
SUPPLEMENTARY MATERIALS 

 

Producing Feature Embeddings 

 Feature-level embedding vectors were produced by applying singular value decomposition (SVD) 

to the pointwise mutual information (PMI) matrix of feature occurrence/co-occurrence counts in the 

Partners HealthCare EHR database. Co-occurrence was defined as the presence of two features in a 

patient’s chart within 1 week of each other. Denoting the marginal occurrence rates of features 𝑖 and 𝑗 as 

𝑝𝑖 and 𝑝𝑗 respectively, and the co-occurrence rate of features 𝑖 and 𝑗 as 𝑝𝑖𝑗, the PMI of the two features is 

defined as 

𝑝𝑚𝑖(𝑖, 𝑗) = log (
𝑝𝑖𝑗

𝑝𝑖𝑝𝑗
) 

Sensibly, PMI is negative if features i and j are negatively associated, positive if positively associated, 

and zero if independent. Decomposing the PMI matrix rather than the co-occurrence count matrix is 

beneficial as PMI normalizes feature prevalence, preventing outsized influence of common features such 

as the word ‘patient’ in clinical notes. Since the PMI matrix is symmetric, SVD is simply an 

eigendecomposition thereof, and the initial embedding vector 𝑽𝒋,𝟎 for feature 𝑗 is simply feature 𝑗’s co-

occurrence vector projected onto each PMI eigenvector. For this analysis we took only the first 1,000 

eigenvectors, yielding 1,000-dimensional initial embeddings. To further reduce the embedding dimension, 

we performed PCA on the set of initial embedding vectors corresponding to our assembled features and 

took the first 10 PC scores for feature 𝑗 as its final embedding vector 𝑽𝒋. 

 

Fitting MGP using Expectation-Maximization (EM) 

Initialization: All parameters are initialized on the labeled set. MGP’s log-likelihood function can 

be decomposed into three components: log 𝑃(𝒀𝟏), log 𝑃(𝒀𝒕|𝒀𝒕−𝟏), and log 𝑓(𝑿|𝒀). The first component 

can be expressed as: 



log 𝑃(𝒀𝟏) = ∑ 𝑌𝑖,1 log 𝜋𝑖𝑛𝑖𝑡 + (1 − 𝑌𝑖,𝑡)(1 − log 𝜋𝑖𝑛𝑖𝑡  )

𝑁

𝑖=1

 

where 𝜋𝑖𝑛𝑖𝑡 = 𝑒𝑥𝑝𝑖𝑡(𝜆𝑖𝑛𝑖𝑡 + 𝜆𝐻0𝐻𝑖
𝑙𝑜𝑔). We recognize this is as the objective function of a logistic 

regression with outcome 𝒀𝟏 and predictor 𝑯𝒍𝒐𝒈, and thus fit {𝜆𝑖𝑛𝑖𝑡 , 𝜆𝐻0} using the glm package in R with 

binomial outcome and logit link function. Likewise, the second component can be expressed as: 

log 𝑃(𝒀𝒕|𝒀𝒕−𝟏) = ∑ ∑ 𝑌𝑖,𝑡 log 𝜋𝑡 + (1 − 𝑌𝑖,𝑡) log(1 − 𝜋𝑡)

𝑇(𝑖)

𝑡=2

𝑁

𝑖=1

 

where 𝜋𝑡 = 𝑒𝑥𝑝𝑖𝑡(𝜆0(1 − 𝑌𝑡−1) + 𝜆1𝑌𝑡−1 +  𝜆𝐻𝐻𝑖
𝑙𝑜𝑔 + 𝜆𝑡𝑡 + 𝜆𝑙𝑜𝑔𝑡 log 𝑡). This is the objective function 

of a logistic regression predicting 𝒀𝟐:𝑻(𝒊) from previous phenotype states, 𝑯𝒍𝒐𝒈, and 𝑡, so we fit 

{𝜆0, 𝜆1, 𝜆𝐻 , 𝜆𝑡 , 𝜆𝑙𝑜𝑔𝑡} once again using R’s glm package. Finally, the third component is by design the log-

likelihood of a generalized least squares model with outcome 𝑿 and mean/covariance specified in the 

“Gaussian Process Assumption” subsection of the Methods section. We fit the mean model and marginal 

variance parameters {𝝁𝟎, 𝝁𝟏, 𝝁𝑯, 𝝁𝒀𝑯, 𝝁𝒕, 𝝁𝒀𝒕, 𝜎1:𝑚 , 𝛼1:𝑚}  using the gls package in R with first-order 

autoregression. We compute the maximum likelihood estimator of the intra-temporal correlation 

parameters 𝝆 ∈ 𝑅𝑚×𝑚   using the 𝐻𝑖
𝛼𝑘-normalized residuals of the gls fit, 𝝐̂𝒊,𝒕 ∈ 𝑹𝒎, as follows: 

𝜌̂𝑘𝑙 =
1

𝑁𝑇𝜎𝑘𝜎𝑙
∑ ∑ 𝜖̂𝑖,𝑡,𝑘𝜖𝑖̂,𝑡,𝑙

𝑇(𝑖)

𝑡=1

𝑁

𝑖=1

 

Finally, we estimate the inter-temporal autocorrelation parameters 𝝉 ∈ 𝑅𝑚 using component-wise 

ordinary least squares (OLS) regression of 𝝐̂𝒊,𝒕,𝒌 versus 𝝐̂𝒊,𝒕−𝟏,𝒌 ∀ 𝑘 ∈ {1, … , 𝑚}. Note that unlike standard 

vector autoregression, here we assume that 𝜖̂𝑖,𝑡,𝑘|𝜖̂𝑖,𝑡′,𝑘 ⊥ 𝜖̂𝑖,𝑡′,𝑙 ∀ 𝑡′ ≠ 𝑡, 𝑘 ≠ 𝑙. 

 E-step: Let 𝑝̂𝑖𝑡 = 𝐸[𝑌𝑖,𝑡|𝑿]. Again, we estimate the marginal posterior 𝑌𝑖,𝑡|𝑿 rather than the joint 

𝒀𝒊,𝟏;𝑻(𝒊)|𝑿, which dramatically improves computational efficiency at the expense of being unable to re-

optimize intertemporal parameters. Since both Markov Process and first-order autoregression assume that 



a timepoint is independent of the past and future conditional on its neighboring timepoints, we can 

accurately approximate 𝑝̂𝑖,𝑡 as 𝐸[𝑌𝑖,𝑡|𝑿𝒊,𝒕−𝟏, 𝑿𝒊,𝒕, 𝑿𝒊,𝒕+𝟏] rather than 𝐸[𝑌𝑖,𝑡|𝑿𝒊,𝟏:𝑻(𝒊)]: 

𝑝̂𝑖,𝑡 =
∑ ∑ 𝑃(𝑌𝑖,𝑡−1 = 𝑢)𝑃(𝑌𝑖,𝑡 = 1|𝑌𝑖,𝑡−1 = 𝑢)𝑃(𝑌𝑖,𝑡+1 = 𝑤|𝑌𝑖,𝑡 = 1)𝑓(𝑿𝒊,𝒕−𝟏, 𝑿𝒊,𝒕, 𝑿𝒊,𝒕+𝟏|𝑌𝑖,𝑡−1, 𝑌𝑖,𝑡, 𝑌𝑖,𝑡+1)1

𝑤=0
1
𝑢=0

∑ ∑ ∑ 𝑃(𝑌𝑖,𝑡−1 = 𝑢)𝑃(𝑌𝑖,𝑡 = 𝑣|𝑌𝑖,𝑡−1 = 𝑢)𝑃(𝑌𝑖,𝑡+1 = 𝑤|𝑌𝑖,𝑡 = 𝑣)𝑓(𝑿𝒊,𝒕−𝟏, 𝑿𝒊,𝒕, 𝑿𝒊,𝒕+𝟏|𝑌𝑖,𝑡−1, 𝑌𝑖,𝑡 , 𝑌𝑖,𝑡+1)1
𝑤=0

1
𝑣=0

1
𝑢=0

 

Note that 𝑃(𝑌𝑖,𝑡−1 = 𝑢) here is a marginal probability, independent of {𝑿𝒊, 𝑌𝑖}1:𝑡−2. While this is 

misspecified, it is faster and indeed achieves higher test set accuracy in our real-world EHR example than 

jointly estimating 𝐸[𝒀𝒊,𝟏:𝑻(𝒊)|𝑿𝒊,𝟏:𝑻(𝒊)]. 𝑓(𝑿𝒊,𝒕−𝟏 , 𝑿𝒊,𝒕, 𝑿𝒊,𝒕+𝟏|𝑌𝑖,𝑡−1, 𝑌𝑖,𝑡, 𝑌𝑖,𝑡+1) is simply the density of the 

multivariate normal specified in the “Gaussian Process Assumption” subsection. Finally, for the 

endpoints 𝑡 = {1, 𝑇(𝑖)}, we respectively omit {𝑿𝒊,𝒕−𝟏, 𝑌𝑖,𝑡−1} and {𝑿𝒊,𝒕+𝟏, 𝑌𝑖,𝑡+1} in the above computation 

and predict 𝑝̂𝑖,𝑡 as above using the remaining two timepoints. 

M-step: Re-optimizing the model parameters follows a similar procedure to initialization. The 

expected log-likelihood function can be decomposed into three components: 𝐸[log 𝑃(𝒀𝟏)], 

𝐸[log 𝑃(𝒀𝒕|𝒀𝒕−𝟏)], and 𝐸[log 𝑓(𝑿|𝒀)]. Note that since we only estimate marginal rather than joint 

posteriors in the E-step, we cannot derive a closed-form expression for the second component and 

therefore maintain the transition parameters {𝜆0, 𝜆1, 𝜆𝐻 , 𝜆𝑡} at their initial values. Likewise, we cannot re-

infer the autocorrelation parameters 𝜏1:𝑚 and thus maintain them at their initial values as well. The first 

component can be expressed as: 

𝐸[log 𝑃(𝒀𝟏)] = ∑ 𝑝̂𝑖1 log 𝜋𝑖𝑛𝑖𝑡 + (1 − 𝑝̂𝑖1)(1 − log 𝜋𝑖𝑛𝑖𝑡  )

𝑁

𝑖=1

 

We recognize this as the objective function of a weighted logistic regression with outcome [𝟎𝑵, 𝟏𝑵], 

predictor [𝑯𝒍𝒐𝒈, 𝑯𝒍𝒐𝒈], and observation weights [𝟏 − 𝒑̂𝟏, 𝒑̂𝟏], and thus refit {𝜆𝑖𝑛𝑖𝑡 , 𝜆𝐻0} accordingly 

using the glm package. Similarly, the third component becomes the log-likelihood of a generalized least 

squares model with outcome [𝑿, 𝑿], mean [𝝁|𝒀 = 𝟎, 𝝁|𝒀 = 𝟏], covariance specified in the “Gaussian 

Process Assumption” subsection of the Methods, and observation weights [𝟏 − 𝒑̂𝟏,  𝒑̂𝟏]. We can thus refit 

{𝝁𝟎, 𝝁𝟏, 𝝁𝑯, 𝝁𝒀𝑯, 𝝁𝒕, 𝝁𝒀𝒕, 𝜎1:𝑚 , 𝛼1:𝑚} using the gls package in R with first-order autocorrelation. Finally, 



we re-estimate 𝝆 using the 𝐻𝑖
𝛼𝑘-normalized residuals of the weighted gls fit, [𝝐̂𝒊,𝒕,𝒀𝟎, 𝝐̂𝒊,𝒕,𝒀𝟏] ∈ 𝑹𝟐𝒎, where 

𝝐̂𝒊,𝒕,𝒀𝟎 denotes the residuals for observations where 𝒀 = 𝟎 and 𝝐̂𝒊,𝒕,𝒀𝟏 where 𝒀 = 𝟏: 

𝜌̂𝑘𝑙 =
1

𝑁𝑇𝜎𝑘𝜎𝑙
∑ ∑(1 − 𝑝̂𝑖,𝑡)𝜖𝑖̂,𝑡,𝑌0,𝑘𝜖𝑖̂,𝑡,𝑌0,𝑙 + 𝑝̂𝑖,𝑡𝜖𝑖̂,𝑡,𝑌1,𝑘𝜖𝑖̂,𝑡,𝑌1,𝑙

𝑇(𝑖)

𝑡=1

𝑁

𝑖=1

 

 

 

Simulation Data Generative Mechanisms 

 In our simulation study we generated datasets via a four-step procedure: for each patient, generate 

(i) the total number of timepoints 𝑇𝑖  and (ii) the initial phenotype state 𝑌𝑖,0; for timepoints 2: 𝑇𝑖 generate 

(iii) 𝑌𝑖,𝑡|𝑌𝑖,𝑡−1; and (iv) generate longitudinal feature counts 𝑪𝒊|𝒀𝒊. We vary the following generative 

parameters: 

(1) The mechanism of 𝑌|𝑇, where ‘independent’ indicates that  𝑌 ⊥ 𝑇 (i.e. 𝑌𝑖,𝑡 ∼

𝐵𝑒𝑟𝑛(𝜋0{𝐻𝑖}) ∀ 𝑖, 𝑡) , ‘correct’ follows SAMGEP’s generative mode (i.e. 𝑌𝑖,𝑡 ∼

𝐵𝑒𝑟𝑛(𝜋𝑖,𝑡), 𝜋𝑖,𝑡 = 𝑒𝑥𝑝𝑖𝑡{𝜆0(1 − 𝑦𝑡−1) + 𝜆1𝑦𝑡−1 + 𝜆2𝑡 + 𝜆3 log 𝑡 +  𝜆𝐻𝐻𝑖}), and ‘complex’ 

denotes over-parametrization of 𝑌(𝑇) (i.e. 𝑌𝑖,𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜋𝑖,𝑡), 𝜋𝑖,𝑡 = 𝑒𝑥𝑝𝑖𝑡{𝜆0(1 − 𝑌𝑡−1) +

𝜆1𝑦𝑡−1 + 𝜆2𝑡 + 𝜆3 log 𝑡 +  𝜆𝐻𝐻𝑖 + 𝜆02(1 − 𝑌𝑡−1)𝑡 + 𝜆12𝑦𝑡−1𝑡 + 𝜆03(1 − 𝑌𝑡−1) log 𝑡 +

𝜆13𝑌𝑡−1 log 𝑡 + 𝜆0𝐻(1 − 𝑌𝑡−1)𝐻𝑖 + 𝜆1𝐻𝑌𝑡−1𝐻𝑖 + 𝜆2𝐻𝐻𝑖𝑡 + 𝜆3𝐻𝐻𝑖 log 𝑡}), with generative 

parameters 𝝀 optimized using our real-world MS relapse dataset; 

(2) The marginal distribution of 𝑪𝒊|𝒀𝒊, where ‘lognormal’ indicates that marginally 

log 𝐶𝑖,𝑗,𝑡 |𝑌𝑖,𝑡 ∼ 𝑁(𝛼0,𝑗(1 − 𝑌𝑖,𝑡) + 𝛼1,𝑗𝑌𝑖,𝑡 , 𝜎2) and ‘log-t’ that log 𝐶𝑖,𝑗,𝑡 |𝑌𝑖,𝑡 ∼

𝑡(𝛼0(1 − 𝑌𝑖,𝑡) + 𝛼1,𝑗𝑌𝑖,𝑡 , 5𝑑𝑓); 

(3) The inter-temporal correlation parameter 𝜌 of 𝑪|𝒀, where 𝑐𝑜𝑟(𝐶𝑖,𝑡 , 𝐶𝑖,𝑠|𝒀) = 𝜌|𝑡−𝑠| 

(4) The number of observed phenotype labels 𝑛; 

(5) The total number of patients 𝑁; 



(6) The number of informative features, where the generative 𝛽 coefficients of any non-

informative features are set to 0. 

 

In summary, we generated datasets per the mechanisms outlined in the following table: 

𝒀|𝑻 𝑪|𝒀 𝝆 𝒏 𝑵 nInformative 

Correct Lognormal 0.4 100 5000 20 

Complex Lognormal 0.4 100 5000 20 

Independent Lognormal 0.4 100 5000 20 

Correct Log-t 0.4 100 5000 20 

Correct Lognormal 0 100 5000 20 

Correct Lognormal 0.8 100 5000 20 

Correct Lognormal 0.4 50 5000 20 

Correct Lognormal 0.4 200 5000 20 

Correct Lognormal 0.4 100 1000 20 

Correct Lognormal 0.4 100 20000 20 

Correct Lognormal 0.4 100 5000 5 

Correct Lognormal 0.4 100 5000 100 

 

  



 

Figure S1: AUCs, F1 scores, ABCcdf gains, and ABCcount gains for SAMGEP versus supervised and 

unsupervised MGP predicting MS relapse using real-world EHR data. 95% confidence intervals were 

empirically estimated by bootstrapping with 100 replicates. 


