of markers of sleep and pain and NDD in the same population. MR relies on assumptions of a strong association of genetic instruments with the risk factor of interest and influence of genetic instrument on outcome only through risk factor³¹. The approach has been able to successfully replicate several previously known findings from observational studies, including the association of telomerase length with AD³², alcohol drinking with amyotrophic lateral sclerosis (ALS)³³, high-density lipoprotein cholesterol (HDL-C) with age-related macular degeneration (AMD)³⁴, vitamin D with multiple sclerosis (MS)³⁵, smoking with PD³⁶.

To date, sleep duration has been investigated for its unidirectional causal association with AD³⁷. The study, however, showed a lack of any causal relationship. Furthermore, MR studies exploring the causal association of pain with neurodegeneration are lacking. Considering the highly varied role of various behavioral biomarkers of circadian rhythm on neurodegeneration and potential overlapping etiology of sleep and pain, we adopted a highly comprehensive approach by exploiting the availability of genetic instruments for various markers of circadian rhythm, mainly sleep duration (SD)³⁸, short sleep (SS)³⁸, long sleep (LS)³⁸, chronotype (CHR)³⁹, morning person (MP)³⁹, insomnia (INS)⁴⁰, and multisite chronic pain (MCP)⁴¹, and NDDs including AMD⁴², AD^{43 44}, ALS⁴⁵, MS⁴⁶, and PD^{47 48} to dissect the bi-directional relationship between sleep, pain, and neurodegeneration using an MR approach.

Methods

Study design and identification of datasets

We employed a two-sample MR study design using summary estimates to examine the lifelong effect of sleep and pain-related traits on the risk of neurodegeneration in the European populations. We used the latest available discovery cohorts of meta-analyses of GWAS datasets in the literature. We identified single nucleotide polymorphisms (SNPs) that influence circadian rhythm-related traits, including CHR³⁹, MP³⁹, INS⁴⁰, SD³⁸, SS³⁸, LS³⁸, and MCP⁴¹. The details of GWAS datasets employed for the current study are further shown in **Table 1**. We adopted a cutoff of 5×10^{-8} to select the genetic instruments. Concerning the outcome datasets, we used the discovery cohort of a recent meta-analysis of GWAS on AMD⁴², AD⁴³, ALS⁴⁵, MS⁴⁶, and PD⁴⁷, as described in **Table 1**. We further used the same datasets to prioritize genetic instruments to conduct MR using different NDDs as exposures for checking reverse causality (as discussed later in the sensitivity analysis).

Prioritization of genetic variants

All the prioritized SNP IDs and positions were synchronized with the NCBI GRCh37 assembly. We further checked for the validity of MR assumptions by excluding SNPs with F-statistics >10 and loci known to be directly involved in neurodegeneration based on the existing evidence from previously published literature.

As the selected genetic instruments could be correlated, we performed clumping of the significantly associated SNPs in each GWAS dataset with the clump_data function of the TwoSampleMR Package (version 0.4.25) in R (version 3.6.1)⁴⁹. We employed a clumping window of 10,000 kb and linkage disequilibrium (LD; i.e. r²) cutoff of 0.001 and used the European population in the 1000Genome Phase 3v5 dataset to identify the leading SNP⁵⁰.

The leading SNPs were further checked for availability in the respective outcome datasets. If a specific SNP was not available, a proxy SNP ($r^2 > 0.8$) was used, when possible. We further computed the pooled variance (R^2) for the respective risk factor using effect estimates (β_x) and effect allele frequencies (EAF) of individual genetic instruments, i.e. $R^2 = 2*\beta_x^{2*}EAF^*(1-EAF)$. The detectable risky and protective effect estimate at 80% power was computed for each neurodegenerative disorder as an outcome at various pooled variances explained by the genetic instruments (ranging from 0.25% to 7.5%) using the method described by Brion *et al.* (available at http://cnsgenomics.com/shiny/mRnd)⁵¹. To compute the effect estimates at specific variance for a given outcome, we employed a sample size of each outcome dataset, the proportion of patients in the same dataset, and a threshold p-value of 1.42×10^{-3} (see the section below).

Causal effect estimation and test of pleiotropy

We used the inverse variance-weighted (IVW) effect method as the primary method to compute the causal effect estimates⁵². We computed the causal estimates as odds ratio (OR) per unit of standard deviation (SD) for continuous traits and ORs for the outcome per unit log-odds of categorical traits. We employed a conservative Bonferroni correction of the significance level to account for 35 independent tests, including forward and reverse MR (threshold p-value = 0.00142, i.e. 0.05/35). The heterogeneity was judged using the Cochrane Q-statistics and I² for the IVW method along with Rucker's Q-statistics and the Intercept deviation test for the MR-Egger's method^{31 53-55}. We also used MR-PRESSO (Mendelian Randomization Pleiotropy RESidual Sum and Outlier) global test to evaluate horizontal pleiotropy⁵⁶. Lastly, we performed an MR Steiger test of directionality to check the assumption whether an exposure causes outcome is valid using the TwoSampleMR Package (version 0.4.25) in R (version 3.6.1)⁴⁹

Sensitivity analysis

Multiple MR methods

Several approaches were employed to rule out the influence of potential pleiotropic variants on the overall results. We used multiple modern MR methods, including MR-Egger, weighted median (WME), weighted mode (MBE) methods to check the reliability of estimates^{31 54 57-59}.

Exclusion of overlapping samples

Since most of the recent meta-analyses of GWAS compute effect estimates by pooling UK Biobank (UKB) datasets with previously available datasets, and the existence of any overlapping samples in exposure and outcome datasets could bias the effect estimates towards the confounded observational estimates⁶⁰, we also used the NDD datasets without UKB samples, when possible^{44 61}.

Reverse causality check

We conducted MR in the reverse direction to check to confirm the directionality of the observed associations.

Exclusion of potential pleiotropic variants

We further employed a leave-one-out and leave-one-group-out cross-validation approach to rule out the influence of outlier variants and variants known to be associated with confounders of the relationship between the respective exposure and outcome datasets. We specifically employed the Phenoscanner database (http://phenoscanner.medschl.cam.ac.uk) to identify such genetic variants known to be associated with potential confounders⁶². However, in the absence of knowledge of potential confounders, we adopted a more conservative approach, and all those genetic loci known to be associated with non-sleep-related traits were assumed to be pleiotropic loci. We identified such loci by searching for all the genetic variants in high LD with genetic instruments prioritized for the present study using $r^2 > 0.9$ for previously reported associations in European populations. We also used visual approaches, including scatter plots and funnel plots, to identify the outlier variants.

Influence of regional brain expression

We further evaluated the potential biological influence of different brain regions in their respective contribution to the causal effect estimate by analyzing gene expression data for the available genetic variants from the Genotype-Tissue Expression Project (https://www.gtexportal.org)⁶³. The identified genetic variants were then categorized as per their expression in specific brain regions and checked for their influence on the causal estimate using a leave-one-group-out cross-validation approach.

Results

Study design and identification of datasets

The genetic instruments were identified that influence sleep and pain-related traits through the latest publicly available meta-analysis of GWAS summary datasets (**Table 1**). Concerning sample size, GWAS on all sleep and pain-related traits employed approximately 0.4 million individuals except SS and LS with a low sample size of 106,192 and 34,184. On the other hand, among NDDs, only AD and PD datasets had a similar sample size with 0.45 million individuals, comprising 71,880 and 33,674 cases. Concerning depth of genomic coverage, GWAS for various sleep and pain-related traits showed fairly uniform coverage with 0.9-1.5 million SNPs covering the whole genome in different summary datasets. Concerning NDDs, genomes of PD patients were best covered with the availability of data on up to 1.75 million SNPs.

Prioritization of genetic variants

Concerning sleep and pain-related traits, the number of independent genetic instruments identified varied from 9 for LS to 156 for MP. Among NDDs, only four genetic instruments were identified for ALS. On the other hand, a total of 74 SNPs were representative of MS. We further observed that none of the genetic instruments had an F-statistic <10, thereby validating MR Assumption I. Overall, we identified 771 genetic instruments to check the bidirectional causality check between sleep, pain, and neurodegeneration with F-statistic for individuals SNPs ranging from 28.2 to 422.5. The detectable effect estimates for different NDDs as outcomes at 80% power and a type 1 error rate of 1.42×10^{-3} are further shown in **Supplementary Table 1**.

Causal effect estimation

Data used for computation of causal effect estimates have been further provided in **Supplementary Table 2**. The causal effect estimates using various MR approaches and heterogeneity analysis measures used to judge the robustness of the estimates have been further provided in **Table 2** for the direct causal estimates for NDDs as outcomes.

AMD

We observed a highly significant causal effect of MP on AMD with morning persons (OR_{IVW} = 1.19, 95% CI 1.08, 1.32, P = 0.00073). Heterogeneity check confirmed the reliability of the observed association with absence of any heterogeneity in the distribution of effect estimates of individual genetic variants ($I^2 = 0.0\%$, Cochrane P = 0.929, Rucker's Q-test P = 0.9414, MR-PRESSO global test P = 0.8420). The distribution of individual SNP-level effect estimates and the effect estimates computed through different MR methods for the effect of MP on AMD is further shown as scatter and funnel plots in **Figure 1**. We observed a similar directionality of causal effect estimates using the WME method (OR_{WME} = 1.126, 95% CI = 1.04,1.21). We also observed a similar trend using a highly correlated but continuous trait CHR on AMD (OR_{IVW} = 1.27, 95% CI 1.08, 1.49, P = 0.0034). The directionality of findings was further confirmed by significantly higher variance explained by genetic instruments for MP and CHR than that explained by the respective genetic instruments for AMD (P_{Steiger}=2.1x10⁻⁹⁸ and P_{Steiger}=1.65x10⁻²⁴). In contrast, we did not observe any direct role of pain on predisposition to AMD.

AD

We observed a suggestive risky causal effect of SS on AD ($OR_{IVW} = 1.26, 95\%$ CI 1.08, 1.46, P = 0.0044). Heterogeneity check further confirmed the reliability of the observed association with absence of any heterogeneity in the distribution of effect estimates of individual genetic variants ($I^2 = 0.0\%$, Cochrane P = 0.595, Rucker's Q-test P = 0.5279, MR-PRESSO global test P = 0.4520). A similar directionality in causal effect estimates was also observed using the WME method (OR=1.12, 95% CI 1.10, 1.35). However, we did not observe any role of pain on predisposition to AD.

ALS

We observed a suggestive risky causal effect of INS on ALS (OR_{IVW} = 1.55, 95% CI 1.12, 2.14,

P = 0.0123). On the other hand, we failed to observe any role of pain on predisposition to ALS.

MS

We did not observe any direct role of sleep and pain-related traits on predisposition to MS.

PD

Similar to the absence of the effect of sleep and pain-related traits on MS, our MR analysis failed to detect the role of sleep and pain-related traits on predisposition to PD.

Sensitivity analysis

Exclusion of overlapping samples

Concerning direct MR, the association of SS with AD was lost after the exclusion of overlapping UKB samples (data not shown). In the reverse MR, PD showed a suggestion of a strong protective effect against CHR and MP after the exclusion of overlapping UKB samples (data not shown).

Reverse causality check

Reverse causal estimates for various sleep and pain-related traits using various NDDs as exposure have been shown in **Table 3**.

AMD

Our reverse casual check confirmed the directionality of the observed associations of MP and CHR with AMD as we failed to observe any effect of AMD on MP and CHR.

AD

Our reverse causal check confirmed the role of SS in predisposition to AD as we failed to observe the causal effect of AD on SS. Interestingly, all the sleep-related traits except SS were

observed to be influenced by a genetic predisposition to AD when employing non-IVW methods for judging causal effects of sleep-related traits on AD.

ALS

Our reverse casual check confirmed the role of INS on predisposition to ALS. On the contrary, our findings suggested a causal role of genetic predisposition to ALS on LS with a consistent significant risk effect using IVW, WME, and MBE methods.

Exclusion of potential pleiotropic variants

Leave-one-out-approach

We failed to observe the predominant influence of any of the variants on causal effect estimates of MP with AMD, as shown in **Table 4**. Similarly, the observed associations of CHR with AMD, SS with AD, and INS with ALS were retained (**Supplementary Table 3**).

Leave-one-group out-approach

The cumulative influence of potential pleiotropic SNPs identified through a comprehensive screening of the Phenoscanner database on observed associations is summarized in **Table 5.** We identified 46 and 51 SNPs used for causal effect estimates of MP and CHR with AMD, respectively, as an outcome as potential pleiotropic SNPs. However, the exclusion of these SNPs did not influence the observed casual association of MP and CHR with AMD (OR = 1.202, 95% CI 1.0549, 1.370; OR = 1.262, 95% CI 1.049, 1.520). On the contrary, associations of SS with AD and INS with ALS were lost, which could be attributed to the presence of a high proportion of pleiotropic SNPs in the genetic instruments for SS and INS.

Influence of regional brain expression

The cumulative influence of brain-region-specific quantitative trait variants retrieved from the Genotype-Tissue Expression Project is summarized in **Table 6**. We specifically

identified a high proportion of SNPs influencing brain expression in the cerebellum and basal ganglia region. However, the exclusion of these SNPs did not affect the overall causal association of CHR and MP with AMD. Similarly, we failed to observe the effect of any of the other brain regions on the observed associations. We also failed to observe any influence of brain region specific expression on other observed associations (data not shown).

Discussion

The use of GWAS data in MR-based approaches has opened up opportunities to assess and define clinically relevant signatures for a diverse spectrum of diseases. Our study supports the role of a person's underlying circadian rhythm in genetic predisposition to neurodegeneration. We found an association of genetically predicted morning person trait with AMD. The correlated trait CHR also had a suggestive risky association with AMD. We also found suggestive evidence for a possible association of genetically predicted SS with AD and INS with ALS. Surprisingly, our study, however, found no evidence to support the association between pain and NDD.

Comparison with other studies

To date, evidence from observational studies has shown a remarkable heterogeneity in the association of different circadian traits with various NDDs. A recent study investigating the incidence of AMD in 108,225 participants observed that INS patients were 33% more likely to have subsequent AMD (HR 1.33, 95% CI 1.18, 1.48)⁵. Previously, an observational study of 57 patients with neovascular AMD and 108 controls found a significantly increased risk of neovascular AMD in patients sleeping less than 6 hours compared to those sleeping 7-8 hours (OR 3.29, 95% CI 1.32, 8.27)⁶⁴. Another study failed to detect an association with LS in 316 patients with neovascular AMD compared to 500 patients without AMD⁶⁵. However, the study did find an association of LS with geographic atrophy, an advanced form of AMD in 61

individuals (presence of a discrete area of atrophy with a diameter of $\geq 175 \ \mu$ m). A recent observational study further reported that individuals who take an afternoon nap are 60% less likely to be diagnosed with late AMD (56 late AMD vs 1204 No AMD)⁶⁶. As darkness is known to stimulate the secretion of melatonin from the pineal gland, our findings are in agreement with previous studies showing that increased melatonin synthesis could play a protective role in the pathophysiology of AMD⁶⁷. However, a recent randomized controlled trial (RCT) failed to show any beneficial effect of low-level night-time light therapy on the progression of AMD⁶⁸.

In contrast to previously reported findings from the epidemiological studies, we failed to observe any association of INS, SS, and LS with AMD using the genetic data in the present study. However, we observed that MP is more likely to be predisposed to AMD (OR 1.19, 95% CI 1.08, 1.32). Our study suggests that more prolonged exposure to daylight in such individuals could increase the risk for AMD. However, our findings are in contrast to a recent meta-analysis of observational studies demonstrating an absence of association between sunlight exposure and AMD (OR 1.12 95% CI 0.76, 1.67)⁶⁹. One of the possible reasons for this discrepancy could be that only one of the 14 studies included in the meta-analysis was a cohort study. The only included cohort study was a ten-year follow-up study which demonstrated that participants exposed to summer sun for more than 5 hours a day were more likely to show increased retinal pigment (RR 2.99, 95% CI 1.18, 7.60) and develop early age-related maculopathy (RR 2.20, 95% CI 1.02, 4.73) in comparison to those exposed to less than 2 hours per day ⁷⁰. It has also been suggested that excessive light exposure may induce phototoxic damage to the retinal pigmental epithelium and possibly contribute to the gradual worsening of vision in AMD⁷¹⁻⁷³.

To further substantiate our findings implicating MP on the risk of developing AMD; the use of heterogeneity checking approaches such as MR-Egger intercept test and Cochran Q-

statistic, and cross-validation approaches such as leave-one-SNP-out and leave-one-group-out method, highlighting the robustness of our findings showing that MP and CHR could alter risk to AMD rather than INS or SD.

Compared to the impact of circadian rhythms in other NDDs, the role of sleep-related traits has been well investigated in AD, with mixed findings. Previous studies have predominantly focused on sleep-wake rhythmicity, showing a higher incidence of sleep fragmentations and lower amplitude of circadian rhythmicity in patients with moderate or severe AD¹. Concerning sleep duration, both LS and SS have been previously shown to be linked with the risk of dementia^{24 74 75}. A 17-year longitudinal study investigating sleep characteristics in 11, 247 old-aged Swedish individuals (>65 years at baseline) observed an association of short (≤ 6 hours) and extended (>9 hours) time in bed compared to the remaining individuals with a higher incidence of dementia (HR 1.40, 95% CI 1.06, 1.85; HR 1.11, 95% CI 1.00, 1.24)²⁴. Our results are in agreement with the previously published study 24 . Indeed, we observed a strong causal role of SS in predisposition to AD (OR 1.26, 95% CI 1.08, 1.46). However, our results need to be treated with caution as the association was lost after excluding overlapping UKB samples from the AD dataset, as demonstrated previously 37 . However, it is also possible that the association was lost due to decreased sample size, necessitating replication in larger AD datasets in the future.

Sleep disturbances are also frequently observed in patients with ALS. Our MR analysis also suggested a possible causal role of INS on ALS (OR 1.55, 95% CI 1.12, 2.14). A previous observational study demonstrated decreased sleep efficiency and fragmented sleep architecture in 59 patients with ALS⁷⁶. Another study reported the presence of sleep disturbances in more than 2/3 rd of 40 patients with ALS. The study further reported a diagnosis of INS in 65% of

patients⁷⁷. These results are in consent with a previous study reporting a significantly higher prevalence of INS in 90 patients with motor neuron disease compared to 96 healthy controls (48.9% vs 31.3%, p = 0.014)⁷⁸. In summary, reports of sleep disturbance among patients with ALS in small sample-sized observational studies and suggestive causal role of INS on ALS in the present study necessitates a need for conducting large-scale epidemiological studies.

Despite the consistent findings of excessive daytime sleepiness or altered sleep timings in patients with PD, our MR findings demonstrate an absence of any causal role of sleep-related traits on predisposition to PD^{79 80}. One possible explanation could be that dopaminergic treatment might have influenced the sleeping behavior in patients with PD as excessive daytime sleepiness is known to be one of the common side effects of dopaminergic treatment⁸¹. In such a scenario, causal analysis using biological markers of circadian rhythms such as core body temperature, cortisol, and melatonin rhythms might potentially shed light on the true relationship between sleep-related traits and PD.

We also failed to observe any causal association of sleep-related traits with MS, although sleep disturbances are common symptoms in MS^{82} . However, it is believed that sleep disorders observed in patients with MS could be secondary causes of fatigue in MS^{83} , a symptom that affects 9 of the 10 patients with MS^{84} .

Among all NDDs, a high prevalence of pain has been observed in AD and PD populations^{85 86}. Assessment of pain in such patients of often challenging due to associated cognitive and motor impairments⁸⁷. Nevertheless, the use of genetic instruments of pain from a general population shows that MCP does not play any causal role in AD and PD. A recent crosssectional study investigating pain in 100 PD patients further showed that pain is more prevalent in advanced-stage PD patients than early-stage PD patients, suggesting pain to be a consequence

of the disease rather than a cause⁸⁵. However, pain is a broad concept, and the inconsistencies in the measurement of a number of available pain behavior rating scales often limit their application in clinical settings.

Strengths and limitations of this study

We adopted a highly comprehensive approach involving the exploration of several sleeprelated traits and pain with commonly prevalent neurodegenerative disorders. We further employed multiple MR methods, heterogeneity, and sensitivity analyses approach, including causal check in the reverse direction to confirm the reliability of the observed associations. The MR approach relies on three main assumptions. Firstly, the genetic instrument must be strongly associated with the risk factor of interest. All our instruments had high F-statistics, which could be attributed to selecting the instruments through large-scale GWAS studies. Secondly, the genetic instruments must influence the disease of interest only through the risk factor. We did not find any direct influence of the SNPs included as a part of the genetic instruments with any NDD. Thirdly, none of the investigated SNPs should confound the relationship between the risk factor and disease of interest. In practice, it may not be entirely possible to test this assumption because of two main reasons: firstly, our lack of complete understanding of potential confounders of association of sleep and pain-related traits with NDDs and, secondly, the existence of a high proportion of pleiotropic variants in the human genome. Nevertheless, we adopted a highly conservative approach by excluding all pleiotropic variants to check the reliability of our associations. We also used several modern and robust MR methods, including WME and MBE, which are believed to provide more reliable estimates in the presence of invalid or weak instruments. Another potential source of bias could be overlapping samples between GWAS datasets used to investigate the association of genetic instruments with the risk factor and

that used for association with the disease of interest. We observed that only AD and PD datasets had incorporated UKB samples which were also employed by GWAS on sleep-related traits and pain. Henceforth, we also used previously published AD and PD datasets that did not include UKB samples to rule out weak instrument bias. Such an approach also helped us to check the reliability of associations in the adoption of different diagnostic criteria for AD and PD by UKB and respective NDD consortia (The International Genomics of Alzheimer's Project (IGAP) and International Parkinson Disease Genomics Consortium (IPDGC)). Another potential limitation of the present study is that we could not use 23andMe data for the computation of causal estimates due to the lack of open accessibility. The dataset may have shed more insights into the observed relationships by allowing us to not only replicate our findings but also provide pooled estimates. Previous observational studies have further shown that the impact of sleep and pain-related traits may be dependent on the stage of neurodegeneration or severity of the NDD^2 . However, we could not conduct such a stratified analysis due to the non-availability of an individual-level dataset for respective NDDs. And lastly, pain is a highly complex trait, and the lack of genetic instruments specific for neuropathic and nociceptive pain may undermine the findings of the present study. The possibility of nociceptive pain confounding the causal relationship between neuropathic pain and neurodegeneration cannot be ruled out.

Conclusions and future research

Using genetic data, we provide strong evidence that being an MP is a causal risk factor for AMD. There is a necessity for the conduct of large-scale epidemiological cohort studies to confirm our findings. Additional research is also required to understand the biological pathways underlying these associations, including causal analysis with biochemical makers of sleep and correlated traits associated with sleep.

What is already known on this topic

- Patients with NDD commonly report dysfunction in circadian rhythms.
- Numerous observational studies have shown associations between various sleeprelated traits and NDD.
- As it is not possible to randomize sleep-related traits and longitudinal studies are difficult to conduct, specifically in elderly populations due to associated morbidity and mortality, results are highly conflicting.

What this study adds

- Being an MP is a causal risk factor for AMD.
- The study necessitates further research on conducting stratified analysis based on the progression or severity of AMD.

Author contributions

Name	Location	Role	Contributions
Sandeep Grover, PhD	University of Tübingen, Tübingen, Germany	Author	Designed and conceptualized the study; conducted data extraction; analyzed the data; drafted the manuscript; and revised the final draft
Manu Sharma, PhD	University of Tübingen, Tübingen, Germany	Author	Supervised the overall study and revised the final draft.

Acknowledgments

We acknowledge the study participants and investigators of International Genomics of Alzheimer's patients (IGAP), International Parkinson's Disease Genomics Consortium (IPDGC), project MinE,

International Multiple Sclerosis Genetics Consortium (IMSGC), International Sleep Genetic Epidemiology Consortium (ISGEC), UK Biobank, UK Biobank sleep and chronotype research group for sharing the summary statistics on their GWAS datasets. We also acknowledge UK biobank resources under Application number 65949. This study is, in part, supported by the EU Joint Programme -Neurodegenerative Diseases Research (JPND) project under the aegis of JPND (www.jpnd.eu) through Germany, BMBF, funding code 01ED1406. M.S. is further funded by the Michael J Fox Foundation, USA Genetic Diversity in PD Program: GAP-India Grant ID: 17473. and also supported by the grants from the German Research Council (DFG/SH 599/6-1 to M.S.), MSA Coalition, and Michael J Fox Foundation.

List of figures and tables

Figure 1. Graphical representation of causal association analysis and assessment of pleiotropy

A. Scatter plot showing causal effect estimates computed using various MR methods for the association of morning person (MP) as exposure with age-related macular degeneration (AMD) as an outcome.

B. Funnel plot showing the extent of heterogeneity among the individual Wald ratio estimates for the morning person (MP) as exposure with age-related macular degeneration (AMD) as an outcome.

IVW: Inverse variance weighted method, WME: Weighted median method, MBE: Weighted mode method (*NOME assumptions*)

Table 1. Details of discovery GWAS datasets explored and prioritized instruments used for direct and reverse causal analysis in the present study. The direct analysis was done using PD as an outcome, and the reverse was done using sleep and pain-related traits as an outcome.

Table 2. Causal effect estimates using different Mendelian randomization (MR) methods and heterogeneity analysis of causal effect estimates for neurodegenerative disorders (NDDs) using various sleep and pain-related traits as exposures.

 Table 3. Causal effect estimates using different Mendelian randomization (MR) methods and

 heterogeneity analysis of causal effect estimates for various sleep and pain-related traits using

 Neurodegenerative disorders (NDDs) as exposures.

Table 4. Sensitivity analysis of the causal effect of a morning person (MP) trait on predisposition to age

 related macular degeneration (AMD) using leave-one-out SNP method

Table 5. Sensitivity analysis of causal effect estimates of sleep-related traits on neurodegeneration using

 leave-group-out SNP method by excluding potential pleiotropic SNPs identified through Phenoscanner.

Table 6. Sensitivity analysis of causal effect estimates of sleep-related traits on neurodegeneration by

 exploring the potential influence of specific brain regions using variants involved in the regional

 expression.

Supplementary Table 1. Detectable effect size estimates for various neurodegenerative disorders (NDD) as an outcome.

Supplementary Table 2. Summary statistics used for the conduct of MR analysis in the present study.

Supplementary Table 3. Sensitivity analysis of causal effect estimated using leave-one-out SNP method

- A. The causal effect of chronotype (CHR) on predisposition to age-related macular degeneration (AMD)
- B. The causal effect of short sleep (SS) on predisposition to Alzheimer's disease (AD)
- C. The causal effect of insomnia (INS) on predisposition to amyotrophic lateral sclerosis (ALS)

References

- 1. Leng Y, Musiek ES, Hu K, et al. Association between circadian rhythms and neurodegenerative diseases. *Lancet Neurol* 2019;18(3):307-18. doi: 10.1016/S1474-4422(18)30461-7 [published Online First: 2019/02/21]
- Videnovic A, Lazar AS, Barker RA, et al. 'The clocks that time us'--circadian rhythms in neurodegenerative disorders. *Nat Rev Neurol* 2014;10(12):683-93. doi: 10.1038/nrneurol.2014.206 [published Online First: 2014/11/12]
- Musiek ES, Bhimasani M, Zangrilli MA, et al. Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. *JAMA Neurol* 2018;75(5):582-90. doi: 10.1001/jamaneurol.2017.4719 [published Online First: 2018/01/31]
- 4. Yusuf F, Wijnands JM, Kingwell E, et al. Fatigue, sleep disorders, anaemia and pain in the multiple sclerosis prodrome. *Mult Scler* 2020:1352458520908163. doi: 10.1177/1352458520908163 [published Online First: 2020/04/07]
- 5. Tsai DC, Chen HC, Leu HB, et al. The association between clinically diagnosed insomnia and agerelated macular degeneration: a population-based cohort study. *Acta Ophthalmol* 2020;98(2):e238-e44. doi: 10.1111/aos.14238 [published Online First: 2019/09/10]
- 6. Boentert M. Sleep disturbances in patients with amyotrophic lateral sclerosis: current perspectives. *Nat Sci Sleep* 2019;11:97-111. doi: 10.2147/NSS.S183504 [published Online First: 2019/09/10]
- 7. Leng Y, Goldman SM, Cawthon PM, et al. Excessive daytime sleepiness, objective napping and 11year risk of Parkinson's disease in older men. *Int J Epidemiol* 2018;47(5):1679-86. doi: 10.1093/ije/dyy098 [published Online First: 2018/06/07]
- de Tommaso M, Arendt-Nielsen L, Defrin R, et al. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives. *Behav Neurol* 2016;2016:7576292. doi: 10.1155/2016/7576292 [published Online First: 2016/06/18]
- 9. Jansson-Frojmark M, Boersma K. Bidirectionality between pain and insomnia symptoms: a prospective study. *Br J Health Psychol* 2012;17(2):420-31. doi: 10.1111/j.2044-8287.2011.02045.x [published Online First: 2011/11/24]
- O'Brien EM, Waxenberg LB, Atchison JW, et al. Intraindividual variability in daily sleep and pain ratings among chronic pain patients: bidirectional association and the role of negative mood. *Clin J Pain* 2011;27(5):425-33. doi: 10.1097/AJP.0b013e318208c8e4 [published Online First: 2011/03/19]
- Rivera I, Ajroud-Driss S, Casey P, et al. Prevalence and characteristics of pain in early and late stages of ALS. *Amyotroph Lateral Scler Frontotemporal Degener* 2013;14(5-6):369-72. doi: 10.3109/21678421.2012.751614 [published Online First: 2013/01/05]
- 12. Ford B. Pain in Parkinson's disease. *Mov Disord* 2010;25 Suppl 1:S98-103. doi: 10.1002/mds.22716 [published Online First: 2010/02/27]
- Pautex S, Michon A, Guedira M, et al. Pain in severe dementia: self-assessment or observational scales? J Am Geriatr Soc 2006;54(7):1040-5. doi: 10.1111/j.1532-5415.2006.00766.x [published Online First: 2006/07/27]
- 14. Bermejo PE, Oreja-Guevara C, Diez-Tejedor E. [Pain in multiple sclerosis: prevalence, mechanisms, types and treatment]. *Rev Neurol* 2010;50(2):101-8. [published Online First: 2010/01/30]
- 15. Feustel AC, MacPherson A, Fergusson DA, et al. Risks and benefits of unapproved disease-modifying treatments for neurodegenerative disease. *Neurology* 2020;94(1):e1-e14. doi: 10.1212/WNL.00000000008699 [published Online First: 2019/12/04]
- 16. Herzog ED. Neurons and networks in daily rhythms. *Nat Rev Neurosci* 2007;8(10):790-802. doi: 10.1038/nrn2215 [published Online First: 2007/09/21]
- 17. Rothman SM, Herdener N, Frankola KA, et al. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Abeta and pTau in a mouse model of Alzheimer's disease. *Brain Res* 2013;1529:200-8. doi: 10.1016/j.brainres.2013.07.010 [published Online First: 2013/07/17]

- Huang Z, Liu Q, Peng Y, et al. Circadian Rhythm Dysfunction Accelerates Disease Progression in a Mouse Model With Amyotrophic Lateral Sclerosis. *Front Neurol* 2018;9:218. doi: 10.3389/fneur.2018.00218 [published Online First: 2018/05/10]
- Lauretti E, Di Meco A, Merali S, et al. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson's disease. *Mol Psychiatry* 2017;22(2):280-86. doi: 10.1038/mp.2016.47 [published Online First: 2016/04/06]
- 20. Videnovic A, Noble C, Reid KJ, et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. *JAMA Neurol* 2014;71(4):463-9. doi: 10.1001/jamaneurol.2013.6239 [published Online First: 2014/02/26]
- 21. Hooghiemstra AM, Eggermont LH, Scheltens P, et al. The rest-activity rhythm and physical activity in early-onset dementia. *Alzheimer Dis Assoc Disord* 2015;29(1):45-9. doi: 10.1097/WAD.00000000000037 [published Online First: 2014/03/19]
- 22. Walsh CM, Blackwell T, Tranah GJ, et al. Weaker circadian activity rhythms are associated with poorer executive function in older women. *Sleep* 2014;37(12):2009-16. doi: 10.5665/sleep.4260 [published Online First: 2014/10/23]
- Rogers-Soeder TS, Blackwell T, Yaffe K, et al. Rest-Activity Rhythms and Cognitive Decline in Older Men: The Osteoporotic Fractures in Men Sleep Study. J Am Geriatr Soc 2018;66(11):2136-43. doi: 10.1111/jgs.15555 [published Online First: 2018/08/24]
- 24. Bokenberger K, Ström P, Dahl Aslan AK, et al. Association Between Sleep Characteristics and Incident Dementia Accounting for Baseline Cognitive Status: A Prospective Population-Based Study. J Gerontol A Biol Sci Med Sci 2017;72(1):134-39. doi: 10.1093/gerona/glw127 [published Online First: 2016/07/13]
- 25. May A. Neuroimaging: visualising the brain in pain. *Neurol Sci* 2007;28 Suppl 2:S101-7. doi: 10.1007/s10072-007-0760-x [published Online First: 2007/05/18]
- 26. Pinho-Ribeiro FA, Verri WA, Jr., Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. *Trends Immunol* 2017;38(1):5-19. doi: 10.1016/j.it.2016.10.001 [published Online First: 2016/10/30]
- 27. Henry DE, Chiodo AE, Yang W. Central nervous system reorganization in a variety of chronic pain states: a review. *PM R* 2011;3(12):1116-25. doi: 10.1016/j.pmrj.2011.05.018 [published Online First: 2011/12/24]
- 28. Cravello L, Di Santo S, Varrassi G, et al. Chronic Pain in the Elderly with Cognitive Decline: A Narrative Review. *Pain Ther* 2019;8(1):53-65. doi: 10.1007/s40122-019-0111-7 [published Online First: 2019/01/23]
- 29. Paladini A, Fusco M, Coaccioli S, et al. Chronic Pain in the Elderly: The Case for New Therapeutic Strategies. *Pain Physician* 2015;18(5):E863-76. [published Online First: 2015/10/03]
- 30. Angrist JD, Imbens GW, Rubin DB. Identification of Causal Effects Using Instrumental Variables Journal of the American Statistical Association;91(434):12.
- Grover S, Del Greco MF, Stein CM, et al. Mendelian Randomization. *Methods Mol Biol* 2017;1666:581-628. doi: 10.1007/978-1-4939-7274-6_29 [published Online First: 2017/10/06]
- 32. Scheller Madrid A, Rasmussen KL, Rode L, et al. Observational and genetic studies of short telomeres and Alzheimer's disease in 67,000 and 152,000 individuals: a Mendelian randomization study. *Eur J Epidemiol* 2020;35(2):147-56. doi: 10.1007/s10654-019-00563-w [published Online First: 2019/09/30]
- 33. Yu X, Wang T, Chen Y, et al. Alcohol Drinking and Amyotrophic Lateral Sclerosis: An Instrumental Variable Causal Inference. Ann Neurol 2020 doi: 10.1002/ana.25721 [published Online First: 2020/03/21]
- 34. Fan Q, Maranville JC, Fritsche L, et al. HDL-cholesterol levels and risk of age-related macular degeneration: a multiethnic genetic study using Mendelian randomization. *Int J Epidemiol* 2017;46(6):1891-902. doi: 10.1093/ije/dyx189 [published Online First: 2017/10/13]

- 35. Belbasis L, Bellou V, Evangelou E, et al. Environmental factors and risk of multiple sclerosis: Findings from meta-analyses and Mendelian randomization studies. *Mult Scler* 2020;26(4):397-404. doi: 10.1177/1352458519872664 [published Online First: 2020/04/07]
- 36. Grover S, Lill CM, Kasten M, et al. Risky behaviors and Parkinson disease: A mendelian randomization study. *Neurology* 2019;93(15):e1412-e24. doi: 10.1212/wnl.00000000008245 [published Online First: 2019/09/19]
- 37. Henry A, Katsoulis M, Masi S, et al. The relationship between sleep duration, cognition and dementia: a Mendelian randomization study. *Int J Epidemiol* 2019;48(3):849-60. doi: 10.1093/ije/dyz071 [published Online First: 2019/05/08]
- 38. Dashti HS, Jones SE, Wood AR, et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. *Nat Commun* 2019;10(1):1100. doi: 10.1038/s41467-019-08917-4 [published Online First: 2019/03/09]
- 39. Jones SE, Lane JM, Wood AR, et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. *Nat Commun* 2019;10(1):343. doi: 10.1038/s41467-018-08259-7 [published Online First: 2019/01/31]
- 40. Jansen PR, Watanabe K, Stringer S, et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. *Nat Genet* 2019;51(3):394-403. doi: 10.1038/s41588-018-0333-3 [published Online First: 2019/02/26]
- 41. Johnston KJA, Adams MJ, Nicholl BI, et al. Genome-wide association study of multisite chronic pain in UK Biobank. *PLoS Genet* 2019;15(6):e1008164. doi: 10.1371/journal.pgen.1008164 [published Online First: 2019/06/14]
- 42. Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. *Nat Genet* 2016;48(2):134-43. doi: 10.1038/ng.3448 [published Online First: 2015/12/23]
- 43. Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. *Nat Genet* 2019;51(3):404-13. doi: 10.1038/s41588-018-0311-9 [published Online First: 2019/01/09]
- 44. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. *Nat Genet* 2013;45(12):1452-8. doi: 10.1038/ng.2802 [published Online First: 2013/10/29]
- 45. van Rheenen W, Shatunov A, Dekker AM, et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. *Nat Genet* 2016;48(9):1043-8. doi: 10.1038/ng.3622 [published Online First: 2016/07/28]
- 46. International Multiple Sclerosis Genetics C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. *Science* 2019;365(6460) doi: 10.1126/science.aav7188 [published Online First: 2019/10/12]
- 47. Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. *Lancet Neurol* 2019;18(12):1091-102. doi: 10.1016/s1474-4422(19)30320-5 [published Online First: 2019/11/09]
- 48. Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. *Nat Genet* 2014;46(9):989-93. doi: 10.1038/ng.3043 [published Online First: 2014/07/30]
- 49. Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. *Elife* 2018;7 doi: 10.7554/eLife.34408 [published Online First: 2018/05/31]
- 50. Consortium GP, Auton A, Brooks LD, et al. A global reference for human genetic variation. *Nature* 2015;526(7571):68-74. doi: 10.1038/nature15393
- Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. *Int J Epidemiol* 2013;42(5):1497-501. doi: 10.1093/ije/dyt179 [published Online First: 2013/10/26]

- 52. Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary data Mendelian randomization: moving beyond the NOME assumption. *bioRxiv* 2017 doi: <u>https://doi.org/10.1101/159442</u>
- 53. Greco MF, Minelli C, Sheehan NA, et al. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. *Stat Med* 2015;34(21):2926-40. doi: 10.1002/sim.6522
- 54. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. *Int J Epidemiol* 2015;44(2):512-25. doi: 10.1093/ije/dyv080 [published Online First: 2015/06/08]
- 55. Rucker G, Schwarzer G, Carpenter JR, et al. Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. *Biostatistics* 2011;12(1):122-42. doi: 10.1093/biostatistics/kxq046
- 56. Verbanck M, Chen C-Y, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nature genetics* 2018;50(5):693-98. doi: 10.1038/s41588-018-0099-7 [published Online First: 2018/04/23]
- 57. Burgess S BJ. Integrating summarized data from multiple genetic variants in Mendelian randomization: bias and coverage properties of inverse-variance weighted methods. *arXiv:151204486* 2015
- 58. Bowden J, Davey Smith G, Haycock PC, et al. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. *Genet Epidemiol* 2016;40(4):304-14. doi: 10.1002/gepi.21965 [published Online First: 2016/04/12]
- 59. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. *Int J Epidemiol* 2017;46(6):1985-98. doi: 10.1093/ije/dyx102
- 60. Inoue A, Solon G. Two-sample instrumental variables estimators. Rev Econ Stat 2010;92:5.
- 61. Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. *Nat Genet* 2014;46(9):989-93. doi: 10.1038/ng.3043
- 62. Staley JR, Blackshaw J, Kamat MA, et al. PhenoScanner: a database of human genotype-phenotype associations. *Bioinformatics* 2016;32(20):3207-09. doi: 10.1093/bioinformatics/btw373
- 63. Consortium GT. The Genotype-Tissue Expression (GTEx) project. *Nat Genet* 2013;45(6):580-5. doi: 10.1038/ng.2653 [published Online First: 2013/05/30]
- 64. Perez-Canales JL, Rico-Sergado L, Perez-Santonja JJ. Self-Reported Sleep Duration in Patients with Neovascular Age-Related Macular Degeneration. *Ophthalmic Epidemiol* 2016;23(1):20-6. doi: 10.3109/09286586.2015.1119288 [published Online First: 2016/01/21]
- 65. Khurana RN, Porco TC, Claman DM, et al. Increasing Sleep Duration Is Associated with Geographic Atrophy and Age-Related Macular Degeneration. *Retina* 2016;36(2):255-8. doi: 10.1097/IAE.0000000000000006 [published Online First: 2016/01/28]
- 66. Anastasopoulos E, Haidich AB, Coleman AL, et al. Risk factors for Age-related Macular Degeneration in a Greek population: The Thessaloniki Eye Study. *Ophthalmic Epidemiol* 2018;25(5-6):457-69. doi: 10.1080/09286586.2018.1512634 [published Online First: 2018/09/29]
- 67. Tosini G, Baba K, Hwang CK, et al. Melatonin: an underappreciated player in retinal physiology and pathophysiology. *Exp Eye Res* 2012;103:82-9. doi: 10.1016/j.exer.2012.08.009 [published Online First: 2012/09/11]
- 68. Robinson DG, Margrain TH, Dunn MJ, et al. Low-Level Nighttime Light Therapy for Age-Related Macular Degeneration: A Randomized Clinical Trial. *Invest Ophthalmol Vis Sci* 2018;59(11):4531-41. doi: 10.1167/iovs.18-24284 [published Online First: 2018/09/13]
- 69. Zhou H, Zhang H, Yu A, et al. Association between sunlight exposure and risk of age-related macular degeneration: a meta-analysis. *BMC Ophthalmol* 2018;18(1):331. doi: 10.1186/s12886-018-1004-y [published Online First: 2018/12/24]

- 70. Tomany SC, Cruickshanks KJ, Klein R, et al. Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study. Arch Ophthalmol 2004;122(5):750-7. doi: 10.1001/archopht.122.5.750 [published Online First: 2004/05/12]
- 71. Winkler BS, Boulton ME, Gottsch JD, et al. Oxidative damage and age-related macular degeneration. *Mol Vis* 1999;5:32. [published Online First: 1999/11/17]
- 72. Roberts JE. Ocular phototoxicity. *J Photochem Photobiol B* 2001;64(2-3):136-43. doi: 10.1016/s1011-1344(01)00196-8 [published Online First: 2001/12/18]
- 73. Augustin AJ, Dick HB, Offermann I, et al. [The significance of oxidative mechanisms in diseases of the retina]. *Klin Monbl Augenheilkd* 2002;219(9):631-43. doi: 10.1055/s-2002-35164 [published Online First: 2002/11/01]
- 74. Westwood AJ, Beiser A, Jain N, et al. Prolonged sleep duration as a marker of early neurodegeneration predicting incident dementia. *Neurology* 2017;88(12):1172-79. doi: 10.1212/WNL.00000000003732 [published Online First: 2017/02/24]
- 75. Ohara T, Honda T, Hata J, et al. Association Between Daily Sleep Duration and Risk of Dementia and Mortality in a Japanese Community. J Am Geriatr Soc 2018;66(10):1911-18. doi: 10.1111/jgs.15446 [published Online First: 2018/06/07]
- 76. Lo Coco D, Mattaliano P, Spataro R, et al. Sleep-wake disturbances in patients with amyotrophic lateral sclerosis. *J Neurol Neurosurg Psychiatry* 2011;82(8):839-42. doi: 10.1136/jnnp.2010.228007 [published Online First: 2011/01/11]
- 77. Panda S, Gourie-Devi M, Sharma A. Sleep disorders in amyotrophic lateral sclerosis: A questionnaire-based study from India. *Neurol India* 2018;66(3):700-08. doi: 10.4103/0028-3886.232327 [published Online First: 2018/05/17]
- 78. Gunther R, Richter N, Sauerbier A, et al. Non-Motor Symptoms in Patients Suffering from Motor Neuron Diseases. *Front Neurol* 2016;7:117. doi: 10.3389/fneur.2016.00117 [published Online First: 2016/08/10]
- 79. Tandberg E, Larsen JP, Karlsen K. A community-based study of sleep disorders in patients with Parkinson's disease. *Mov Disord* 1998;13(6):895-9. doi: 10.1002/mds.870130606 [published Online First: 1998/11/25]
- 80. Factor SA, McAlarney T, Sanchez-Ramos JR, et al. Sleep disorders and sleep effect in Parkinson's disease. *Mov Disord* 1990;5(4):280-5. doi: 10.1002/mds.870050404 [published Online First: 1990/01/01]
- 81. Tholfsen LK, Larsen JP, Schulz J, et al. Development of excessive daytime sleepiness in early Parkinson disease. *Neurology* 2015;85(2):162-8. doi: 10.1212/WNL.000000000001737 [published Online First: 2015/06/19]
- 82. Braley TJ, Boudreau EA. Sleep Disorders in Multiple Sclerosis. *Curr Neurol Neurosci Rep* 2016;16(5):50. doi: 10.1007/s11910-016-0649-2 [published Online First: 2016/04/14]
- 83. Veauthier C, Radbruch H, Gaede G, et al. Fatigue in multiple sclerosis is closely related to sleep disorders: a polysomnographic cross-sectional study. *Mult Scler* 2011;17(5):613-22. doi: 10.1177/1352458510393772 [published Online First: 2011/02/01]
- 84. Krupp L. Fatigue is intrinsic to multiple sclerosis (MS) and is the most commonly reported symptom of the disease. *Mult Scler* 2006;12(4):367-8. doi: 10.1191/135248506ms1373ed [published Online First: 2006/08/12]
- 85. Valkovic P, Minar M, Singliarova H, et al. Pain in Parkinson's Disease: A Cross-Sectional Study of Its Prevalence, Types, and Relationship to Depression and Quality of Life. *PLoS One* 2015;10(8):e0136541. doi: 10.1371/journal.pone.0136541 [published Online First: 2015/08/27]
- 86. Hunt LJ, Covinsky KE, Yaffe K, et al. Pain in Community-Dwelling Older Adults with Dementia: Results from the National Health and Aging Trends Study. J Am Geriatr Soc 2015;63(8):1503-11. doi: 10.1111/jgs.13536 [published Online First: 2015/07/23]
- 87. de Tommaso M, Arendt-Nielsen L, Defrin R, et al. Pain Assessment in Neurodegenerative Diseases. Behav Neurol 2016;2016:2949358. doi: 10.1155/2016/2949358 [published Online First: 2016/07/16]

S.No.	Phenotype	Source study	Maximum sample size	Р	Number of analyzed SNPs	Number of significa nt SNPs	Number of significant SNPs (post- clumping) (R ² < 0.001)	Average F- statistics (Median (Range)	R ² (%)
Sleep re	lated traits	-	-		-	•	-		•
1	Sleep duration (SD)	Dashti et al. 2019	446118	5 x 10 ⁻⁸	14661601	7926	74	34.7 (29.6-220.9)	0.731%
2	Short sleep (SS)	Dashti et al. 2019	106192 cases/ 305742 controls	5 x 10 ⁻⁸	14661601	859	26	34.1 (29.9-77.0)	0.045%
3	Long sleep (LS)	Dashti et al. 2019	34184 cases/ 305742 controls	5 x 10 ⁻⁸	14661601	3901	9	32.4 (29.9-53.0)	0.006%
4	Chronotype (CHR)	Jones et al. 2019	449734	5 x 10 ⁻⁸	11977111	15152	156	39.4 (28.2-209.4)	2.683%
5	Morning person (MP)	Jones et al. 2019	252287 cases/ 150908 controls	5 x 10 ⁻⁸	11977111	10949	127	37.9 (29.0-168.5)	5.748%
6	Insomnia (INS)	Jansen et al. 2018	109389 cases/277144 controls	5 x 10 ⁻⁸	10862567	463	13	34.4 (30.4-94.7)	0.712%
Pain rel	ated trait	-			·	-			
1	Mulisite chronic pain (MCP)	Johnston et al. 2019	387649	5 x 10 ⁻⁸	9926106	1746	41	34.1 (30.0-54.6)	0.341%
Disease	trait				-	-			•
1	Age-related macular degeneration (AMD)	Fritsche et al. 2016	16144 cases/17832 controls	5 x 10 ⁻⁸	120,238,30	7218	42	47.5 (29.2-382.5)	NA
2	Alzheimer's disease (AD)	Jansen et al. 2018	71880 cases/ 383,378 controls	5 x 10 ⁻⁸	33,672,99	2357	27	42.2 (30.2-422.5)	NA
3	Amyotrophic lateral sclerosis (ALS)	van Rheenen et al. 2016	12577 cases/ 23475 controls	5 x 10 ⁻⁸	870, 945,2	125	4	37.2 (32.2-80.1)	NA
4	Multiple sclerosis (MS)	Patsopoulos et al. 2017	47351 cases/ 68284 controls	5 x 10 ⁻⁸	859, 365,0	26403	74	41.9 (29.8-561.9)	NA
5	Parkinson's disease (PD)	Nalls et al. 2019	33674 cases, 449056 controls	5 x 10 ⁻⁸	175,137,73	3465	23	43.6 (30.0-181.5)	NA

Table 1. Details of discovery GWAS datasets explored and prioritized instruments used for direct and reverse causal analysis in the present study. Direct analysis was done using PD as an outcome and reverse was done using sleep and pain-related traits as outcomes.

1	Alzheimer's disease (AD)	Lambert et al. 2013	17008 cases/ 37154 controls	5 x 10 ⁻⁸	7055881	1090	18	37.9 (29.7-82.4)	NA
2	Parkinson's disease (PD)	Nalls et al. 2014	9581 cases/33245 controls	5 x 10 ⁻⁸	8543957	3209	9	49.8 (33.1-175.7)	NA

Table 2. Causal effect estimates using different Mendelian randomization methods and heterogeneity analysis of causal effect estimates for neurodegeneratice disorders (NDDs) using various sleep and pain related traits as exposures.

Trait	MR methodology	Number of SNPs	Direct c	ausal effect est	imates	Tests of heterogeneity		
			OR	95% CI	p- value			
				÷	Alzhein	ner's Disease (AD)	1	
	Inverse variance weighted	71	0.992	0.956-1.029	0.6567	MR-Egger intecept (p-value)	0.2022	
Sleep duration	MR Egger		0.909	0.791-1.045	0.1783	I square (IVW)	0.0%	
(SD)	Weighted median method		0.998	0.971-1.026	0.9436	Cochrane Q-test (IVW) (p-value)	0.5815	
	Weighted mode method (NOME assumptions)		1.026	0.934-1.127	0.5951	Rucker's Q-test (p-value)	0.6021	
						Rucker's test statistic/ Cochrane Q-statistic	0.9763	
						MR-PRESSO global test (p-value)	0.4270	
	Inverse variance weighted	26	1.256	1.081-1.459	0.0044	MR-Egger intecept (p-value)	0.7405	
Short sleep (SS)	MR Egger		1.121	0.547-2.299	0.7457	I square (IVW)	0.0%	
	Weighted median method		1.219	1.103-1.347	0.0586	Cochrane Q-test (IVW) (p-value)	0.5847	
	Weighted mode method (NOME assumptions)		1.362	0.952-1.949	0.1032	Rucker's Q-test (p-value)	0.5279	
						Rucker's test statistic/ Cochrane Q-statistic	0.9994	
						MR-PRESSO global test (p-value)	0.4520	
	Inverse variance weighted	6	0.877	0.527-1.460	0.5381	MR-Egger intecept (p-value)	0.4714	
Long clean (LS)	MR Egger		1.443	0.231-9.010	0.6076	I square (IVW)	0.0%	
Long sleep (LS)	Weighted median method		0.979	0.763-1.255	0.9341	Cochrane Q-test (IVW) (p-value)	0.4411	
	Weighted mode method (NOME assumptions)		1.082	0.525-2.232	0.8385	Rucker's Q-test (p-value)	0.3854	
						Rucker's test statistic/ Cochrane Q-statistic	0.8662	
						MR-PRESSO global test (p-value)	0.4640	
	Inverse variance weighted	153	0.995	0.973-1.018	0.6729	MR-Egger intecept (p-value)	0.0941	
Chronotype	MR Egger		0.937	0.871-1.009	0.0850	I square (IVW)	28.6%	
(CHR)	Weighted median method		0.995	0.980-1.009	0.7090	Cochrane Q-test (IVW) (p-value)	0.0008	
	Weighted mode method (NOME assumptions)		1.025	0.934-1.125	0.6074	Rucker's Q-test (p-value)	0.0013	
						Rucker's test statistic/ Cochrane Q-statistic	0.9810	

						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	123	1.001	0.986-1.017	0.8441	MR-Egger intecept (p-value)	0.0364
Morning person	MR Egger		0.953	0.909-1.001	0.0533	I square (IVW)	23.5%
(MP)	Weighted median method		1.004	0.994-1.014	0.7228	Cochrane Q-test (IVW) (p-value)	0.0127
	Weighted mode method (NOME assumptions)		1.022	0.962-1.086	0.4776	Rucker's Q-test (p-value)	0.0234
						Rucker's test statistic/ Cochrane Q-statistic	0.9643
						MR-PRESSO global test (p-value)	0.0030
	Inverse variance weighted	13	0.981	0.939-1.024	0.3448	MR-Egger intecept (p-value)	0.8399
Lass main (INIC)	MR Egger		0.968	0.836-1.120	0.6342	I square (IVW)	8.4%
Insomnia (INS)	Weighted median method		0.977	0.953-1.001	0.3529	Cochrane Q-test (IVW) (p-value)	0.3621
	Weighted mode method (NOME assumptions)		0.983	0.914-1.059	0.6655	Rucker's Q-test (p-value)	0.2882
						Rucker's test statistic/ Cochrane Q-statistic	0.9987
						MR-PRESSO global test (p-value)	0.2800
	Inverse variance weighted	32	1.373	0.884-2.133	0.1523	MR-Egger intecept (p-value)	0.0029
Multisite	MR Egger		25.956	3.919- 171.909	0.0014	I square (IVW)	13.1%
(MCP)	Weighted median method		1.143	0.866-1.509	0.6338	Cochrane Q-test (IVW) (p-value)	0.2575
	Weighted mode method (NOME assumptions)		1.026	0.305-3.457	0.9667	Rucker's Q-test (p-value)	0.6690
						Rucker's test statistic/ Cochrane Q-statistic	0.7320
						MR-PRESSO global test (p-value)	0.1730
				Age-re	elated ma	cular degeneration (AMD)	
	Inverse variance weighted	69	1.242	0.925-1.667	0.1475	MR-Egger intecept (p-value)	0.0252
Sleep duration	MR Egger		0.397	0.141-1.117	0.0792	I square (IVW)	0.0%
(SD)	Weighted median method		1.165	0.935-1.451	0.4888	Cochrane Q-test (IVW) (p-value)	0.5105
	Weighted mode method (NOME assumptions)		1.198	0.546-2.629	0.6545	Rucker's Q-test (p-value)	0.6381
						Rucker's test statistic/ Cochrane Q-statistic	0.9302
						MR-PRESSO global test (p-value)	0.2830
	Inverse variance weighted	25	0.520	0.144-1.881	0.3041	MR-Egger intecept (p-value)	0.8015
Short sleep (SS)	MR Egger		0.249	0.001- 113.336	0.6431	I square (IVW)	10.0%

	Weighted median method		0.723	0.320-1.631	0.6936	Cochrane Q-test (IVW) (p-value)	0.3198
	Weighted mode method (NOME assumptions)		0.967	0.050- 18.823	0.9826	Rucker's Q-test (p-value)	0.2735
						Rucker's test statistic/ Cochrane Q-statistic	0.9970
						MR-PRESSO global test (p-value)	0.2210
	Inverse variance weighted	6	1.355	0.004- 491.772	0.8997	MR-Egger intecept (p-value)	0.7103
	MR Egger		41.952	NA	0.6982	I square (IVW)	44.8%
Long sleep (LS)	Weighted median method		2.690	0.321- 22.563	0.6612	Cochrane Q-test (IVW) (p-value)	0.1066
	Weighted mode method (NOME assumptions)		3.168	0.005- 1904.134	0.7383	Rucker's Q-test (p-value)	0.0654
						Rucker's test statistic/ Cochrane Q-statistic	0.9745
						MR-PRESSO global test (p-value)	0.0730
	Inverse variance weighted	150	1.269	1.083-1.486	0.0034	MR-Egger intecept (p-value)	0.5248
Chronotype	MR Egger		1.086	0.653-1.805	0.7503	I square (IVW)	1.9%
(CHR)	Weighted median method		1.171	1.048-1.308	0.1556	Cochrane Q-test (IVW) (p-value)	0.4204
	Weighted mode method (NOME assumptions)		0.954	0.533-1.707	0.8736	Rucker's Q-test (p-value)	0.4104
						Rucker's test statistic/ Cochrane Q-statistic	0.9963
						MR-PRESSO global test (p-value)	0.0920
	Inverse variance weighted	121	1.192	1.078-1.318	0.0007	MR-Egger intecept (p-value)	0.1273
Morning person	MR Egger		0.941	0.682-1.297	0.7075	I square (IVW)	0.0%
(MP)	Weighted median method		1.126	1.044-1.214	0.1197	Cochrane Q-test (IVW) (p-value)	0.9288
	Weighted mode method (NOME assumptions)		1.008	0.682-1.491	0.9662	Rucker's Q-test (p-value)	0.9414
						Rucker's test statistic/ Cochrane Q-statistic	0.9771
						MR-PRESSO global test (p-value)	0.8420
	Inverse variance weighted	13	1.135	0.826-1.560	0.4017	MR-Egger intecept (p-value)	0.2253
Incompie (INS)	MR Egger		2.158	0.686-6.793	0.1678	I square (IVW)	0.0%
Insomnia (INS)	Weighted median method		1.113	0.927-1.336	0.5694	Cochrane Q-test (IVW) (p-value)	0.8587
	Weighted mode method (NOME assumptions)		1.120	0.622-2.016	0.7119	Rucker's Q-test (p-value)	0.9109
						Rucker's test statistic/ Cochrane Q-statistic	0.7715

						MR-PRESSO global test (p-value)	0.8530
	Inverse variance weighted	31	1.014	0.580-1.774	0.9597	MR-Egger intecept (p-value)	0.1034
Multisite	MR Egger		0.120	0.009-1.702	0.1129	I square (IVW)	3.6%
(MCP)	Weighted median method		1.279	0.897-1.825	0.4931	Cochrane Q-test (IVW) (p-value)	0.4092
	Weighted mode method (NOME assumptions)		1.250	0.303-5.158	0.7594	Rucker's Q-test (p-value)	0.5018
						Rucker's test statistic/ Cochrane Q-statistic	0.9093
						MR-PRESSO global test (p-value)	0.2860
				An	nyotrophi	c lateral sclerosis (ALS)	
	Inverse variance weighted	71	1.003	0.743-1.355	0.9844	MR-Egger intecept (p-value)	0.2855
Sleep duration	MR Egger		0.569	0.191-1.696	0.3069	I square (IVW)	0.0%
(SD)	Weighted median method		1.011	0.797-1.283	0.9621	Cochrane Q-test (IVW) (p-value)	0.5246
	Weighted mode method (NOME assumptions)		0.988	0.410-2.384	0.9795	Rucker's Q-test (p-value)	0.5307
						Rucker's test statistic/ Cochrane Q-statistic	0.9829
						MR-PRESSO global test (p-value)	0.3920
	Inverse variance weighted	26	0.839	0.231-3.052	0.7818	MR-Egger intecept (p-value)	0.7964
Short sleen (SS)	MR Egger		1.837	0.003- 1038.801	0.8447	I square (IVW)	4.7%
Short sleep (33)	Weighted median method		0.693	0.296-1.624	0.6705	Cochrane Q-test (IVW) (p-value)	0.3947
	Weighted mode method (NOME assumptions)		0.587	0.022- 15.815	0.7541	Rucker's Q-test (p-value)	0.3451
						Rucker's test statistic/ Cochrane Q-statistic	0.9969
						MR-PRESSO global test (p-value)	0.3180
	Inverse variance weighted	6	0.746	0.003- 218.829	0.8994	MR-Egger intecept (p-value)	0.8766
Long clean (LS)	MR Egger		0.223	NA	0.8550	I square (IVW)	40.2%
Long sleep (L3)	Weighted median method		0.505	0.060-4.219	0.7606	Cochrane Q-test (IVW) (p-value)	0.1375
	Weighted mode method (NOME assumptions)		0.350	0.001- 242.154	0.7659	Rucker's Q-test (p-value)	0.0814
						Rucker's test statistic/ Cochrane Q-statistic	0.9919
						MR-PRESSO global test (p-value)	0.1370
Chronotype	Inverse variance weighted	153	0.914	0.781-1.070	0.2605	MR-Egger intecept (p-value)	0.8658

(CHR)	MR Egger		0.876	0.524-1.467	0.6134	I square (IVW)	0.0%
	Weighted median method		0.976	0.868-1.097	0.8343	Cochrane Q-test (IVW) (p-value)	0.5552
	Weighted mode method (NOME assumptions)		1.112	0.642-1.924	0.7058	Rucker's Q-test (p-value)	0.5325
						Rucker's test statistic/ Cochrane Q-statistic	1.0000
						MR-PRESSO global test (p-value)	0.2740
	Inverse variance weighted	122	0.934	0.841-1.037	0.2007	MR-Egger intecept (p-value)	0.9094
Morning person	MR Egger		0.952	0.674-1.344	0.7779	I square (IVW)	0.0%
(MP)	Weighted median method		0.944	0.873-1.020	0.4607	Cochrane Q-test (IVW) (p-value)	0.8461
	Weighted mode method (NOME assumptions)		1.012	0.711-1.439	0.9480	Rucker's Q-test (p-value)	0.8302
						Rucker's test statistic/ Cochrane Q-statistic	0.9998
						MR-PRESSO global test (p-value)	0.7370
	Inverse variance weighted	13	1.551	1.121-2.145	0.0123	MR-Egger intecept (p-value)	0.4410
Lassing (DVC)	MR Egger		1.100	0.404-2.993	0.8383	I square (IVW)	0.0%
Insomnia (INS)	Weighted median method		1.480	1.203-1.821	0.0828	Cochrane Q-test (IVW) (p-value)	0.5894
	Weighted mode method (NOME assumptions)		1.386	0.762-2.522	0.3063	Rucker's Q-test (p-value)	0.5559
						Rucker's test statistic/ Cochrane Q-statistic	0.9432
						MR-PRESSO global test (p-value)	0.5290
	Inverse variance weighted	35	1.472	0.902-2.401	0.1176	MR-Egger intecept (p-value)	0.3001
Multisite	MR Egger		0.412	0.034-5.066	0.4772	I square (IVW)	16.8%
(MCP)	Weighted median method		1.456	1.085-1.954	0.2097	Cochrane Q-test (IVW) (p-value)	0.1938
	Weighted mode method (NOME assumptions)		1.586	0.484-5.195	0.4512	Rucker's Q-test (p-value)	0.1943
						Rucker's test statistic/ Cochrane Q-statistic	0.9726
						MR-PRESSO global test (p-value)	0.0740
					Multip	ole Sclerosis (MS)	
	Inverse variance weighted	70	1.002	0.732-1.371	0.9909	MR-Egger intecept (p-value)	0.2162
Sleep duration	MR Egger		2.014	0.632-6.423	0.2323	I square (IVW)	9.3%
(SD)	Weighted median method		1.133	0.911-1.408	0.5684	Cochrane Q-test (IVW) (p-value)	0.2622
	Weighted mode method (NOME assumptions)		1.168	0.581-2.346	0.6641	Rucker's Q-test (p-value)	0.2822
						Rucker's test statistic/ Cochrane Q-statistic	0.9763
			-		-		

						MR-PRESSO global test (p-value)	0.0810
	Inverse variance weighted	26	4.780	0.939- 24.326	0.0588	MR-Egger intecept (p-value)	0.8463
Shart daar (SS)	MR Egger		10.264	NA	0.5641	I square (IVW)	42.7%
Short sleep (SS)	Weighted median method		1.740	0.732-4.137	0.5284	Cochrane Q-test (IVW) (p-value)	0.0120
	Weighted mode method (NOME assumptions)		0.724	0.046- 11.380	0.8199	Rucker's Q-test (p-value)	0.0083
						Rucker's test statistic/ Cochrane Q-statistic	1.0017
						MR-PRESSO global test (p-value)	0.0010
	Inverse variance weighted	5	0.296	0.001- 90.815	0.5866	MR-Egger intecept (p-value)	0.1757
	MR Egger		NA	NA	0.2011	I square (IVW)	28.5%
Long sleep (LS)	Weighted median method		4.452	0.479- 41.384	0.5397	Cochrane Q-test (IVW) (p-value)	0.2318
	Weighted mode method (NOME assumptions)		5.847	0.016- 2101.701	0.5880	Rucker's Q-test (p-value)	0.4244
						Rucker's test statistic/ Cochrane Q-statistic	0.4997
						MR-PRESSO global test (p-value)	0.2190
	Inverse variance weighted	154	1.022	0.715-1.461	0.9041	MR-Egger intecept (p-value)	0.2977
Chronotype	MR Egger		0.553	0.164-1.863	0.3370	I square (IVW)	30.1%
(CHR)	Weighted median method		0.940	0.836-1.055	0.5928	Cochrane Q-test (IVW) (p-value)	0.0004
	Weighted mode method (NOME assumptions)		0.853	0.467-1.558	0.6058	Rucker's Q-test (p-value)	0.0001
						Rucker's test statistic/ Cochrane Q-statistic	1.0236
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	124	0.963	0.856-1.084	0.5337	MR-Egger intecept (p-value)	0.4641
Morning person	MR Egger		0.833	0.554-1.254	0.3788	I square (IVW)	22.3%
(MP)	Weighted median method		0.964	0.894-1.039	0.6234	Cochrane Q-test (IVW) (p-value)	0.0176
	Weighted mode method (NOME assumptions)		0.931	0.634-1.367	0.7172	Rucker's Q-test (p-value)	0.0167
						Rucker's test statistic/ Cochrane Q-statistic	0.9954
						MR-PRESSO global test (p-value)	0.0010
Incompia (INS)	Inverse variance weighted	13	0.936	0.648-1.352	0.7029	MR-Egger intecept (p-value)	0.5462
msomma (mvS)	MR Egger		0.658	0.179-2.422	0.4944	I square (IVW)	19.9%

	Weighted median method		0.850	0.696-1.038	0.4327	Cochrane Q-test (IVW) (p-value)	0.2429
	Weighted mode method (NOME assumptions)		0.859	0.495-1.489	0.5974	Rucker's Q-test (p-value)	0.2091
						Rucker's test statistic/ Cochrane Q-statistic	0.9650
						MR-PRESSO global test (p-value)	0.1920
	Inverse variance weighted	34	1.444	0.861-2.422	0.1577	MR-Egger intecept (p-value)	0.9268
Multisite chronic pain	MR Egger		1.635	0.101- 26.412	0.7212	I square (IVW)	28.7%
(MCP)	Weighted median method		1.197	0.890-1.609	0.5483	Cochrane Q-test (IVW) (p-value)	0.0619
	Weighted mode method (NOME assumptions)		1.237	0.417-3.668	0.7038	Rucker's Q-test (p-value)	0.0483
						Rucker's test statistic/ Cochrane Q-statistic	1.0010
						MR-PRESSO global test (p-value)	0.0220
					Parkin	son's Disease (PD)	
	Inverse variance weighted	70	0.934	0.649-1.343	0.7085	MR-Egger intecept (p-value)	0.3304
Sleep duration	MR Egger		0.475	0.115-1.970	0.3003	I square (IVW)	6.3%
(SD)	Weighted median method		0.805	0.626-1.034	0.3889	Cochrane Q-test (IVW) (p-value)	0.3284
	Weighted mode method (NOME assumptions)		0.652	0.244-1.743	0.3968	Rucker's Q-test (p-value)	0.3251
						Rucker's test statistic/ Cochrane Q-statistic	0.9874
						MR-PRESSO global test (p-value)	0.1550
	Inverse variance weighted	26	3.485	0.810- 14.993	0.0903	MR-Egger intecept (p-value)	0.8351
Short sleep (SS)	MR Egger		1.742	0.002- 1841.723	0.8708	I square (IVW)	0.0%
1 ()	Weighted median method		2.734	1.025-7.290	0.3149	Cochrane Q-test (IVW) (p-value)	0.4655
	Weighted mode method (NOME assumptions)		3.892	0.113- 133.950	0.4587	Rucker's Q-test (p-value)	0.4079
						Rucker's test statistic/ Cochrane Q-statistic	1.0006
						MR-PRESSO global test (p-value)	0.2820
	Inverse variance weighted	6	0.506	0.002- 121.424	0.7627	MR-Egger intecept (p-value)	0.1399
Long sleep (LS)	MR Egger		0.000	0.000- 158.569	0.1383	I square (IVW)	17.0%
	Weighted median method		0.075	0.006-0.938	0.3522	Cochrane Q-test (IVW) (p-value)	0.3036
	Weighted mode method (NOME assumptions)		0.019	0.000-	0.3521	Rucker's Q-test (p-value)	0.5936

				37.008			
				57.000		Rucker's test statistic/ Cochrane Q-statistic	0.4629
						MR-PRESSO global test (p-value)	0.2590
	Inverse variance weighted	155	0.921	0.753-1.125	0.4158	MR-Egger intecept (p-value)	0.5143
Chronotype	MR Egger		1.116	0.603-2.065	0.7250	I square (IVW)	20.9%
(CHR)	Weighted median method		0.875	0.763-1.003	0.3280	Cochrane Q-test (IVW) (p-value)	0.0149
	Weighted mode method (NOME assumptions)		0.805	0.496-1.308	0.3823	Rucker's Q-test (p-value)	0.0141
						Rucker's test statistic/ Cochrane Q-statistic	0.9966
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	125	1.026	0.898-1.173	0.7011	MR-Egger intecept (p-value)	0.8819
Morning person	MR Egger		0.996	0.658-1.509	0.9863	I square (IVW)	15.2%
(MP)	Weighted median method		0.938	0.858-1.024	0.4666	Cochrane Q-test (IVW) (p-value)	0.0847
	Weighted mode method (NOME assumptions)		0.903	0.650-1.254	0.5446	Rucker's Q-test (p-value)	0.0754
						Rucker's test statistic/ Cochrane Q-statistic	1.0001
						MR-PRESSO global test (p-value)	0.0080
	Inverse variance weighted	13	1.100	0.692-1.747	0.6609	MR-Egger intecept (p-value)	0.4819
I (DIC)	MR Egger		0.628	0.108-3.657	0.5726	I square (IVW)	34.1%
Insomnia (IINS)	Weighted median method		0.891	0.694-1.146	0.6549	Cochrane Q-test (IVW) (p-value)	0.1093
	Weighted mode method (NOME assumptions)		0.654	0.278-1.539	0.3500	Rucker's Q-test (p-value)	0.0953
						Rucker's test statistic/ Cochrane Q-statistic	0.9578
						MR-PRESSO global test (p-value)	0.1730
	Inverse variance weighted	34	0.696	0.435-1.113	0.1259	MR-Egger intecept (p-value)	0.2551
Multisite	MR Egger		0.200	0.021-1.876	0.1531	I square (IVW)	0.0%
chronic pain (MCP)	Weighted median method		0.728	0.532-0.995	0.3184	Cochrane Q-test (IVW) (p-value)	0.6387
(mer)	Weighted mode method (NOME assumptions)		0.545	0.163- 1.8118	0.3304	Rucker's Q-test (p-value)	0.6541
						Rucker's test statistic/ Cochrane Q-statistic	0.9573
						MR-PRESSO global test (p-value)	0.5230

Table 3. Causal effect estimates using different Mendelian randomization methods and heterogeneity analysis of causal effect estimates for various sleep and pain-related traits using Neurodegenerative disorders (NDDs) as exposures.

Trait*	MR methodology	Number of SNPs	Rever	se causal effect estin	nate	Tests of heterogeneity	
			β or OR**	95% CI	p- value		
				Alzl	neimer's dis	sease (AD)	
	Inverse variance weighted	26	-0.0370	-0.0879-0.0140	0.1482	MR-Egger intecept (p-value)	0.0857
Sleep	MR Egger		-0.1046	-0.19770.0114	0.0293	I square (IVW)	0.0%
(SD)	Weighted median method		-0.0583	-0.09240.0242	0.0996	Cochrane Q-test (IVW) (p-value)	0.6942
	Weighted mode method (NOME assumptions)		-0.0854	-0.16440.0064	0.0443	Rucker's Q-test (p-value)	0.8057
						Rucker's test statistic/ Cochrane Q- statistic	0.8557
						MR-PRESSO global test (p-value)	0.5860
	Inverse variance weighted	26	1.004	0.983-1.026	0.6774	MR-Egger intecept (p-value)	0.0745
Short sleep	MR Egger		1.035	0.995-1.076	0.0862	I square (IVW)	0.0%
(SS)	Weighted median method		1.023	1.008-1.038	0.1287	Cochrane Q-test (IVW) (p-value)	0.9298
	Weighted mode method (NOME assumptions)		1.026	0.993-1.060	0.1416	Rucker's Q-test (p-value)	0.9787
						Rucker's test statistic/ Cochrane Q- statistic	0.7827
						MR-PRESSO global test (p-value)	0.9120
	Inverse variance weighted	26	0.984	0.968-1.000	0.0479	MR-Egger intecept (p-value)	0.9637
Long sleep	MR Egger		0.984	0.955-1.014	0.2819	I square (IVW)	0.0%
(LS)	Weighted median method		0.986	0.975-0.998	0.2373	Cochrane Q-test (IVW) (p-value)	0.7454
	Weighted mode method (NOME assumptions)		0.973	0.944-1.002	0.0841	Rucker's Q-test (p-value)	0.6947
						Rucker's test statistic/ Cochrane Q- statistic	1.0005
						MR-PRESSO global test (p-value)	0.6330
	Inverse variance weighted	26	1.033	0.950-1.123	0.4365	MR-Egger intecept (p-value)	0.3102
Chronotyp	MR Egger		1.101	0.945-1.284	0.2055	I square (IVW)	42.8%
(CHR)	Weighted median method		1.123	1.075-1.173	0.0141	Cochrane Q-test (IVW) (p-value)	0.0118
	Weighted mode method (NOME assumptions)		1.118	1.016-1.230	0.0306	Rucker's Q-test (p-value)	0.0158

						Rucker's test statistic/ Cochrane Q- statistic	0.9434
						MR-PRESSO global test (p-value)	0.0030
	Inverse variance weighted	26	1.055	0.922-1.205	0.4212	MR-Egger intecept (p-value)	0.5355
Morning	MR Egger		1.123	0.877-1.438	0.3423	I square (IVW)	0.4%
(MP)	Weighted median method		1.169	1.088-1.256	0.0388	Cochrane Q-test (IVW) (p-value)	0.0324
	Weighted mode method (NOME assumptions)		1.177	1.003-1.381	0.0570	Rucker's Q-test (p-value)	0.0300
						Rucker's test statistic/ Cochrane Q- statistic	0.976
						MR-PRESSO global test (p-value)	0.0110
	Inverse variance weighted	26	0.916	0.799-1.051	0.2011	MR-Egger intecept (p-value)	0.0599
Insomnia	MR Egger		0.757	0.596-0.960	0.0239	I square (IVW)	23.7%
(INS)	Weighted median method		0.871	0.799-0.948	0.1171	Cochrane Q-test (IVW) (p-value)	0.1372
	Weighted mode method (NOME assumptions)		0.851	0.714-1.017	0.0888	Rucker's Q-test (p-value)	0.2441
						Rucker's test statistic/ Cochrane Q- statistic	0.8665
						MR-PRESSO global test (p-value)	0.0920
Multicito	Inverse variance weighted	26	-0.0371	-0.1073-0.0329	0.3181	MR-Egger intecept (p-value)	0.3786
chronic	MR Egger		-0.0839	-0.2125-0.0447	0.1908	I square (IVW)	33.2%
pain (MCP)	Weighted median method		-0.0294	-0.0688-0.0100	0.4629	Cochrane Q-test (IVW) (p-value)	0.0527
(INICI)	Weighted mode method (NOME assumptions)		-0.0837	-0.1884-0.0209	0.1293	Rucker's Q-test (p-value)	0.0575
						Rucker's test statistic/ Cochrane Q- statistic	0.9566
						MR-PRESSO global test (p-value)	0.0140
				Amyotro	phic latera	l sclerosis (ALS)	
	Inverse variance weighted	4	0.0249	-0.0054-0.0554	0.0797	MR-Egger intecept (p-value)	0.8095
Sleep	MR Egger		0.0816	-0.0963-0.1327	0.5654	I square (IVW)	0.0%
(SD)	Weighted median method		0.0250	0.0138-0.03611	0.1099	Cochrane Q-test (IVW) (p-value)	0.9179
	Weighted mode method (NOME assumptions)		0.0255	-0.0010-0.0521	0.1565	Rucker's Q-test (p-value)	0.803
						Rucker's test statistic/ Cochrane Q- statistic	0.8697
						MR-PRESSO global test (p-value)	0.9350

	Inverse variance weighted	4	0.9980	0.985-1.011	0.6380	MR-Egger intecept (p-value)	0.9973
Short sleep	MR Egger		0.9980	0.951-1.048	0.8711	I square (IVW)	0.0%
(SS)	Weighted median method		0.9990	0.995-1.004	0.9524	Cochrane Q-test (IVW) (p-value)	0.7351
	Weighted mode method (NOME assumptions)		1.0070	0.990-1.012	0.9091	Rucker's Q-test (p-value)	0.5285
						Rucker's test statistic/ Cochrane Q- statistic	1.002
						MR-PRESSO global test (p-value)	0.6800
	Inverse variance weighted	4	1.0125	1.002-1.023	0.0316	MR-Egger intecept (p-value)	0.8888
Long sleep	MR Egger		1.0109	0.964-1.059	0.4300	I square (IVW)	4.0%
(LS)	Weighted median method		1.0134	1.009-1.017	0.0409	Cochrane Q-test (IVW) (p-value)	0.373
	Weighted mode method (NOME assumptions)		1.0139	1.005-1.022	0.0530	Rucker's Q-test (p-value)	0.2079
						Rucker's test statistic/ Cochrane Q- statistic	1.0058
						MR-PRESSO global test (p-value)	0.4410
	Inverse variance weighted	4	1.0263	0.990-1.064	0.1068	MR-Egger intecept (p-value)	0.5384
Chronotyp	MR Egger		1.0488	0.915-1.202	0.2709	I square (IVW)	0.0%
(CHR)	Weighted median method		1.0294	1.016-1.043	0.1207	Cochrane Q-test (IVW) (p-value)	0.7821
	Weighted mode method (NOME assumptions)		1.0328	1.001-1.065	0.1339	Rucker's Q-test (p-value)	0.7597
						Rucker's test statistic/ Cochrane Q- statistic	0.5093
						MR-PRESSO global test (p-value)	0.7830
	Inverse variance weighted	4	1.0383	0.977-1.103	0.1433	MR-Egger intecept (p-value)	0.5715
Morning	MR Egger		1.0733	0.854-1.348	0.3137	I square (IVW)	0.0%
(MP)	Weighted median method		1.0483	1.024-1.073	0.1327	Cochrane Q-test (IVW) (p-value)	0.6704
	Weighted mode method (NOME assumptions)		1.0536	1.001-1.109	0.1397	Rucker's Q-test (p-value)	0.5750
						Rucker's test statistic/ Cochrane Q- statistic	0.7132
						MR-PRESSO global test (p-value)	0.6050
. .	Inverse variance weighted	4	1.0148	0.947-1.087	0.5445	MR-Egger intecept (p-value)	0.9715
Insomnia (INS)	MR Egger		1.0125	0.782-1.311	0.8555	I square (IVW)	0.0%
	Weighted median method		1.0245	0.999-1.051	0.4104	Cochrane Q-test (IVW) (p-value)	0.6546

	Weighted mode method (NOME assumptions)		1.0326	0.974-1.095	0.3607	Rucker's Q-test (p-value)	0.4449
						Rucker's test statistic/ Cochrane Q- statistic	0.9989
						MR-PRESSO global test (p-value)	0.6330
Multinita	Inverse variance weighted	4	0.0045	-0.0280-0.0372	0.6848	MR-Egger intecept (p-value)	0.5017
chronic	MR Egger		-0.0169	-0.13931-0.1054	0.6112	I square (IVW)	0.0%
pain (MCP)	Weighted median method		0.0050	-0.0069-0.0169	0.7024	Cochrane Q-test (IVW) (p-value)	0.5233
(MCI)	Weighted mode method (NOME assumptions)		-0.0055	-0.0326- 0.0216	0.7177	Rucker's Q-test (p-value)	0.4402
						Rucker's test statistic/ Cochrane Q- statistic	0.7313
						MR-PRESSO global test (p-value)	0.4220
			1	Age related	macular de	egeneration (AMD)	
	Inverse variance weighted	38	-0.0005	-0.0077-0.0067	0.8752	MR-Egger intecept (p-value)	0.6714
Sleep	MR Egger		-0.0026	-0.0151-0.0099	0.6746	I square (IVW)	47.3%
(SD)	Weighted median method		0.0014	-0.0022-0.0051	0.7060	Cochrane Q-test (IVW) (p-value)	0.0008
	Weighted mode method (NOME assumptions)		0.0018	-0.0067- 0.0103	0.6725	Rucker's Q-test (p-value)	0.0006
						Rucker's test statistic/ Cochrane Q- statistic	0.9966
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	38	0.999	0.997-1.001	0.2404	MR-Egger intecept (p-value)	0.7791
Short sleep	MR Egger		0.999	0.995-1.003	0.6506	I square (IVW)	6.5%
(SS)	Weighted median method		0.999	0.997-1.000	0.3791	Cochrane Q-test (IVW) (p-value)	0.3558
	Weighted mode method (NOME assumptions)		0.997	0.993-1.001	0.1737	Rucker's Q-test (p-value)	0.3151
						Rucker's test statistic/ Cochrane Q- statistic	0.999
						MR-PRESSO global test (p-value)	0.2540
	Inverse variance weighted	38	0.999	0.996-1.001	0.3476	MR-Egger intecept (p-value)	0.4268
Long sloop	MR Egger		0.997	0.993-1.002	0.2361	I square (IVW)	55.4%
(LS)	Weighted median method		1.000	0.999-1.001	0.9789	Cochrane Q-test (IVW) (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		1.001	0.997-1.004	0.6871	Rucker's Q-test (p-value)	<0.000 1
						Rucker's test statistic/ Cochrane Q-	0.9767

						statistic	
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	38	1.005	0.994-1.015	0.3798	MR-Egger intecept (p-value)	0.6299
Chronotyp	MR Egger		1.001	0.983-1.019	0.9068	I square (IVW)	63.8%
e (CHR)	Weighted median method		1.004	0.999-1.009	0.4304	Cochrane Q-test (IVW) (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		1.000	0.986-1.014	0.9980	Rucker's Q-test (p-value)	<0.000 1
						Rucker's test statistic/ Cochrane Q- statistic	1.003
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	38	1.007	0.991-1.025	0.3592	MR-Egger intecept (p-value)	0.5705
Morning	MR Egger		1.001	0.973-1.030	0.9438	I square (IVW)	58.3%
person (MP)	Weighted median method		1.007	0.999-1.016	0.4027	Cochrane Q-test (IVW) (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		1.005	0.983-1.028	0.6701	Rucker's Q-test (p-value)	<0.000
						Rucker's test statistic/ Cochrane Q- statistic	1.0019
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	37	0.994	0.981-1.008	0.3903	MR-Egger intecept (p-value)	0.4319
Insomnia	MR Egger		0.987	0.965-1.010	0.2580	I square (IVW)	27.6%
(INS)	Weighted median method		1.000	0.991-1.009	0.9879	Rucker's Q-test (p-value)	0.0656
	Weighted mode method (NOME assumptions)		1.005	0.980-1.032	0.6813	Rucker's Q-test (p-value)	0.0614
						Rucker's test statistic/ Cochrane Q- statistic	0.9833
						MR-PRESSO global test (p-value)	0.0280
N 11 1	Inverse variance weighted	42	-0.0028	-0.0089-0.0033	0.3574	MR-Egger intecept (p-value)	0.0548
chronic	MR Egger		-0.0112	-0.02160.0008	0.0358	I square (IVW)	30.8%
pain	Weighted median method		-0.0034	-0.0075-0.0008	0.4127	Cochrane Q-test (IVW) (p-value)	0.0321
(MCP)	Weighted mode method (NOME assumptions)		-0.0021	-0.0119-0.0077	0.6812	Rucker's Q-test (p-value)	0.0686
						Rucker's test statistic/ Cochrane Q- statistic	0.911
						MR-PRESSO global test (p-value)	0.0110

		Multiple sclerosis (MS)					
	Inverse variance weighted	70	0.0032	-0.0024-0.0088	0.2586	MR-Egger intecept (p-value)	0.6248
Sleep	MR Egger		0.0015	-0.0076-0.0105	0.7477	I square (IVW)	53.2%
duration (SD)	Weighted median method		0.0044	0.0012-0.0076	0.1841	Cochrane Q-test (IVW) (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		0.0038	-0.0021-0.0097	0.2164	Rucker's Q-test (p-value)	<0.000 1
						Rucker's test statistic/ Cochrane Q- statistic	0.9996
						MR-PRESSO global test (p-value)	NA
	Inverse variance weighted	70	1.000	0.998-1.002	0.9521	MR-Egger intecept (p-value)	0.7509
Short close	MR Egger		1.000	0.997-1.004	0.8329	I square (IVW)	49.7%
(SS)	Weighted median method		0.999	0.997-1.000	0.4187	Cochrane Q-test (IVW) (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		0.999	0.997-1.002	0.6820	Rucker's Q-test (p-value)	<0.000 1
						Rucker's test statistic/ Cochrane Q- statistic	0.9997
						MR-PRESSO global test (p-value)	NA
	Inverse variance weighted	70	1.002	1.001-1.003	0.0040	MR-Egger intecept (p-value)	0.6275
Long sleep	MR Egger		1.001	1.000-1.003	0.1459	I square (IVW)	0.8%
(LS)	Weighted median method		1.002	1.001-1.003	0.1231	Cochrane Q-test (IVW) (p-value)	0.4591
	Weighted mode method (NOME assumptions)		1.002	1.000-1.003	0.0726	Rucker's Q-test (p-value)	0.4326
						Rucker's test statistic/ Cochrane Q- statistic	0.9969
						MR-PRESSO global test (p-value)	NA
	Inverse variance weighted	70	1.003	0.996-1.009	0.3943	MR-Egger intecept (p-value)	0.2149
Chronotyp	MR Egger		0.998	0.987-1.008	0.6608	I square (IVW)	52.3%
e (CHR)	Weighted median method		1.000	0.997-1.004	0.9476	Cochrane Q-test (IVW) (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		1.002	0.996-1.008	0.5352	Rucker's Q-test (p-value)	<0.000 1
						Rucker's test statistic/ Cochrane Q- statistic	0.9815
						MR-PRESSO global test (p-value)	NA

	Inverse variance weighted	70	1.004	0.993-1.014	0.4939	MR-Egger intecept (p-value)	0.1581
Morning	MR Egger		0.994	0.978-1.011	0.4975	I square (IVW)	49.4%
person (MP)	Weighted median method		0.998	0.992-1.004	0.7365	Cochrane Q-test (IVW) (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		1.002	0.992-1.013	0.6579	Rucker's Q-test (p-value)	<0.000 1
						Rucker's test statistic/ Cochrane Q- statistic	0.973
						MR-PRESSO global test (p-value)	NA
	Inverse variance weighted	67	1.000	0.991-1.011	0.8216	MR-Egger intecept (p-value)	0.5171
Insomnia	MR Egger		1.005	0.989-1.021	0.5208	I square (IVW)	27.6%
(INS)	Weighted median method		0.999	0.991-1.007	0.8708	Cochrane Q-test (IVW) (p-value)	0.0217
	Weighted mode method (NOME assumptions)		1.003	0.990-1.015	0.6794	Rucker's Q-test (p-value)	0.0190
						Rucker's test statistic/ Cochrane Q- statistic	0.9956
						MR-PRESSO global test (p-value)	NA
Multisite	Inverse variance weighted	70	-0.0008	-0.0060-0.0043	0.6868	MR-Egger intecept (p-value)	0.7972
chronic	MR Egger		-0.0017	-0.0100-0.0067	0.6902	I square (IVW)	39.0%
pain (MCP)	Weighted median method		-0.0032	-0.0066-0.0001	0.3276	Cochrane Q-test (IVW) (p-value)	0.0006
(IVICI)	Weighted mode method (NOME assumptions)		-0.0043	-0.0100-0.0013	0.1428	Rucker's Q-test (p-value)	0.0005
						Rucker's test statistic/ Cochrane Q- statistic	0.9992
						MR-PRESSO global test (p-value)	NA
			1	Par	rkinson's di	sease (PD)	1
	Inverse variance weighted	23	0.0098	-0.0048-0.0245	0.1798	MR-Egger intecept (p-value)	0.93
Sleep	MR Egger		0.0113	-0.0266-0.0492	0.5417	I square (IVW)	68.2%
duration (SD)	Weighted median method		0.0061	-0.0001-0.0125	0.3089	Cochrane Q-test (IVW) (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		-0.0001	-0.0193-0.0190	0.9877	Rucker's Q-test (p-value)	<0.000 1
						Rucker's test statistic/ Cochrane Q- statistic	1.0032
						MR-PRESSO global test (p-value)	< 0.001
Short sleep	Inverse variance weighted	23	0.999	0.995-1.002	0.3680	MR-Egger intecept (p-value)	0.8565

(SS)	MR Egger		0.998	0.988-1.007	0.6047	I square (IVW)	19.0%
	Weighted median method		0.999	0.997-1.001	0.6722	Cochrane Q-test (IVW) (p-value)	0.2058
	Weighted mode method (NOME assumptions)		1.002	0.993-1.010	0.6937	Rucker's Q-test (p-value)	0.1678
						Rucker's test statistic/ Cochrane Q- statistic	0.9982
						MR-PRESSO global test (p-value)	0.1170
	Inverse variance weighted	23	1.002	0.998-1.007	0.2488	MR-Egger intecept (p-value)	0.7717
Long cloop	MR Egger		1.004	0.993-1.016	0.4337	Cochrane Q-test (IVW) (p-value)	61.8%
(LS)	Weighted median method		0.999	0.997-1.001	0.4874	Rucker's Q-test (p-value)	<0.000 1
	Weighted mode method (NOME assumptions)		0.998	0.994-1.002	0.3944	Rucker's Q-test (p-value)	<0.000 1
						Rucker's test statistic/ Cochrane Q- statistic	1.0081
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	23	0.992	0.978-1.007	0.3039	MR-Egger intecept (p-value)	0.4215
Chronotyp	MR Egger		0.979	0.943-1.017	0.2560	I square (IVW)	60.6%
(CHR)	Weighted median method		1.002	0.994-1.009	0.8195	Cochrane Q-test (IVW) (p-value)	0.0001
	Weighted mode method (NOME assumptions)		1.013	0.956-1.072	0.6693	Rucker's Q-test (p-value)	0.0001
						Rucker's test statistic/ Cochrane Q- statistic	0.9688
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	23	0.991	0.967-1.015	0.4437	MR-Egger intecept (p-value)	0.5548
Morning	MR Egger		0.974	0.915-1.038	0.4014	I square (IVW)	60.0%
(MP)	Weighted median method		0.998	0.985-1.011	0.8945	Cochrane Q-test (IVW) (p-value)	0.0001
	Weighted mode method (NOME assumptions)		0.943	0.875-1.016	0.1385	Rucker's Q-test (p-value)	0.0001
						Rucker's test statistic/ Cochrane Q- statistic	0.9819
						MR-PRESSO global test (p-value)	< 0.001
	Inverse variance weighted	23	1.002	0.980-1.024	0.8525	MR-Egger intecept (p-value)	0.8117
Insomnia	MR Egger		0.996	0.942-1.053	0.8829	I square (IVW)	34.8%
(INS)	Weighted median method		0.991	0.979-1.004	0.5141	Cochrane Q-test (IVW) (p-value)	0.0524
	Weighted mode method (NOME assumptions)		0.967	0.931-1.004	0.0898	Rucker's Q-test (p-value)	0.0398

						Rucker's test statistic/ Cochrane Q- statistic	0.9967
						MR-PRESSO global test (p-value)	0.0240
Multisite	Inverse variance weighted	23	-0.0054	-0.0170-0.0062	0.3590	MR-Egger intecept (p-value)	0.3476
chronic	MR Egger		-0.0178	-0.0472- 0.0115	0.2202	I square (IVW)	48.3%
pain (MCP)	Weighted median method		-0.0093	-0.01550.0032	0.1373	Cochrane Q-test (IVW) (p-value)	0.0054
(IVICF)	Weighted mode method (NOME assumptions)		-0.0105	-0.0274-0.0062	0.2277	Rucker's Q-test (p-value)	0.0061
						Rucker's test statistic/ Cochrane Q- statistic	0.9565
						MR-PRESSO global test (p-value)	0.001

Excluded SNP	IVW OR	95% CI	p-value
rs17374439	1.196	1.081-1.323	0.0007
rs3767240	1.180	1.067-1.305	0.0015
rs12140153	1.195	1.080-1.321	0.0006
rs7547493	1.200	1.085-1.328	0.0005
rs11588913	1.191	1.077-1.317	0.0008
rs72720396	1.181	1.067-1.306	0.0015
rs4949980	1.193	1.079-1.319	0.0007
rs17575798	1.192	1.077-1.318	0.0008
rs6537834	1.194	1.079-1.320	0.0007
rs11587758	1.187	1.073-1.313	0.0010
rs75650221	1.191	1.077-1.317	0.0008
rs11580135	1.188	1.074-1.314	0.0009
rs1144566	1.201	1.085-1.330	0.0005
rs10196909	1.199	1.084-1.326	0.0005
rs75120545	1.199	1.084-1.326	0.0005
rs786406	1.191	1.077-1.317	0.0008
rs10495976	1.190	1.076-1.316	0.0009
rs7602425	1.189	1.075-1.315	0.0009
rs778147	1.196	1.081-1.323	0.0006
rs6744983	1.188	1.075-1.314	0.0009
rs10520176	1.193	1.079-1.320	0.0007
rs28380327	1.198	1.083-1.325	0.0006
rs1947198	1.188	1.075-1.314	0.0009
rs11679484	1.184	1.070-1.309	0.0012
rs138964083	1.193	1.079-1.320	0.0007
rs77008212	1.196	1.080-1.323	0.0007
rs114870822	1.191	1.077-1.317	0.0008
rs34581681	1.194	1.080-1.321	0.0007
rs13059636	1.203	1.087-1.330	0.0004
rs115774037	1.187	1.074-1.313	0.0010
rs11712056	1.196	1.081-1.323	0.0006
rs60194061	1.189	1.075-1.315	0.0009
rs957501	1.198	1.083-1.325	0.0006
rs13065394	1.188	1.075-1.314	0.0009
rs2102506	1.195	1.081-1.322	0.0006

Table 4. Sensitivity analysis of causal effect of morning person (MP) on predisposition to age-related macular degeneration (AMD) using leave-one-out SNP method.

rs3850174	1.199	1.084-1.326	0.0005
rs2239626	1.196	1.081-1.323	0.0006
rs34627176	1.200	1.085-1.327	0.0005
rs231398	1.194	1.079-1.320	0.0007
rs12498561	1.192	1.078-1.318	0.0008
rs17292170	1.191	1.077-1.317	0.0008
rs7691121	1.197	1.082-1.323	0.0006
rs4339281	1.186	1.073-1.312	0.0011
rs4241964	1.206	1.090-1.333	0.0004
rs10067113	1.192	1.078-1.318	0.0008
rs7701529	1.194	1.080-1.321	0.0007
rs34875688	1.188	1.074-1.314	0.0010
rs1027742	1.189	1.075-1.314	0.0009
rs2910032	1.192	1.077-1.318	0.0008
rs9369915	1.193	1.079-1.320	0.0007
rs2842638	1.188	1.075-1.314	0.0009
rs2653343	1.202	1.086-1.331	0.0005
rs60616179	1.195	1.081-1.322	0.0006
rs520954	1.193	1.078-1.320	0.0008
rs3877930	1.192	1.078-1.318	0.0008
rs9365769	1.192	1.078-1.318	0.0008
rs1494185	1.192	1.078-1.319	0.0008
rs12669911	1.185	1.071-1.310	0.0011
rs6967481	1.185	1.072-1.311	0.0011
rs12704886	1.196	1.082-1.323	0.0006
rs202157	1.188	1.074-1.314	0.0010
rs1524472	1.192	1.078-1.319	0.0007
rs13269289	1.193	1.079-1.319	0.0007
rs11786306	1.190	1.076-1.316	0.0009
rs13255030	1.193	1.079-1.320	0.0007
rs7001604	1.191	1.077-1.317	0.0008
rs2609589	1.190	1.076-1.316	0.0008
rs769066	1.191	1.077-1.317	0.0008
rs4321976	1.178	1.065-1.303	0.0016
rs1470764	1.187	1.074-1.313	0.0010
rs12682033	1.195	1.080-1.322	0.0007
rs10976942	1.196	1.081-1.322	0.0006
rs308521	1.188	1.074-1.313	0.0010
rs62553781	1.194	1.079-1.320	0.0007
rs10818834	1.188	1.074-1.314	0.0010
rs34619169	1.192	1.078-1.319	0.0007

rs28458909	1.184	1.070-1.310	0.0013
rs2893787	1.192	1.078-1.318	0.0008
rs4752593	1.190	1.076-1.316	0.0009
rs6599694	1.195	1.080-1.321	0.0007
rs72632979	1.193	1.079-1.319	0.0007
rs10501087	1.182	1.069-1.308	0.0013
rs512647	1.194	1.080-1.321	0.0007
rs11032362	1.206	1.090-1.335	0.0004
rs11229543	1.191	1.077-1.318	0.0008
rs4936291	1.194	1.080-1.320	0.0007
rs73606718	1.197	1.082-1.323	0.0006
rs2467109	1.195	1.081-1.322	0.0006
rs7302062	1.188	1.074-1.314	0.0010
rs7316768	1.199	1.084-1.326	0.0005
rs7313852	1.207	1.091-1.336	0.0004
rs11174781	1.192	1.078-1.319	0.0008
rs7959983	1.198	1.083-1.325	0.0006
rs7304278	1.188	1.074-1.313	0.0010
rs9597241	1.191	1.077-1.318	0.0008
rs9573971	1.180	1.067-1.306	0.0015
rs11841335	1.192	1.077-1.318	0.0008
rs10149448	1.191	1.077-1.317	0.0008
rs12927162	1.194	1.079-1.321	0.0007
rs1421085	1.182	1.068-1.308	0.0014
rs62046253	1.188	1.074-1.314	0.0009
rs11645898	1.189	1.075-1.315	0.0009
rs2518022	1.204	1.088-1.332	0.0004
rs3760185	1.190	1.076-1.317	0.0008
rs72829936	1.187	1.073-1.313	0.0010
rs35653190	1.186	1.073-1.312	0.0010
rs17682747	1.193	1.078-1.319	0.0007
rs2949923	1.189	1.075-1.315	0.0009
rs62082401	1.192	1.078-1.318	0.0008
rs1013987	1.193	1.078-1.319	0.0007
rs4419127	1.194	1.079-1.321	0.0007
rs12969848	1.184	1.070-1.310	0.0012
rs9962650	1.186	1.072-1.311	0.0011
rs9964420	1.197	1.082-1.324	0.0006
rs11152350	1.189	1.075-1.315	0.0009
rs9636202	1.198	1.083-1.325	0.0005
rs11670534	1.196	1.082-1.323	0.0006

rs78095690	1.187	1.073-1.313	0.0010
rs2072727	1.186	1.072-1.311	0.0011
rs139911	1.196	1.081-1.323	0.0006
rs4822107	1.187	1.074-1.313	0.0010

Table 5. Sensitivity analysis of causal effect estimates of sleep related traits on neurodegeneration using leave-group-out SNP method by excluding potential pleiotropic SNPs identified through Phenoscanner.

Exposure	Outcome	Number of SNPs in the genetic instrument	Number of pleiotropic SNPs (Phenoscanner)	Number of SNPs remaining	OR	95% CI	p- value
Morning person (MP)	Age related macular degeneration (AMD)	121	46	75	1.202	1.055-1.370	0.0063
Chronotype (CHR)	Age related macular degeneration (AMD)	150	51	99	1.262	1.049-1.520	0.0141
Short sleep (SS)	Alzheimer's disease (AD)	26	14	12	1.041	0.819-1.320	0.723
Insomnia (INS)	Amyotrophic lateral sclerosis (ALS)	13	10	3	2.135	0.457-9.979	0.168

Table 6. Sensitivity analysis of causal effect estimates of sleep related traits on neurodegeneration by exploring potential influence of specific brain region using variants involved in regional expression.

	Causal effect estimates of MP with AMD				Causal effect estimates of CHR with AMD					
Brain region	Number of SNPs involved in expression	Number of SNPs remaining	IVW OR	95% CI	p- value	Number of SNPs involved in expression	Number of SNPs	IVW OR	95% CI	p- value
Amygdala	5	116	1.184	1.069-1.312	0.0014	6	144	1.245	1.061-1.462	0.0077
Anterior cingulate cortex (BA24)	8	113	1.188	1.070-1.318	0.0014	12	138	1.269	1.088-1.479	0.0027
Brain - Caudate (basal ganglia)	14	107	1.180	1.061-1.313	0.0027	19	131	1.262	1.075-1.482	0.0049
Brain - Cerebellar Hemisphere	13	108	1.185	1.066-1.317	0.0019	17	133	1.285	1.098-1.504	0.0020
Brain - Cerebellum	16	105	1.186	1.065-1.320	0.0021	21	129	1.271	1.079-1.497	0.0044
Brain - Cortex	13	108	1.175	1.058-1.306	0.0030	17	133	1.252	1.071-1.462	0.0050
Brain - Cerebellar Hemisphere	13	108	1.185	1.066-1.317	0.0019	17	133	1.285	1.098-1.504	0.0020
Brain - Frontal Cortex (BA9)	14	107	1.176	1.057-1.307	0.0031	15	135	1.264	1.083-1.476	0.0033
Brain - Hippocampus	7	114	1.197	1.080-1.328	0.0008	11	139	1.296	1.111-1.511	0.0011
Brain - Hypothalamus Brain	0	121	1.192	1.078-1.318	0.0007	0	150	1.269	1.083-1.486	0.0034
Brain - Nucleus accumbens (basal ganglia)	12	109	1.189	1.070-1.320	0.0015	17	133	1.268	1.082-1.486	0.0037
Brain - Putamen (basal ganglia)	8	113	1.195	1.078-1.326	0.0009	12	138	1.266	1.086-1.475	0.0028
Brain - Spinal cord (cervical c-1)	5	116	1.198	1.081-1.326	0.0007	9	141	1.295	1.113-1.508	0.0010
Brain - Substantia nigra	2	119	1.200	1.084-1.328	0.0005	5	145	1.301	1.121-1.511	0.0007

Figure 1. Graphical representation of causal association analysis and assessment of pleiotropy