Estimation and optimal control of the multi-scale dynamics of the Covid-19

David Jaure FOTS-MBOGNEa,e,*, Stéphane Yanick TCHOUMIa,e, Yannick KOUAKEP-TCHAPTCHIEb,e, Vivient Corneille KAMLAa,e, Jean-Claude KAMGANGa,e, Duplex Elvis HOUPA-DANGAc,e, Samuel BOWONG-TSAKOUd,f, David BEKOLLEe,e

aDepartment of Mathematics and Computer Science, ENSAI, The University of Ngaoundere,
bDepartment of Fundamental Science and Engineering, EGCIM, The University of Ngaoundere,
cDepartment of Mathematics and Computer Science, FS, The University of Ngaoundere,
dDepartment of Mathematics and Computer Science, FS, The University of Douala,
eLaboratory of Mathematics, Computer Science and Applications, FS, The University of Ngaoundere,
fLaboratory of Mathematics, Computer Science and Applications, FS, The University of Douala,

Abstract

This work aims at a better understanding and the optimal control of the spread of the new severe acute respiratory corona virus 2 (SARS-CoV-2). We first propose a multi-scale model giving insights on the virus population dynamics, the transmission process and the infection mechanism. We consider 10 compartments in the human population in order to take into accounts the effects of different specific mitigation policies: susceptible, infected, infectious, quarantined, hospitalized, treated, recovered, non-infectious dead, infectious dead, buried. The population of viruses is also partitioned into 10 compartments corresponding respectively to each of the first nine human population compartments and the free viruses available in the environment. Indeed, we have human to human virus transmission, human to environment virus transmission, environment to human virus transmission and self infection by susceptible individuals. We show the global stability of the disease free equilibrium if a given threshold R_0 is less or equal to 1 and we provide how to compute the basic reproduction number R_0. A convergence index T_1 is also defined in order to estimate the speed at which the disease extincts and an upper bound to the time of extinction is given. The existence of the endemic equilibrium is conditional and its description is provided. We evaluate the sensitivity of R_0, R_0 and T_1 to control parameters such as the maximal human density allowed per unit of surface, the rate of disinfection both for people and environment, the mobility probability, the wearing mask probability or efficiency, and the human to human contact rate which results from the previous one. Except the maximal human density allowed per unit of surface, all those parameters have significant effects on the qualitative dynamics of the disease. The most significant is the probability of wearing mask followed by the probability of mobility and the disinfection rate. According to a functional cost taking into consideration economic impacts of SARS-CoV-2, we determine and discuss optimal fighting strategies. The study is applied to real available data from Cameroon and an estimation of model parameters is done. After several simulations, social distancing and the disinfection frequency appear as the main elements of the optimal control strategy.

KeyWords : SARS-CoV-2, multi-scale modeling, parameter estimation, stability analysis, time of extinction, sensitivity analysis, optimal control.

AMS Classification : 34D05, 34D20, 34D23, 34D45, 49J15, 49K40, 49M37, 90C31, 92D30, 92C60.

*Corresponding author’s Address: email: jauresfota@gmail.com, P.O. Box 455, ENSAI, The University of Ngaoundere
1 Introduction

According to the World Health Organization\(^1\) (WHO), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) previously known as new coronavirus 2019 (2019-nCoV) is responsible of an infectious disease called Covid-19 [49]. In 1937, corona viruses were first identified as infectious bronchitis viruses with which birds suffered that could devastate poultry stocks. Today, the viruses are the cause of the common cold in 15\% to 30\% of all cases. In the past 70 years, researchers have found camels, cattle, cats, dogs, horses, mice, pigs, rats and turkeys that were infected with corona viruses\(^2\). Older people, and those with underlying medical problems like cardiovascular diseases, diabetes, chronic respiratory diseases, and cancer are more likely to develop serious illness. The Centers for Disease Control and Prevention \(^3\) (CDC) affirms that the most common ways the virus spreads from an infected person to healthy people around them is when they cough or sneeze and release viral particles into the air and through touching, hands shaking and others forms of close personal contact. When healthy people touch objects or surfaces on which there are viral particles, then touch their eyes, nose or mouth before washing their hands, the virus can spread. In some rare cases fecal contamination can cause the virus to spread as well. The best way to prevent and slow down transmission is being well informed about the SARS-CoV-2, the disease, its causes and how it spreads. Each person protects himself and others from infection by hands washing or using an alcohol based rub frequently and not touching his face. The SARS-CoV-2 spreads primarily through droplets of saliva or discharge from the nose when an infected person coughs or sneezes, so it is important to also practice respiratory etiquette (for example, by coughing into a flexed elbow). Notice that at this time, there are no specific vaccines or treatments for Covid-19. Depending on its location the SARS-CoV-2 can leave up to 7 days out of human body [10]. Modeling, analyzing models, estimating risks and forecasting the potential spread of the disease in population appears very useful for decision makers [32].

Recently, numerous papers (published or not) appeared in order to contribute to the fight against the pandemic Covid-19. Those papers can be organized in three groups. The first group addressed the problem of forecasting the disease in order to help decision makers to better evaluate the logistic challenges they will face [1, 3, 4, 16, 15, 24, 25, 28, 29, 37, 38, 39, 41, 45, 47, 48, 51, 61, 62]. The second category of papers focused on evaluating the effectiveness of mitigations measures prescribed by the WHO and different governments in order to define better fighting strategies [5, 9, 12, 13, 14, 29, 34, 37, 41, 44, 45, 46, 50, 53, 55, 54, 60, 62]. The last set of papers studied the social and the economical impacts of the pandemic [35, 59]. As we can observe in the literature, the wide part of models only consider person to person disease transmission. Of course it is important, but indirect transmission by environment may also be considered. On the other hand the virus population dynamics appears also important and should be explicitly studied. Indeed, when an individual gets in contact with the virus he is not directly infected. He really becomes exposed when the virus penetrates his organism by oral or respiratory ways. Hence, the exposition is mainly indirect in terms of human to human or human to environment contacts. This consideration justifies the regular disinfection of individuals and the environment as recommended by public health agencies. Following the authors in [19, 20, 21, 22, 23, 43], it is important to build and understand models that link the within-host dynamics and population level dynamics of infectious. The prediction of the behavior of Covid-19 is very difficult because mitigation strategies are permanently changing. So it could be more efficient given an initial situation to propose optimal control strategies that will lead to disease extinction at a time to be determined. Hence, this work proposes efficient and low cost control strategies against Covid-19.

The paper is organized as follows. A model is described in subsection 2.1 and its asymptotic behavior is studied in subsection 2.2 depending on some critical thresholds we define. In subsection 3.1, we estimate the parameters of the model according to the real available data from Cameroon. A sensitivity analysis of critical thresholds depending on some control parameters is carried out in subsection 3.2. Section 4 is devoted to the design and the computation of optimal control strategies according to different constraints.

\(^1\)https://www.who.int/emergencies/diseases/novel-coronavirus-2019

\(^2\)See https://medicalaid.org

\(^3\)https://www.cdc.gov/coronavirus/
Illustrative simulations are carried out in section 4.2. The algorithm which computes the optimal control is given in appendix C. The proofs of different theoretical results in appendix B. The paper ends with a conclusion in section 5.

2 The model and its general features

2.1 Description of the model

The disease dynamics can be viewed under two angles. Indeed, there are human dynamics on the first hand and the viruses dynamics on humans or in the environment on the other. We consider ten compartments in the human population per unit area (m^{-2}): Susceptible (S), Infected (E), Infectious (I), Quarantined (Q), Hospitalized (H), Treated (T), Recovered (R), Non-Infectious dead (D), Infectious dead (D_I), Buried (B). Each individual is assumed to have an external viral load on his body while there are free viruses in the environment (V_F).

Figure 1: Flow chart of the Susceptible (S)- Exposed (E)- Infectious (I)- Quarantined (Q)- Hospitalized (H)- Treated (T)- Recovered (R)- Non Infectious Dead (D)- Infectious Dead (D_I)- Buried (B) compartmental model with corresponding viruses subpopulations (V_k, $k \in \{S, E, I, Q, H, T, R, D, D_I\}$) and free viruses in the environment (V_F)

The viral load is transferred from an individual being in compartment i to the environment (transfer...
of type I: \(\tau_{1,i}\) or conversely from the environment to an individual being in compartment \(i\) (transfer of type II: \(\tau_{2,i}\)). Additionally, there are viral load transfers among individuals when they are in contact (transfer of type III: \(\tau_{3,i}\)). Notice that Infectious, quarantined, hospitalized and treated individuals produce new viruses at a rate \(\pi_i\) with \(i\) indexing a specific compartment. A susceptible individual becomes infected when a virus passes from the outside of his body to the inside (transfer of type IV: \(\tau_{4}\)). Infected persons die at a rate \(\mu\) or become infectious with a rate \(\alpha_1\). An infectious case is reported at a rate \(q\) and dies at a rate \(\mu + d\). The probability for a reported infectious person to be asymptomatic and then put in quarantine is \(p\), otherwise he is admitted to hospital. With a rate \(\alpha_2\) an infectious asymptomatic person is admitted to hospital after complications. Infectious, quarantined and hospitalized individuals die at a rate \(\mu + d\) or become treated at the respective rates of \(\gamma_1\), \(\gamma_2\), \(\gamma_3\) and \(\gamma_4\). A recovered person loses his immunity at a rate \(\ell\) or dies at a rate \(\mu\). Treated persons recover completely and become immune at a rate \(\gamma_4\). A treated individual is out of danger but is still infectious and can die at a rate \(\mu\). A mathematical model corresponding to the Figure 1 can be described as

\[
X = [S, E, I, Q, H, T, R, D, D_I, B]^T, \\
\Lambda = [\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4, \Lambda_5, \Lambda_6, \Lambda_7, \Lambda_8, \Lambda_9, 0]^T, \\
b = [b_1, b_2, b_3, b_4, b_5, b_6, b_7, 0, 0, 0]^T, \\
\Pi = [0, 0, \varsigma_3\pi_3, \varsigma_4\pi_4, \varsigma_5\pi_5, \varsigma_6\pi_6, 0, 0, 0, 0]^T, \\
N = \sum_{i=1}^{9} X_i \text{ and } \bar{N} = \sum_{i=1}^{7} X_i.
\]

A mathematical model corresponding to the Figure 1 can be described as
• A mesoscopic model (intermediate scale of human gatherings):

\[
X_1 = \left(\Lambda_1 + \sum_{i=1}^{7} b_i X_i \right) \left(1 - \frac{N}{\kappa} \right) - \left(\frac{a_1 \tau_4 Y_1}{a_2 + Y_1} + \mu \right) X_1 + \ell X_7
\]

The first term in equation (1) corresponds to horizontal recruitment (immigration at rate \(\Lambda_1 \)) and vertical recruitment (birth at rates \(b_i \)) in the susceptible human population. Population growth is restricted by logistic expression \(\left(1 - \frac{N}{\kappa} \right) \). The limiting capacity \(\kappa \) models social distancing which reduces the number of individuals per unit of area. The second term represents the exposition and the natural death at rate \(\mu \). The last term corresponds to the lost of immunity at rate \(\ell \).

\[
X_2 = \Lambda_2 \left(1 - \frac{N}{\kappa} \right) + \frac{a_1 \tau_4 Y_1}{a_2 + Y_1} X_1 - (\mu + \alpha_1) X_2
\]

The first term in equation (2) corresponds to horizontal recruitment in the exposed human population. The second term represents the arrival of new exposed. The last term corresponds to the natural death at rate \(\mu \) and the worsening of the disease at rate \(\alpha_1 \).

\[
X_3 = \Lambda_3 \left(1 - \frac{N}{\kappa} \right) + \alpha_1 X_2 - (\mu + d + q + \gamma_1) X_3
\]

The first term in equation (3) corresponds to horizontal recruitment in the infectious human population. The second term represents the arrival of new infectious. The last term corresponds to the death at rate \(\mu + d \), the detection of the disease by screening test (at rate \(q \)) and the treatment at rate \(\gamma_1 \).

\[
X_4 = \Lambda_4 \left(1 - \frac{N}{\kappa} \right) + pq X_3 - (\mu + d + \alpha_2 + \gamma_2) X_4
\]

The first term in equation (4) corresponds to horizontal recruitment in the quarantined human population. The second term represents the arrival of new quarantined after testing an infectious (at rate \((1 - p) q\)). The last term corresponds to the death at rate \(\mu + d \), the worsening of the disease (at rate \(\alpha_2 \)) and the treatment at rate \(\gamma_2 \).

\[
X_5 = \Lambda_5 \left(1 - \frac{N}{\kappa} \right) + (1 - p) q X_3 + \alpha_2 X_4 - (\mu + d + \gamma_3) X_5
\]

The first term in equation (5) corresponds to horizontal recruitment in the hospitalized human population. The second and third terms represent the arrival of new hospitalized after testing an infectious (at rate \((1 - p) q\)) and disease worsening for quarantined (at rate \(\alpha_2 \)). The last term corresponds to the death at rate \(\mu + d \) and the treatment at rate \(\gamma_3 \).

\[
X_6 = \Lambda_6 \left(1 - \frac{N}{\kappa} \right) + \gamma_1 X_3 + \gamma_2 X_4 + \gamma_3 X_5 - (\mu + \gamma_4) X_6
\]

The first term in equation (6) corresponds to horizontal recruitment in the treated human population. The second, the third and the fourth terms represent the respective treating rates from the infectious
(γ₁), quarantined (γ₂) and hospitalized (γ₃). The last term corresponds to the death at rate μ and the recovering at rate γ₄.

\[X_7 = \Lambda_T \left(1 - \frac{N}{\kappa} \right) + \gamma_4 X_6 - (\mu + \ell) X_7 \] (7)

The first term in equation (7) corresponds to horizontal recruitment in the recovered human population. The second term represents the recovering rates of treated (γ₄). The last term corresponds to the death at rate μ and the lost of immunity at rate ℓ.

\[X_8 = \Lambda_8 \left(1 - \frac{N}{\kappa} \right) + \mu (X_1 + X_2 + X_7) - \rho_1 X_8 \] (8)

The first term in equation (8) corresponds to horizontal recruitment in the non-infectious dead human population. That recruitment could correspond to transportation or transfer of dead individuals for burial ceremonies like it is common in Cameroon or other valuable reasons. The second term represents the death of individuals in susceptible, exposed and treated compartment at rate μ. The last term corresponds to the burying at rate ρ₁.

\[X_9 = \Lambda_9 \left(1 - \frac{N}{\kappa} \right) + (\mu + d) (X_3 + X_4 + X_5) + \mu X_6 - \rho_2 X_9 \] (9)

The first term in equation (9) corresponds to horizontal recruitment in the infectious dead human population. As in equation (8) that recruitment could correspond to transportation or transfer of dead individuals for burial ceremonies like it is common in Cameroon or other valuable reasons. The second term represents the death of individuals in infectious, quarantined, hospitalized at rate μ + d. The third term represents the death of individuals in recovered compartment μ. The last term corresponds to the burying at rate ρ₂.

\[X_{10} = \rho_1 X_8 + \rho_2 X_9 \] (10)

The first and the second terms in equation (10) correspond the burying of dead individuals at respective rates ρ₁ and ρ₂.

- And a microscopic model (virus scale):

\[Y_1^* = \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,1} Y_{10} \right) X_1 N - \left(\mu + \nu + \omega_1 + \tau_{1,1} + \tau_{3,1} + \frac{a_1 \tau_1 Y_1}{a_2 + Y_1} \right) Y_1 \] (11)

The first term in equation (11) represents the recruitment of viruses in susceptible population after a contact with environment (at rate τ₂₁) and individuals of other compartments (at respective rates τ₃ⱼ). The second term corresponds to the disappearing of viruses by natural death (at rate ν), by the death of the human host (at rate μ), by disinfection measures applied by the host (at rate ω₁), by the exchange of viruses with environment (at rate τ₁₁) and other compartments (at rate τ₃₁), and by the transition of the host from the susceptible compartment to the exposed compartment.
\[
Y_2 = \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,2} Y_{10} \right) \frac{X_2}{N} + \frac{a_1 \tau_{4} Y_1^2}{a_2 + Y_1} - (\mu + \alpha + \nu + \omega_2 + \tau_{1,2} + \tau_{3,2}) Y_2
\] (12)

The first term in equation (12) represents the recruitment of viruses in exposed population after a contact with environment (at rate \(\tau_{2,2} \)) and individuals of other compartments (at respective rates \(\tau_{3,j} \)). The second term corresponds to the update in population of viruses due to the transition from susceptible status to exposed status at rate \(\frac{a_1 \tau_{4} Y_1^2}{a_2 + Y_1} \). The third term represents the disappearing of viruses by natural death (at rate \(\nu \)), by the death of the human host (at rate \(\mu \)), by disinfection measures applied by the host (at rate \(\omega_2 \)), by the exchange of viruses with environment (at rate \(\tau_{1,2} \)) and other compartments (at rate \(\tau_{3,2} \)), and by the transition of the host from the susceptible compartment to the exposed compartment at rate \(\alpha_1 \).

\[
Y_3 = \varsigma_3 \pi_3 X_3 + \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,3} Y_{10} \right) \frac{X_3}{N} + \alpha_1 Y_2 - (\mu + d + q + \gamma_1 + \nu + \omega_3 + \tau_{1,3} + \tau_{3,3}) Y_3
\] (13)

The first term in equation (13) represents the release of internal viruses by infectious individuals on themselves. The second term corresponds to the recruitment of viruses in infectious population after a contact with environment (at rate \(\tau_{2,3} \)) and individuals of other compartments (at respective rates \(\tau_{3,j} \)). The third term corresponds to the update in population of viruses due to the transition from exposed status to infected status at rate \(\alpha_1 \). The fourth term represents the disappearing of viruses by natural death (at rate \(\nu \)), by the death of the human host (at rate \(\mu + d \)), by disinfection measures applied by the host (at rate \(\omega_3 \)), by the exchange of viruses with environment (at rate \(\tau_{1,3} \)) and other compartments (at rate \(\tau_{3,3} \)), by the transition of the host from the infectious compartment to the treated compartment at rate \(\gamma_1 \), and by the transition of the host from the infectious compartment to the quarantined or the hospitalized compartment at screening rate \(q \).

\[
Y_4 = \varsigma_4 \pi_4 X_4 + \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,4} Y_{10} \right) \frac{X_4}{N} + \rho q Y_3 - (\mu + d + \alpha_2 + \gamma_2 + \nu + \omega_4 + \tau_{1,4} + \tau_{3,4}) Y_4
\] (14)

The first term in equation (14) represents the release of internal viruses by quarantined individuals on themselves. The second term corresponds to the recruitment of viruses in quarantined population after a contact with environment (at rate \(\tau_{2,4} \)) and individuals of other compartments (at respective rates \(\tau_{4,j} \)). The third term corresponds to the arrival of new quarantined from the infectious compartment at rate \(\rho q \). The last term represents the disappearing of viruses by natural death (at rate \(\nu \)), by the death of the human host (at rate \(\mu + d \)), by disinfection measures applied by the host (at rate \(\omega_4 \)), by the exchange of viruses with environment (at rate \(\tau_{1,4} \)) and other compartments (at rate \(\tau_{3,4} \)), by the transition of the host from the quarantined compartment to the hospitalized compartment at rate \(\alpha_2 \), and by the transition of the host from the quarantined compartment to the treated compartment at rate \(\gamma_2 \).

\[
Y_5 = \varsigma_5 \pi_5 X_5 + \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,5} Y_{10} \right) \frac{X_5}{N} + (1 - p) q Y_3 + \alpha_2 Y_4 - (\mu + d + \gamma_3 + \nu + \omega_5 + \tau_{1,5} + \tau_{3,5}) Y_5
\] (15)
The first term in equation (15) represents the release of internal viruses by hospitalized individuals on themselves. The second term corresponds to the recruitment of viruses in hospitalized population after a contact with environment (at rate $\tau_{2,5}$) and individuals of other compartments (at respective rates $\tau_{5,j}$). The third term corresponds to the arrival of new hospitalized from the infectious compartment at rate α_2. The last term represents the disappearing of viruses by natural death (at rate ν), by the death of the human host (at rate $\mu + d$), by disinfection measures applied by the host (at rate ω_5), by the exchange of viruses with environment (at rate $\tau_{1,5}$) and other compartments (at rate $\tau_{3,5}$), and by the transition of the host from the hospitalized compartment to the treated compartment at rate γ_3.

$$\dot{Y_6} = s_6 \tau_6 X_6 + \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,6} Y_{10} \right) \frac{X_6}{N} + \gamma_1 Y_5 + \gamma_2 Y_4 + \gamma_3 Y_5$$

$$- \left(\mu + \gamma_4 + \nu + \omega_6 + \tau_1 + \tau_3 \right) Y_6$$

(16)

The first term in equation (16) represents the release of internal viruses by treated individuals on themselves. The second term corresponds to the recruitment of viruses in treated population after a contact with environment (at rate $\tau_{2,6}$) and individuals of other compartments (at respective rates $\tau_{6,j}$). The third, fourth and the fifth terms correspond to the update in viruses population due to the transition from infectious, quarantined and hospitalized compartments respectively. The last term represents the disappearing of viruses by natural death (at rate ν), by the death of the human host (at rate $\mu + d$), by disinfection measures applied by the host (at rate ω_6), by the exchange of viruses with environment (at rate $\tau_{1,6}$) and other compartments (at rate $\tau_{3,6}$), and by the transition of the host from the treated compartment to the recovered compartment at rate γ_4.

$$\dot{Y_7} = \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,7} Y_{10} \right) \frac{X_6}{N} + \gamma_4 Y_7 - \left(\mu + \ell + \nu + \omega + \tau_{1,7} + \tau_{3,7} \right) Y_7$$

(17)

The first term in equation (17) corresponds to the recruitment of viruses in recovered population after a contact with environment (at rate $\tau_{2,7}$) and individuals of other compartments (at respective rates $\tau_{7,j}$). The second term corresponds to the update in viruses population due to the transition from treated compartment. The last term represents the disappearing of viruses by natural death (at rate ν), by the death of the human host (at rate μ), by disinfection measures applied by the host (at rate ω_7), by the exchange of viruses with environment (at rate $\tau_{1,7}$) and other compartments (at rate $\tau_{3,7}$), and by the transition of the host from the recovered compartment to the susceptible compartment at rate ℓ.

$$\dot{Y_8} = \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,8} Y_{10} \right) \frac{X_8}{N} + \mu (Y_1 + Y_2 + Y_7) - \left(\rho_1 + \nu + \omega_8 + \tau_{1,8} + \tau_{3,8} \right) Y_8$$

(18)

The first term in equation (18) corresponds to the recruitment of viruses in non-infectious dead population after a contact with environment (at rate $\tau_{2,8}$) and individuals of other compartments (at respective rates $\tau_{8,j}$). The second term corresponds to the update in viruses population due to the death of individuals belonging to susceptible, exposed and recovered compartments. The last term
represents the disappearing of viruses by natural death (at rate ν), by the burial of the dead host (at rate ρ_2), by disinfection measures applied on the dead host (at rate ω_9), and by the exchange of viruses with environment (at rate $\tau_{1,9}$) and other compartments (at rate $\tau_{3,9}$).

\[
\mathbf{Y}_9 = \left(\sum_{j=1}^{9} \tau_{3,j} Y_j + \tau_{2,9} Y_{10} \right) \frac{X_9}{N} + (\mu + d) (Y_3 + Y_4 + Y_5) + \mu Y_6 - (\rho_2 + \nu + \omega_9 + \tau_{1,9} + \tau_{3,9}) Y_9 \tag{19}
\]

The first term in equation (19) corresponds to the recruitment of viruses in infectious dead population after a contact with environment (at rate $\tau_{2,9}$) and individuals of other compartments (at respective rates $\tau_{3,j}$). The second and the third terms correspond to the update in viruses population due to the death of individuals belonging to infections, quarantined, hospitalized and treated compartments. The last term represents the disappearing of viruses by natural death (at rate ν), by the burial of the dead host (at rate ρ_2), by disinfection measures applied on the dead host (at rate ω_9), and by the exchange of viruses with environment (at rate $\tau_{1,9}$) and other compartments (at rate $\tau_{3,9}$).

\[
\mathbf{Y}_{10} = \sum_{j=3}^{6} (1 - c_j) \pi_j X_j + \sum_{j=1}^{9} \tau_{1,j} Y_j - \left(\nu + \omega_{10} + \sum_{j=1}^{9} \frac{\tau_{2,j} X_j}{N} \right) Y_{10} \tag{20}
\]

The first term in equation (20) corresponds to the release of viruses in the environment by infectious, quarantined, hospitalized and treated populations. The second term represents the recruitment of viruses in environment after a contact with individuals of each compartment (at respective rates $\tau_{1,j}$). The last term represents the disappearing of viruses by natural death (at rate ν), by disinfection measures (at rate ω_{10}), and by the exchange of viruses from the environment to human hosts (at rate $\sum_{j=1}^{9} \frac{\tau_{2,j} X_j}{N}$).

The Monod type infection force $\lambda = \frac{a_1 Y_1}{a_2 + Y_1}$ is the product of the mass action factor a_1, the adequate contact probability $\frac{Y_1}{a_2 + Y_1}$ (the probability that viruses reach critical parts of the body like nose, mouth and eyes), the transfer rate τ_4 and the susceptible body virus population size Y_1. Although we focus explicitly on microscopic and mesoscopic scales, there is also a macroscopic scale of the global human population $X_G = [S_G E_G I_G Q_G H_G T_G R_G D_G D_{ILG} B_G]^T$. The equations at the macroscopic scale are very similar to those of the mesoscopic scale. Indeed, the limiting term κ can be replaced by $+\infty$ or higher value if a limiting capacity is still considered.

The parameters of the model (1)-(20) are described in Table 3.

The model (1) – (20) can be written in the form

\[
\begin{bmatrix}
\dot{X} \\
\dot{Y}
\end{bmatrix} = \begin{bmatrix}
M(X,Y) & 0 \\
P(X,Y) & Q(X,Y)
\end{bmatrix} \begin{bmatrix}
X \\
Y
\end{bmatrix} + \begin{bmatrix}
\lambda \\
0
\end{bmatrix} = F(X,Y), \tag{21}
\]

with M, Q Metzler and P having all its coefficients nonnegative.

Proposition 2.1 Let $\omega = \min_{i=1,\ldots,10} \{\omega_i\}$, $\pi = \max_{i=1,\ldots,10} \{\pi_i\}$, $C_{D} = \frac{\Lambda_8 + \mu \kappa}{\rho_1}$, $C_{D} = \frac{\Lambda_9 + (\mu + d) \kappa}{\rho_2}$, $C_V = \frac{\omega \pi}{\nu + \omega}$, and

\[
N_V = \sum_{i=1}^{10} Y_i,
\]

\[
\Omega = \{ 0 < N \leq \kappa, X_8 \leq C_D, X_9 \leq C_{D_1}, N_V \leq C_V \} \cap \mathbb{R}_{+}^{20}
\]

is an attractor of the invariant positive orthant \mathbb{R}_{+}^{20} with respect to the system (21).

\[\text{See the book [27] for more details.}\]
Proposition 2.1 shows the validity of the model (1) – (20). It shows the boundedness of the population density (κ) due to the social distancing. It also allows us to consider separately the microscopic dynamics (of viruses) and the macroscopic dynamics (of humans). Indeed, control strategies at the microscopic level concern the individual precautions to be applied (social distancing, mobility, disinfection of people and surfaces, mask wearing and treatment). At the macroscopic level, the global health policies are considered (social distancing, wearing mask, screening, rapid burying of infectious dead, isolation and treatment of infectious). Of course there are measures that act at both levels.

2.2 Equilibriums and asymptotic behaviors

Omitting the compartment of buried (B or X_{10}), we can address the issue of existence of equilibriums. We are particularly interested in the 'Disease Free Equilibrium' (DFE) and the only possibility of recruitment of new individuals is only from new births. That last consideration will be adopted here for simplicity.

Proposition 2.2 Assume that $\Lambda_1 = 0$, $i = 1, \ldots, 9$. Then the following statements hold.

(i) The trivial null equilibrium always exists: $X = Y = 0$.

(ii) If $b_1 > \mu$, then the non-trivial disease free equilibrium (DFE) exists:

$$X_1^{DFE} = N^{DFE} = \kappa \left(1 - \frac{\mu}{b_1}\right), \quad X_2^{DFE} = \ldots, X_7^{DFE} = X_9^{DFE} = 0, X_8^{DFE} = \frac{\mu X_1^{DFE}}{\rho_1}, \quad Y^{DFE} = 0,$$

(iii) If $b_1 > \mu$ and there is an endemic equilibrium (EE) then $c_7 \ell + \sum_{i=1}^{7} c_i b_i > \mu + \lambda > \mu$ where

$$\lambda = \frac{a_1 \tau_1 Y_1^{EE}}{a_2 + Y_1^{EE}}, \quad X_1^{EE} = -\frac{\kappa \left(\mu + \lambda - c_7 \ell - \sum_{i=1}^{7} c_i b_i\right)}{\left(\sum_{i=1}^{7} c_i\right) \sum_{i=1}^{7} c_i b_i}, \quad X_i^{EE} = c_i X_1^{EE} \text{ and}$$

the c_i's are given as follows:

$$c_1 = 1, \quad c_2 = -\frac{\lambda}{m_{2,2}}, \quad c_3 = -\frac{m_{3,2} c_2}{m_{3,3}}, \quad c_4 = -\frac{m_{4,3} c_3}{m_{4,4}}, \quad c_5 = -\frac{m_{5,3} c_3 + m_{5,4} c_4}{m_{5,5}},$$

$$c_6 = -\frac{m_{6,3} c_3 + m_{6,4} c_4 + m_{6,5} c_5}{m_{6,6}}, \quad \text{and} \quad c_7 = -\frac{m_{7,6} c_6}{m_{7,7}}.$$

Let us consider the Jacobian matrix of (21) given by

$$J = \begin{bmatrix} J_{1,1} & J_{1,2} \\ J_{2,1} & J_{2,2} \end{bmatrix}$$

with

$$J_{1,1} (1, j) = M_{1,j} - \sum_{i=1}^{7} \frac{b_i X_i}{\kappa}, \quad j = 1, \ldots, 7 \text{ and } J_{1,1} (i, j) = M_{i,j} \text{ in other cases},$$

where $M_{i,j}$ are the elements of the Jacobian matrix.
expression of generated by an introduced virus during its lifespan. It is interesting to depict how the disease behaves if

\[\lim_{t \to +\infty} \lambda(t) = 0. \]

\[
\begin{align*}
J_{1,2} (1, 1) &= -\frac{a_1 \phi \tau_4 X_1}{(a_2 + Y_1)^2}, \\
J_{1,2} (2, 1) &= \frac{a_1 \phi \tau_4 X_1}{(a_2 + Y_1)^2}, \\
J_{1,1} (i, j) &= 0 \text{ in other cases,}
\end{align*}
\]

\[
J_{2,1} (i, i) = \phi_i \pi_i + \left(\sum_{j=1}^{9} \phi_{3,1} Y_j + \phi_{2,1} Y_{10} \right) \frac{N - X_i}{N^2}, \quad i = 1, \ldots, 9,
\]

\[
J_{2,1} (10, j) = (1 - \phi_j) \pi_j - \frac{\phi_{2,1} Y_{10}}{N} + Y_{10} \sum_{k=1}^{9} \phi_{2,1} X_k \frac{N}{N^2}, \quad j = 1, \ldots, 9,
\]

\[
J_{2,1} (1, i, j) = 0 \text{ in other cases,}
\]

\[
J_{2,2} (1, 1) = Q_{1,1} + \frac{\phi_3 X_1}{N} - \frac{a_1 \phi \tau_4 Y_1}{(a_2 + Y_1)^2}, \\
J_{2,2} (2, 1) = \frac{\phi_3 X_1}{N} + \frac{a_1 \phi \tau_4 Y_1 (2a_2 + Y_1)}{(a_2 + Y_1)^2}, \\
J_{2,2} (i, i) = Q_{i,i} + \frac{\phi_3 X_i}{N}, \quad i = 2, \ldots, 9
\]

\[
J_{2,2} (10, j) = \frac{\phi_{2,1} X_j}{N}, \quad i = 1, \ldots, 9, \quad \text{and} \quad J_{2,2} (10, j) = Q_{10,j}, \quad j = 1, \ldots, 10.
\]

Proposition 2.3 Assume that \(\Lambda_i = 0, i = 1, \ldots, 10. \)

(i) The null invariant set \(\{0\}^9 \times \mathbb{R}_+ \times \{0\}^{10} \) is locally asymptotically stable (LAS) if \(b_1 \leq \mu. \)

(ii) The null equilibrium \(X = Y = 0 \) is globally asymptotically stable (GAS) if \(b_1 \leq \mu, \ i = 1, \ldots, 7. \)

(iii) The disease free equilibrium is locally asymptotically stable (LAS) if and only if \(b_1 > \mu \) and \(J_{1,1} - J_{1,2} - J_{2,2} \) is Metzler stable.

(iv) If \(b_1 > \mu \) and \(\lambda = 0 \) then the disease free equilibrium for the macroscopic model \((X = X_{DFE}, \ Y \in \mathbb{R}_+)^{10} \) is GAS.

Let \(F \) denote a \(16 \times 16 \) matrix given such as \(F (1, 7) = \frac{a_1 \phi \tau_4 X_{DFE}}{a_2}, \ F (1, 1) = \frac{a_1 \phi \tau_4 X_1}{a_2} \) and \(F (i, j) = 0 \) otherwise. Let also \(V \) denote a \(16 \times 16 \) matrix given such as \(V_{1,7} = 0, \ V_{1,j} = J (i + 1, j + 1) \) if \(i, j = 1, \ldots, 5, \ V_{6,j} = J (9, j + 1) \) if \(j = 1, \ldots, 5, \ V_{6,6} = J (9, 9), \ V_{6,j} = J (9, j + 4) \) if \(j = 7, \ldots, 16, \ V_{6,j} = J (i + 1, 9) \) if \(i = 1, \ldots, 5, \ V_{6,j} = J (i + 4, 9) \) if \(i = 7, \ldots, 16, \ V_{6,j} = J (i + 1, j + 4) \) if \(i, j = 7, \ldots, 16, \ V_{6,j} = J (i + 1, j + 4) \) if \(i = 1, \ldots, 5, \ j = 7, \ldots, 16, \ (i, j) \neq (1, 7) \) and \(V_{6,j} = J (i + 4, j + 1) \) if \(i = 7, \ldots, 16, \ j = 1, \ldots, 5. \) According to the Van Den Driessche and Watmough method in [56, 57, 58], the basic reproduction number \(\mathcal{R}_0 \) is given by the spectral radius of the next generation matrix :

\[
\mathcal{R}_0 = \rho (-F V^{-1}) = -F (1, 7) \times V^{-1} (7, 1)
\]

(22)

The effective reproduction number can also be computed by multiplying \(\mathcal{R}_0 \) by the proportion of susceptible individuals [52]. \(\mathcal{R}_0 \) can be biologically interpreted in this context as the average number of new viruses generated by an introduced virus during its lifespan.

The infection force \(\lambda \) plays an important role on the disease spreading. Subsequently, regarding the expression of \(\lambda \) in Table 3, we can see that the use of mask and avoiding to touch the face is crucial to limit disease spreading. The control \(u \) can be viewed as the fraction of time the mask is well used. \(\lambda \) can vary with time depending on individual human habits. It is interesting to depict how the disease behaves if \(\lambda \) is a decreasing function of time \(\lim_{t \to +\infty} \lambda(t) = 0. \)
Lemma 2.1 Let us consider a linear differential system

\[\begin{align*}
U &= AU + C \\
V &= (A + v(t)B)V + C
\end{align*} \tag{23}
\]

where \(A \) is a constant \(n \times n \) Metzler stable matrix, \(B \) is a constant \(n \times n \) Metzler matrix, \(C \) is a constant \(n \times 1 \) matrix and \(v \) is a positive numeric function of the time. Assume that the solution \((U, V)\) of (23) – (24) is bounded and \(\sup_{t \in [0, +\infty[} v(t) \|e^{-tA}\| < +\infty \). Then \(\lim_{t \to +\infty} (U(t) - V(t)) = 0 \). This will happen in particular if \(\lim_{t \to +\infty} v(t) e^{\rho(A)t} = 0 \), where \(\rho(A) \) denotes the spectral radius of \(A \).

Theorem 2.1 If \(b_1 > \mu \) and \(\lim_{t \to +\infty} \lambda(t) \|e^{(M_1.1)\lambda=0}t\| = 0 \) then the DFE is GAS.

Theorem 2.1 gives us a first way to limit disease spreading.

Theorem 2.2 Assume that \(\Lambda_i = 0, i = 1, \ldots, 10 \) and \(b_1 > \mu \). Let \(D \) denotes a diagonal matrix such that \(D_{1,i} \) is the sum of absolute values of only negative terms in the expression of \(Q_{j,i} \), \(R = D + Q \), \(r_1 = \max_{j=1,\ldots,10} D_{j,j} \)
and \(r_2 = \max_{j=1,\ldots,10} \sum_{i=1}^{10} (RD^{-1})_{i,j} \). Then the DFE is GAS if

\[\mathcal{Q}_0 = \frac{a_1\alpha_1 r_1 \tau_4 \kappa (b_1 - \mu) \left(\frac{\pi_3}{\mu+d+\omega_1+\gamma_1} + \frac{\pi_4}{\mu+d+\omega_2+\gamma_2} + \frac{\pi_5}{\mu+d+\gamma_3} + \frac{\pi_6}{\mu+\gamma_4} \right)}{a_2 b_1 (1 - r_2) \left(\mu + \alpha_1 \right) \left(\mu + \nu + \omega_1 + \tau_1,1 + \tau_3,1 \right)} < 1. \tag{25} \]

Theorem 2.2 provides a sufficient condition that ensures the stability of the disease free equilibrium. Moreover, it shows that avoiding to touch the face and the frequency of wearing mask by susceptible population \((u_1)\) via \(\tau_1 \), the mobility \((m)\) via different contact rate among people \(\tau_3 \), and with the environment \(\tau_1 \), the disinfection \((\text{washing of hands included in})\) by susceptible population \((\omega_1)\) and social distancing \((\text{reducing} \ \kappa)\) are crucial parameters in order to stop the spreading of the disease. The biological interpretation of \(\mathcal{Q}_0 \) is the following. During its lifespan \(\frac{1}{\mu+\nu+\omega_1+\tau_1,1+\tau_3,1} \) a virus infects a susceptible individual at the adequate rate \(\frac{a_1\alpha_1 r_1 \tau_4 \kappa (b_1 - \mu)}{a_2 b_1 (1 - r_2)} \). Once the susceptible individual is infected he becomes infectious with a probability \(\frac{\pi_3}{\mu+d+\omega_1+\gamma_1} + \frac{\pi_4}{\mu+d+\omega_2+\gamma_2} + \frac{\pi_5}{\mu+d+\gamma_3} + \frac{\pi_6}{\mu+\gamma_4} \) and will produce viruses during its respective stays in compartments of infectious, quarantined, hospitalized and treated.

By setting

\[\delta = \max \left\{ 1 + \frac{(\mu+\tau_1,1+\tau_3,1)}{(\nu+\omega_1)} \left(\frac{\pi_3}{\mu+d+\omega_1+\gamma_1} + \frac{\pi_4}{\mu+d+\omega_2+\gamma_2} + \frac{\pi_5}{\mu+d+\gamma_3} + \frac{\pi_6}{\mu+\gamma_4} \right), 1 + \max_{j=1,\ldots,10} \frac{\tau_{2,j}}{\nu+\omega_1}, \max_{j=2,\ldots,9} \frac{D_{j,j}}{\nu} \right\} \]
\[\bar{\delta} = \max \left\{ 1 + \frac{(\mu+\tau_1,1+\tau_3,1)}{\nu} \left(\frac{\pi_3}{\mu+d+\omega_1+\gamma_1} + \frac{\pi_4}{\mu+d+\omega_2+\gamma_2} + \frac{\pi_5}{\mu+d+\gamma_3} + \frac{\pi_6}{\mu+\gamma_4} \right), 1 + \max_{j=1,\ldots,10} \frac{\tau_{2,j}}{\nu}, \max_{j=2,\ldots,9} \frac{D_{j,j}}{\nu} \right\}, \]

we can see using the boundedness of \(N_1 \), that \(\frac{1}{1-\bar{\delta}} \leq \delta \leq \bar{\delta} \). Hence, Theorem 2.2 also permits us to evaluate given \(\kappa, u \) and \(m \) the minimum frequency at which the disinfection should occur. For example, if \(\omega_1 = 0 \) probably due to the management of death persons, then the condition \(\mathcal{Q}_0 \leq 1 \) is satisfied when

\[\omega_1 > \frac{a_1\alpha_1 \tau_4 \kappa (b_1 - \mu) \left(\frac{\pi_3}{\mu+d+\omega_1+\gamma_1} + \frac{\pi_4}{\mu+d+\omega_2+\gamma_2} + \frac{\pi_5}{\mu+d+\gamma_3} + \frac{\pi_6}{\mu+\gamma_4} \right)}{a_2 b_1 (\mu + \alpha_1)} - (\mu + \nu + \tau_1,1 + \tau_3,1). \tag{26} \]

Notice that by disinfection we mean a global action on the body, so it would be necessary to evaluate the specific contribution of hands washing.

Figure 2 is an illustration of the asymptotic behavior of cumulative infectious individuals depending on the relative position of \(\mathcal{Q}_0 \) with respect to 1. The smaller \(\mathcal{Q}_0 \) is, the smaller is the amplitude of the peak.
Theorem 2.3 Let stabilize around 3 and the earlier it occurs. If the mask is never adopted then the disease prevalence can pass above 30% and satisfy $E(I, \beta, m, \sigma) = 0$, $\sigma = \frac{\beta}{m}$, the spatial study zone in lock-down). Assume that $\forall i \in \{1, 2, 3, 6, 7\}$ $u_i = m_i = 0$, $i = 1, \ldots, 10$, $R_0 = 4.4717 \times 10^{-2}$ $A_0 = 7.5113 \times 10^{-3}$ $V_0 = 0$, 1, 2, 3, 6, 7 $u_i = m_i = 0.5$, $i = 1, \ldots, 10$, $R_0 = 44761.419$, $A_0 = 107.59773$

(b) $\kappa = 8\% m^{-2}$, $\omega_i = 0 \times day^{-1}$, $i = 1, \ldots, 7$, $\omega_8 = \omega_9 = \omega_{10} = 0 \times day^{-1}$ $u_i = m_i = 0$, $i = 1, \ldots, 10$, $R_0 = 44761.419$, $A_0 = 107.59773$

Figure 2: Asymptotic behavior of infectious dynamics depending on R_0

and the earlier it occurs. If the mask is never adopted then the disease prevalence can pass above 30% and stabilize around 3.5%.

We end the section with a theorem giving an upper bound to the time of extinction of the disease.

Theorem 2.3 Let $\mathcal{J} = \frac{S}{S+E+I+Q+H+T+R}$, $\mathcal{I} = \frac{E+I+Q+H+T+R}{S+E+I+Q+H+T+R}$ and \mathcal{A} denotes the effective area of the spatial study zone in m^{-2} (ie the area of the zone each individual is allowed to move in during the lock-down). Assume that $\forall t \geq 0$, $\lambda (t) = \lambda_0 e^{-\alpha t}$, $\alpha > 0$. Then

$$\mathcal{J} (t) \leq \mathcal{J} (0) e^{-(\beta(1-p_d))t} + \lambda_0 e^{-\sigma_1 t}. \tag{28}$$

Furthermore, if $\sigma_2 = \min \{\nu + \omega, \beta (1-p_d)\}$, $\sigma_3 = \min \{\nu + \omega, \sigma_1\}$ then

$$N_V (t) \leq N_V (0) e^{-(\nu+\omega)t} + \kappa \pi \mathcal{J} (0) e^{-\sigma_3 t} + \frac{\kappa \pi \lambda_0 t^2}{e^{-\sigma_3 t}} \tag{29}$$

and the respective first times T_H and T_V such that respectively $\mathcal{A} \mathcal{J} (t) \leq 1$ and $\mathcal{A} N_V (t) \leq 1$ satisfy

$$T_H \leq \frac{\kappa \pi \mathcal{J} (0)}{\beta(1-p_d) e} + \frac{4\kappa \lambda_0 \mathcal{A}}{\sigma_2^2 e^2} \text{ and }$$

$$T_V \leq \frac{\mathcal{A} N_V (0) e^{-(\nu+\omega)t} + \frac{\kappa \pi \mathcal{J} (0)}{2\sigma_2^2 \sigma_3^2 e^3} (8\kappa \sigma_3^3 \mathcal{J} (0) + 2\sigma_2^2 \frac{\mathcal{A}}{e^3}).}$$
As we can see in the expressions of T_H^* and T_V^* that the higher κ, λ_0, $I(0)$, $N_V(0)$ and \mathcal{A} are, the longer the time of disease extinction $\max \{T_H^*, T_V^*\}$ is. If the lock-down is applied, then the effective global population to consider is $N_G = \mathcal{A} N$ which represents the number of alive persons admitted in a given closed area. Hence, the lock-down level can be expressed by the ratio $1 - \frac{\mathcal{A}}{N_G}$, where A_G denotes the real area of the physical study zone (town, district, department, region, country, continent, or the whole world).

3 A focus on Cameroonian context

3.1 Estimation of parameters

There are several approaches for the estimation of the parameters of a model. A first method is to discretize the differential equation model with respect to available time series and to fit unknown parameters by reducing the distance between the numerical solution and observed time series [7]. Another method consists of empirical estimating function linking the state of the system with the time using times series and after in estimation through the considered model [6, 16, 40, 47].

Let $CRI(t)$, $CRQ(t)$, $CRH(t)$, $CRR(t)$ and $CRD(t)$ respectively denote the cumulative numbers of reported infectious cases, of reported quarantined, of reported hospitalized (active cases), of reported recovery, and of reported dead at time $t \geq t_0$, where t_0 denotes the date of the first introduction of an infectious to be evaluated. Notice that those values will be divided by the cumulative surface of living areas to match with our model. We have

$$CRI(t) = q \int_{t_0}^{t} I_G(s) \, ds, \quad (30)$$

$$CRQ(t) = pq \int_{t_0}^{t} I_G(s) \, ds, \quad (31)$$

$$CRH(t) = \int_{t_0}^{t} ((1-p) qI_G(s) + \alpha_2 Q_G(s)) \, ds, \quad (32)$$

$$CRR(t) = \int_{t_0}^{t} (\gamma_2 Q_G(s) + \gamma_3 H_G(s)) \, ds, \quad (33)$$

$$CRD(t) = (\mu + d) \int_{t_0}^{t} (Q_G(s) + H_G(s)) \, ds. \quad (34)$$

According to some cultural practices in Cameroon, we will assume that the average time before burying a dead person which is not quarantined is 3 days ($p_1 = \frac{1}{4}$) while the burying immediately follows the death of an infectious ($p_2 = 1$). From the literature we will assume that $\alpha_1 = \frac{1}{14}$ and $\gamma_i = \frac{1}{n}$, $i = 1, \ldots, 4$. It is not clearly established in the literature that there is a real immunity, but according to [32], we will suppose that $\ell = 2.74 \times 10^{-3}$. The recommended social distancing parameter κ in Cameroon is 1 person m^{-2} but we will estimate the real value of κ according to available data and our model.

Regarding the fast growth of reported infectious cases, we assume that CRI can be approximated through the following regression model

$$CRI(t) = e^{(k_1(t-t_0))} - 1, \quad (35)$$

We also assume that $\int_{t_0}^{t} Q_G(s) \, ds$ and $\int_{t_0}^{t} H_G(s) \, ds$ can be approximated through similar log-linear models. We adopt the following estimation procedure:

$$CRH(t) + CRQ(t) - CRI(t) = \alpha_2 \int_{t_0}^{t} Q_G(s) \, ds, \quad (36)$$

$$\alpha_2 CRR(t) - \gamma_2 (CRH(t) + CRQ(t) - CRI(t)) = \alpha_2 \gamma_3 \int_{t_0}^{t} H_G(s) \, ds, \quad (37)$$
\[T_G(t) = e^{-(\mu + \gamma_4)t} \int_{t_0}^{t} e^{(\mu + \gamma_4)s} (\gamma_1 I_G(s) + \gamma_2 Q_G(s) + \gamma_3 H_G(s)) \, ds, \]
\[R_G(t) = \gamma_4 e^{-(\mu + \ell_4)t} \int_{t_0}^{t} e^{(\mu + \ell_4)s} T_G(s) \, ds \text{ and} \]
\[p = \frac{CRQ(t)}{CRI(t)}. \]

If \(t_1 \) denotes the smallest solution to the equation \(Q(t) = 1 \) then it appears natural to estimate \(q \) by the relation
\[q = \frac{1}{p(t_1 - t_0)}. \]
\[d = \frac{CRD(t)}{\int_{t_0}^{t} (Q_G(s) + H_G(s)) \, ds} - \mu \quad \text{and} \]
\[qI_G + (\mu + d + q + \gamma_1) CRI(t) = \alpha_1 q \int_{t_0}^{t} E_G(s) \, ds. \]

It appears difficult with available data to estimate explicitly \(a_1, a_2, \pi_i, \tau_{ij}^{\min}, \tau_{ij}^{\max}, \tau_{i}^{\min}, \tau_{i}^{\max},\varsigma_i^{\max}, m_i \) and \(u_i \). Regarding public transport conditions in Cameroon the maximum value of \(\kappa \) can be fixed to \(\pi = 8 \text{ person} \times \text{m}^{-2} \). According to the density of population per unit of surface\(^5\) the minimum value of \(\kappa \) is fixed to \(\kappa = 5.003 \times 10^{-5} \text{ person} \times \text{m}^{-2} \). Without social distancing at the disease outbreak, we have \(\kappa = \pi \) and the infection term \(\lambda S \) is proportional to the global population (say \(S_G \)) due to the mass action. \(S \) being bounded from above by \(\pi \) according to the model, we have \(a_1(t) = \frac{S_G(t)}{\pi(t)} \). Notice that \(\kappa \) and \(\pi \) are non decreasing functions of \(S_G \). Thus, we can simplify by assuming that \(a_1 \) is definitely a constant given by \(\frac{S_G(0)}{\pi(0)} \). It is possible to estimate \(S_G \) and \(N_G \) (global population of alive or dead except buried individuals) similarly to \(T_G \) and \(R_G \). Under the hypothesis of homogeneity of the population the values of \(S, E \) and \(I \) can be estimated by multiplying the respective proportions in the global population by the threshold \(\frac{\kappa(b_1 - \mu)}{b_1} \) (for example \(S(0) = \frac{\kappa(b_1 - \mu)S_G(0)}{b_1N_G(0)} \)). The term \(\lambda S = \frac{a_1\tau_4Y_1S}{a_2 + Y_1} \) can be estimated using the relations
\[\lambda S = E + (\mu + \alpha_1) E \]
\[= \frac{\kappa(b_1 - \mu)}{b_1} \left(\frac{E_G}{N_G} - \frac{E_G}{N_G} N_G + (\mu + \alpha_1) \frac{E_G}{N_G} \right) \quad \text{and} \]
\[Y_1 = \frac{a_2\lambda S}{a_1\tau_4 - \lambda S}. \]

We used the daily data available on the website www.data.gouv.fr for our estimates. We also used the situation reports on Covid-19 in Cameroon available on the website https://www.humanitarianresponse.info. The estimated parameters are given into the Table 4. Figure 3 shows the cumulative reported infectious cases in Cameroon from the 2nd of March to the 07th of June 2020.

According to the values in Table 4, relation (26) and Theorem 2.2, if people never wear a mask, no social distancing is applied and only susceptible individuals disinfect themselves, then the rate of \textbf{complete} disinfection \((\omega_1) \) should not be less than 20 \textit{day}^{-1} (ie about once every 72 minutes) in order to have \(T_0 = 7.3163071 \) and \(R_0 = 0.887382 \). If at least the social distancing of 1 \textit{person} \times \textit{m}^{-2} is respected then the lower bound value of \(\omega_1 \) drops to 3 \textit{day}^{-1} (ie about once every 30 minutes) in order to have \(T_0 = 5.7754491 \) and \(R_0 = 0.7064687 \). Thus, a complementary application of all mitigation measures is mandatory.

\(^{5}\text{www.populationdata.net}\)
Figure 3: Cumulative reported infectious from the 2nd of March to the 07th of June 2020.

3.2 Effects of controls on disease dynamics

This section aims at evaluating first the sensitivity of different control parameters with respect to the thresholds R_0 and T_0. The second fold of this section is to survey the effect of some control parameters on the asymptotic behavior of the disease dynamics. Following Theorem 2.1, we define the convergence index

$$T_1 = \lim_{t \to +\infty} \frac{-1}{t} \int_0^t \ln \left(\frac{\lambda(s)}{\lambda(0)} \right) ds. \quad (46)$$

\mathcal{T}_1 is an indicator of the rate of the potential convergence of the disease dynamics towards an equilibrium. Indeed, if $\mathcal{T}_1 > 0$ then there is an exponential convergence to the disease free equilibrium. If $\mathcal{T}_1 \leq 0$ then there is an endemicity of the disease, in particular if \mathcal{T}_1 is near to zero then we are in the neighborhood of an endemic equilibrium. \mathcal{T}_1 is an estimation of the key parameter α which permits according to Theorem 2.3, to bound the average time the disease is expected to disappear.

There are several methods for sensitivity analysis in the literature (see [11, 42] for example). The normalized forward sensitivity index (of variable u with respect to parameter p) $\Upsilon_u^p = \frac{\partial u}{\partial p} u$ defined in [11] provides an idea on effect of a local perturbations around a given situation in terms of the values of the parameter p. Paper [42] presents several alternative methods of assessing the global effect of variation on coefficients: Pearson correlation coefficient (CC), Spearman rank correlation coefficient (RCC), partial correlation coefficient (PCC), standardized correlation coefficient (SCC), standardized rank correlation coefficient (SRCC), partial rank correlation coefficient (PRCC) and Extended Fourier amplitude sensitivity test (eFAST). The authors in [42] recommended PRCC and eFAST as robust sensitivity indexes to be used respectively in cases of monotonic and non-monotonic sensitivities. These indexes are based on samples obtained through latin hyper cube sampling, Monte-Carlo sampling or any other appropriate experimental design [26]. Hence, there are statistics and confidence intervals or region can be provided in order to decide on their significance.

We adopt the PRCC with a three levels (-1, 0, $+1$) fractional experimental design with the factors κ, q, m_i, u_i and ω_i, $i = 1, \ldots, 10$. Such an experimental design allows us to get a statistical approximation of optimal parameters based on a quadratic model obtained by regression. Ideally, strategies should be
specific to different compartments. However, since it is difficult to know the status of people, it is reasonable to apply the same strategies for "similar" compartments. Thus, we reduce the factors by considering the specific to different compartments. We assume that \(u_8 = u_9 = u_{10} = 0 \). Finally, we have 10 factors with two responses \(R_0 \) and \(R_1 \). We consider a 3\(^{10} \times 6 \) fractional experimental design with a sample size 81. The experimental matrix is computed using Box calculus for the aliases with second order interactions. Table 1 provides us with the codification of factors values that have been arbitrarily chosen but appear realistic.

![Table 1: Codification of factors values](image)

Figure 4 shows graphically the effects of control parameters on \(R_0 \), \(R_0 \) and \(R_1 \). \(u_1 \), \(m_1 \), \(\omega_1 \) and \(\omega_{10} \) are in decreasing order the more sensitive parameters with respect to \(R_0 \). Thus, an efficient control strategy should prioritize the usage of mask, the reduction of mobility and the disinfection in class \([1]\) compartment, and the disinfection of the environment. \(u_1 \), \(\omega_1 \), \(\omega_4 \) and \(\omega_{10} \) are in decreasing order the more sensitive parameters with respect to \(R_0 \). Thus, an efficient control strategy based on \(R_0 \) should prioritize the usage of mask in class \([1]\), and disinfection in classes \([1]\), \([2]\) and the environment. \(m_1 \), \(u_1 \), \(\omega_1 \), and \(\omega_{10} \) are in decreasing order the more sensitive parameters with respect to \(R_1 \). Thus, to accelerate the convergence toward the disease free equilibrium the fighting policies should prioritize the reduction of mobility in class \([1]\), the frequent usage of mask, the disinfection of people in class \([1]\) and the disinfection of the environment.

Globally, the usage of mask in class \([1]\) compartment is the most sensitive control followed by the reduction of mobility and the disinfecting in class \([1]\), and the disinfection of the environment. As we can observe, the effects of the social distancing and the screening, the effect of using masks in class \([4]\), and the mobility in classes \([4]\) and \([8]\) are not very significant. However, as we will observe in section 4, those controls have influence on the economical point of view.

4 An optimal control analysis

4.1 Design of the control strategy

The control parameters we consider here are mainly the limit density of population \(\kappa \), the probability of mobility \(m \), the proportion of time spent wearing a mask \(u \), the disinfection rate \(\omega \) and the reporting rate of infectious (through screening test especially) \(q \). Indeed, those controls appear explicitly in the expression of the threshold \(R_0 \) which will play a similar role to the basic reproduction number. Since the threshold \(R_0 \) appears important for the asymptotic behavior of the disease, it could be interesting to minimize an analog to the effective reproduction number : \(R_0 \frac{X_1}{N} \). Unfortunately, the expression of \(R_0 \) is very complex and it is not differentiable with respect to all its parameters. This irregularity involves an additional complexity in the optimization procedure. Thus, we will consider the infection rate \(\lambda X_1 \) instead of \(R_0 \frac{X_1}{N} \). \(\lambda X_1 \) takes into consideration the dynamics of viruses.

The medical monitoring of a patient during his infectious period has an economical cost \(c \) that can be evaluated depending on the time spent before recovery and on the expenses during each stay in a disease compartment. The expression of \(c \) should depend on \(c_q \), the daily revenue of a person in health which will be lost due to the disease. The application of each control involves an economical cost proportional to the size of the population and to the time. We will note the cost per unit of time and per individual \(c_u \) for \(u \) and \(c_\omega \), and
Figure 4: Effects of control parameters on R_0, T_0 and T_1
Hence, the stay in disease compartments I, Q and H is given by
\begin{equation}
p_d = (\mu + d) (T_1 + T_2 + T_3)
\end{equation}
Thus, if
\begin{equation}
c = c (q) = (c_1 + c_g) T_1 + (c_2 + c_g) T_2 + (c_3 + c_g) T_3 + c_d p_d.
\end{equation}
Table 2: Baseline values of elementary costs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>1</td>
<td>$\text{USD} \times \text{person}^{-1} \times \text{day}^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>c_2</td>
<td>2.83</td>
<td>$\text{USD} \times \text{person}^{-1} \times \text{day}^{-1}$</td>
<td>www.numbeo.com</td>
</tr>
<tr>
<td>c_3</td>
<td>500</td>
<td>$\text{USD} \times \text{person}^{-1} \times \text{day}^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>c_d</td>
<td>1600</td>
<td>$\text{USD} \times \text{person}^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>c_g</td>
<td>3.9</td>
<td>$\text{USD} \times \text{person}^{-1} \times \text{day}^{-1}$</td>
<td>www.journaldunet.com</td>
</tr>
<tr>
<td>c_s</td>
<td>145</td>
<td>$\text{USD} \times \text{person}^{-1} \times \text{day}^{-1}$</td>
<td>www.mediapart.fr</td>
</tr>
<tr>
<td>c_u</td>
<td>6</td>
<td>$\text{USD} \times \text{person}^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>c_ω</td>
<td>1.736×10^{-5}</td>
<td>$\text{USD} \times \text{person}^{-1} \times \text{day}^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>g</td>
<td>4.183562</td>
<td>$\text{USD} \times \text{person}^{-1} \times \text{day}^{-1}$</td>
<td>www.populationdata.net</td>
</tr>
</tbody>
</table>

Table 2 summarizes the different unit costs we mentioned above.

Let us consider the Hamiltonian

$$H(X,Y,X^*,Y^*,C) = \begin{bmatrix} X^* \end{bmatrix}^T \begin{bmatrix} X & Y \end{bmatrix} + c\lambda X_1 + \left(c_u u + \frac{c_\omega \omega}{\bar{\omega} + \omega} \right) \mathcal{N} + c_s q (X_1 + X_2 + X_3 (s) + X_6 + X_7) - mg \kappa (X_1 (s) + X_2 (s) + X_3 (s))$$

(55)

where the adjoint state $\begin{bmatrix} X^* \\ Y^* \end{bmatrix}$ satisfies

$$\begin{bmatrix} X^* \\ Y^* \end{bmatrix} = -\left(\nabla_{(X,Y)} F \right)^T \begin{bmatrix} X^* \\ Y^* \end{bmatrix} - \left(\nabla_{(X,Y)} (\partial_t Z (t, X, Y, C)) \right)^T$$

(56)

and

$$\begin{bmatrix} X^* (T_f) \\ Y^* (T_f) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

(57)

The optimal control C^* will be given by the optimality condition

$$\nabla_C H = 0.$$

(58)

Notice that C^* is projected into the admissible set $\mathcal{C}_{Ad} = [0, \bar{q}] \times [0, q] \times [0, u_{max}] \times [m_{min}, 1] \times [0, \omega_{max}]$ where $q = 48$ (persons are tested in average every 30 minutes), $u_{max} = 0.9$, $m_{min} = 0$, $\omega_{max} = 24$. The existence of a unique optimal strategy is guaranteed by the fact that the strict convexity of the Hamiltonian with respect to C and the regularity of the optimal feedback strategy $C^* (X, Y, X^*, Y^*)$. For more details on the determination of optimal control we refer to the books [2, 36] and references therein.

Theorem 4.1 There is a unique piecewise continuous optimal control C^* for the model (1)-(20) characterized by Algorithm 1.

www.populationdata.net
4.2 Numerical simulations and discussion

In order to numerically determine the optimal control strategy, we implement the forward-backward sweep method described in Chapter 3, page 101 of [2]. It is an iterative approach that consists of replacing the feedback by a guess value first, solving the forward state problem, solving the backward adjoint problem and then updating the feedback using the gradient direction with a step length obtained by the golden section method. The algorithm stops when the updates of the control does not significantly change its values according to a chosen threshold. That method is similar to the one given into the Chapter 3 of [36], but it permits to better control the convergence. Notice that one could also envisage a method which minimizes the distance between the final condition of the adjoint problem obtained for a guess initial condition and the reference final condition. That method could be a multidimensional variant of the secant algorithm [18, 30].

We found after several simulations that, if we globally consider the economic losses and gains then, no specific control effort is needed additionally to take care of hospitalized patients and putting in quarantine of infectious reported individuals as it is already done. Probably that is a consequence of the high recovery rate of patients and the relatively small death probability. However, since the logistic resources for quarantine and hospitalization are limited, the economical losses in terms of gross domestic product (due to social distancing, reduction of mobility and lock-down) can be penalized in the cost functional Z. That is done in the rest of the section.

Figure 5 is an illustration of the optimal control strategy against Covid-19 and the evolution of the infection force λ. We can observe that social distancing and disinfection frequency are the main elements of the optimal control strategy. Social distancing permits to have no restriction on mobility. The use of mask is useful but not necessary when social distancing and regular disinfection are respected. Notice that if the mask is misused it is useless, and it can promote other respiratory complications. As the sensitivity analysis showed the screening has no significant effect on disease behavior and it is economically better to keep q at its minimal value corresponding to self decision to be tested or the hospitalization of severe disease cases.

Figure 6 shows the progression of the SARS-CoV-2 population (in terms of number of viruses per m^{-2}) and the disease prevalence either the optimal control is applied or not. Relative prevalence of disease is preferred over absolute prevalence because it is more appropriate for scaling up. The peak of the disease occurs earlier and with smaller values under optimal control policy. We also observe that without control there is a possibility to observe several peaks of the disease. Without control, the peak of the disease (32% prevalence) occurs after 57 days (about 8.5 weeks) while under control it occurs after 26.37 days (about 4 weeks) with a weaker magnitude (0.4478% prevalence). With the initial compartmental population sizes given in Table 4 and under the optimal control strategy, the disease extinction in the human population is reached after $9.571\times 10^{-3} \text{ day} \times m^{-2}$ while it occurs in the virus population after $2.023\times 10^{-1} \text{ day} \times m^{-2}$. If we consider the maximal disease prevalence F_1 and the virus population size (N_V) is equal to its upper bound C_V given in Proposition 2.1, then the disease extinction in the human population is reached after $5.499\times 10^3 \text{ day} \times m^{-2}$. Similarly, the extinction in virus population is reached after $9.8321\times 10^4 \text{ day} \times m^{-2}$. Thus, the sooner the control measures are taken, the sooner the disease can disappear. The dependence of the disease extinction time with respect to the surface \mathcal{A} clearly highlights the importance of lock-down. As we can observe, the extinction can be very slower in the virus population than in the human population. The cost of the optimal strategy has been computed for 180 days corresponding to half of the year. It has been evaluated at $\mathcal{A}Z^* = 3.978 USD \times \mathcal{A} \times m^{-2}$ which corresponds on average to $0.0221 USD \times \mathcal{A} \times m^{-2} \times \text{day}^{-1}$.

Figure 5: Optimal control dynamics of Covid-19 prevalence
Conclusion

This work is concerned with the mathematical modeling of the severe acute respiratory corona virus 2. According to governmental data and World Health Organization, the corona virus made several millions of dead in the world. It spreads very rapidly and affects not only the public health sector, but also the global economy. The transmission of the disease can occur through direct contact with an infectious individual or through indirect contacts via the environment. The high complexity of the disease spreading suggested numerous modeling activities. Indeed, through a mathematical model it is possible to rigorously study fighting policies against corona. Hence, the goals we aimed to achieve were to propose a realistic model for the Covid-19 dynamics, to estimate the parameters of the proposed model according to the available real data, to study asymptotic behaviors depending on some featured control parameters related to WHO and governmental recommendations, and to design control strategies that are optimal with regards to socio-economical constraints.

We have constructed a two scale compartmental model with 20 classes corresponding to 10 human population states (macroscopic scale) and 10 viruses locations (microscopic scale). Indeed, we considered Susceptible \(S \), Infected \(E \), Infectious \(I \), Quarantined \(Q \), Hospitalized \(H \), Treated \(T \), Recovered \(R \), Non-Infectious dead \(D \), Infectious dead \(D_I \), Buried \(B \). Each individual was assumed to have an external viral load on his body while there were free viruses in the environment. The model has been labeled \(SEIQHTRDD_I - V \) as described graphically in the Figure 1. To better access the effects of social distancing, the units of state variables have been taken in terms of person per unit area and virus per unit of surface. The parameters of the model have been successfully fitted using a Cameroonian dataset and a semi-empiric procedure. Additionally to the quantitative study of the system, we carried out a qualitative analysis of the model.

The existence of equilibriums has been studied. Contrarily to the endemic equilibrium, the disease free equilibrium (DFE) exists unconditionally. The DFE is globally asymptotically stable if a threshold \(R_0 \) is less or equal to one. We also provided a formula for the basic reproduction number \(R_0 \) which has a biological interpretation regarding the model: the average number of new viruses generated by an introduced virus during its lifespan. \(R_0 \) has a similar biological interpretation. A convergence index \(T_1 \) has been defined. Under an exponential convergence hypothesis, the times of disease extinction respectively in human population \(T_H^* \) and virus population \(T_V^* \) are determined. A sensitivity analysis of \(R_0 \), \(T_H^* \) and \(T_V^* \) have been done using the partial rank correlation coefficient (PRCC). We found that the sensitive parameters are in descending order the proportion of time of wearing mask, the proportion of time spent...
in disinfecting people and the environment, and the mobility probability. Through a concept of specific area A, the importance of lock-down is highlighted. Indeed, the times of extinction are proportional to A knowing that $1 - \frac{A}{A_G}$ is the lock-down level. Since the disease and the application of the different control strategies generate economical costs, an optimal control analysis has been already carried out.

In order to guarantee effectiveness of control strategies and to reduce the expenses generated by Covid-19, we defined a functional cost to be minimized. The existence and the uniqueness of the optimal control is established and its characterization is given. By the sweep decent method the optimal strategies are computed according to some practical constraints materialized by an admissible control set. We found that if one globally considers the economical losses and gains, then no specific control effort is needed additionally to taking care of hospitalized patients and putting in quarantine of infectious reported individuals as it is already done. However, since the logistic resources for quarantine and hospitalization are limited, the economical losses in terms of gross domestic product (due to social distancing, reduction of mobility and lock-down) can be penalized in the functional cost. That has been done and we computed new optimal strategies.

According to the simulations, we observed that social distancing and disinfection frequency are the main elements of the optimal control strategy. Social distancing permits to have no restriction on mobility. The use of mask is useful but not necessary when social distancing and regular disinfection are respected. Screening has no significant effect on disease behavior and it is economically better to keep q at its minimal value corresponding to self decision to be tested or the hospitalization of severe disease cases. Under the optimal control policy, the peak of the disease occurs earlier and with smaller values.

The current work has several perspectives. The first one is to take into consideration the effects of a potential vaccine against Covid-19 both in the asymptotic behavior analysis and in the optimization of the control strategy. Another aspect is to consider the spatial heterogeneity in terms of available logistic resources, population densities, attractiveness of specific places at given periods of a day, cultural and religious habits, and others significant factors. An ongoing work is trying to tackle the problem regarding those aspects.

Acknowledgment

The authors would like to thank the anonymous editors and reviewers for their comments, which considerably improved the quality of the work.

A Tables of state variables and parameters
Table 3: Description of the parameters of the model (21)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula or range</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>$[0, +\infty]$</td>
<td>Mass action factor</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>$[0, +\infty]$</td>
<td>Semi-saturation constant</td>
<td>virus</td>
</tr>
<tr>
<td>u_i</td>
<td>$[0, 1]$</td>
<td>Probability of wearing a mask in X_i</td>
<td></td>
</tr>
<tr>
<td>m_i</td>
<td>$[0, 1]$</td>
<td>Probability of being in movement in X_i</td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>$[0, +\infty]$</td>
<td>Maximal size of group of individual per unit area</td>
<td>person $\times m^{-2}$</td>
</tr>
<tr>
<td>ς_i</td>
<td>$(1 - u_i) \varsigma_i^{\min} + u_i \varsigma_i^{\max}$</td>
<td>Proportion of free viruses released from X_i</td>
<td></td>
</tr>
<tr>
<td>π_i</td>
<td>$[0, +\infty]$</td>
<td>Rate at which new free viruses are produced from X_i</td>
<td>virus $\times person^{-1} day^{-1}$</td>
</tr>
<tr>
<td>$\tau_{1,i}$</td>
<td>$(1 - m_i) \tau_{1,i}^{\min} + m_i \tau_{1,i}^{\max}$</td>
<td>Transfer rate of viruses from X_i to the environment</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>$\tau_{2,i}$</td>
<td>$(1 - m_i) \tau_{2,i}^{\min} + m_i \tau_{2,i}^{\max}$</td>
<td>Transfer rate of viruses from the environment to X_i</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>$\tau_{3,i}$</td>
<td>$(1 - m_i) \tau_{3,i}^{\min} + m_i \tau_{3,i}^{\max}$</td>
<td>Transfer rate of viruses from X_i to other compartments</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>τ_4</td>
<td>$u_1 \tau_4^{\min} + (1 - u_1) \tau_4^{\max}$</td>
<td>Rate at which viruses enter inside susceptible body and start their internal replication</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>λ</td>
<td>$\frac{a_1 \tau_1 Y_1}{a_2 + Y_1}$</td>
<td>Infection force of viruses on susceptible individuals</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>ν</td>
<td>$[0, +\infty]$</td>
<td>Natural death rate of viruses</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>ω_i</td>
<td>$[0, +\infty]$</td>
<td>Additional death rate of viruses due to disinfection</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>μ</td>
<td>$[0, +\infty]$</td>
<td>Natural death rate of humans</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>d</td>
<td>$[0, +\infty]$</td>
<td>Additional death rate of humans due to disease</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>b_i</td>
<td>$[0, +\infty]$</td>
<td>Reproduction rate of humans in X_i</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>Λ_i</td>
<td>$[0, +\infty]$</td>
<td>Horizontal immigration rate of humans in X_i</td>
<td>person $\times day^{-1} m^{-2}$</td>
</tr>
<tr>
<td>α_1</td>
<td>$[0, +\infty]$</td>
<td>Transition rate from infected to infectious</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>α_2</td>
<td>$[0, +\infty]$</td>
<td>Transition rate from quarantined to hospitalized</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>q</td>
<td>$[0, +\infty]$</td>
<td>Reporting / Screening rate of infectious</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>p</td>
<td>$[0, 1]$</td>
<td>Probability of being asymptomatic infectious</td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td>$[0, +\infty]$</td>
<td>Transition rate from infectious to treated</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>γ_2</td>
<td>$[0, +\infty]$</td>
<td>Transition rate from quarantined to treated</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>γ_3</td>
<td>$[0, +\infty]$</td>
<td>Transition rate from hospitalization to treated</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>γ_4</td>
<td>$[0, +\infty]$</td>
<td>Transition rate from treated to recovered</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>ℓ</td>
<td>$[0, +\infty]$</td>
<td>Transition rate from recovered to susceptible</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>ρ_1</td>
<td>$[0, +\infty]$</td>
<td>Burial rate of a non-infectious dead</td>
<td>day$^{-1}$</td>
</tr>
<tr>
<td>ρ_2</td>
<td>$[0, +\infty]$</td>
<td>Burial rate of an infectious dead</td>
<td>day$^{-1}$</td>
</tr>
</tbody>
</table>
Table 4: Estimation and baseline values of parameters of the model (21)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>3.117558×10^6</td>
<td></td>
<td>Assumed</td>
</tr>
<tr>
<td>a_2</td>
<td>2.091775×10^6</td>
<td></td>
<td>[32]</td>
</tr>
<tr>
<td>m_i</td>
<td>0</td>
<td>percentage</td>
<td>Assumed</td>
</tr>
<tr>
<td>κ</td>
<td>1</td>
<td>percentage</td>
<td>Assumed</td>
</tr>
<tr>
<td>$\eta_{i, \text{min}}$</td>
<td>$5.003 \times 10^{-5}, 8$</td>
<td>person $\times m^{-2}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>$\eta_{i, \text{max}}$</td>
<td>3 $\times 10^{-1}$</td>
<td>percentage</td>
<td>Assumed</td>
</tr>
<tr>
<td>π_i</td>
<td>6.73×10^{-1}</td>
<td>virus $\times person^{-1} day^{-1}$</td>
<td>[32]</td>
</tr>
<tr>
<td>$\tau_{1,i, \text{min}}$</td>
<td>2.8×10^{-2}</td>
<td>day$^{-1}$</td>
<td>[32]</td>
</tr>
<tr>
<td>$\tau_{2,i, \text{max}}$</td>
<td>0</td>
<td>day$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>$\tau_{2,i, \text{min}}$</td>
<td>2.8×10^{-2}</td>
<td>day$^{-1}$</td>
<td>[32]</td>
</tr>
<tr>
<td>$\tau_{3,i, \text{max}}$</td>
<td>0</td>
<td>day$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>$\tau_{3,i, \text{min}}$</td>
<td>2.75×10^{-1}</td>
<td>day$^{-1}$</td>
<td>[32]</td>
</tr>
<tr>
<td>$\tau_{4,i, \text{min}}$</td>
<td>0</td>
<td>day$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>$\tau_{4,i, \text{max}}$</td>
<td>1</td>
<td>day$^{-1}$</td>
<td>[32]</td>
</tr>
<tr>
<td>ν</td>
<td>1</td>
<td>$\frac{1}{7}$</td>
<td>[10]</td>
</tr>
<tr>
<td>ω_i</td>
<td>0</td>
<td>day$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>μ</td>
<td>$\frac{1}{21681}$</td>
<td>day$^{-1}$</td>
<td>wikipedia.org, www.populationdata.net</td>
</tr>
<tr>
<td>d</td>
<td>3.714847×10^{-3}</td>
<td>day$^{-1}$</td>
<td>Fitted</td>
</tr>
<tr>
<td>b_i</td>
<td>3.193×10^{-2}</td>
<td>person $\times day^{-1} m^{-2}$</td>
<td>www.populationdata.net</td>
</tr>
<tr>
<td>Λ_i</td>
<td>0</td>
<td>day$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>α_1</td>
<td>$\frac{1}{14}$</td>
<td>day$^{-1}$</td>
<td>[39]</td>
</tr>
<tr>
<td>α_2</td>
<td>4.913973×10^{-5}</td>
<td>day$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>q</td>
<td>7.960346×10^{-3}</td>
<td>day$^{-1}$</td>
<td>Fitted</td>
</tr>
<tr>
<td>p</td>
<td>9.776358×10^{-1}</td>
<td>percentage</td>
<td>Fitted</td>
</tr>
<tr>
<td>γ_1</td>
<td>$\frac{1}{7}$</td>
<td>day$^{-1}$</td>
<td>[39]</td>
</tr>
<tr>
<td>γ_2</td>
<td>$\frac{1}{7}$</td>
<td>day$^{-1}$</td>
<td>[39]</td>
</tr>
<tr>
<td>γ_3</td>
<td>$\frac{1}{7}$</td>
<td>day$^{-1}$</td>
<td>[39]</td>
</tr>
<tr>
<td>γ_4</td>
<td>$\frac{1}{7}$</td>
<td>day$^{-1}$</td>
<td>[39]</td>
</tr>
<tr>
<td>L</td>
<td>2.74×10^{-3}</td>
<td>day$^{-1}$</td>
<td>[32]</td>
</tr>
<tr>
<td>ρ_1</td>
<td>$\frac{1}{3}$</td>
<td>day$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>ρ_2</td>
<td>1</td>
<td>day$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>\mathcal{R}_0</td>
<td>1.0759773×10^2</td>
<td>person $\times m^{-2}$</td>
<td>Fitted</td>
</tr>
<tr>
<td>$S(0)$</td>
<td>4.4791419×10^4</td>
<td></td>
<td>Fitted</td>
</tr>
<tr>
<td>$E(0)$</td>
<td>7.987228</td>
<td>person $\times m^{-2}$</td>
<td>wikipedia.org, www.populationdata.net</td>
</tr>
<tr>
<td>$I(0)$</td>
<td>9.538403×10^{-4}</td>
<td>person $\times m^{-2}$</td>
<td>Fitted</td>
</tr>
<tr>
<td>$Q(0) = H(0)$</td>
<td>0</td>
<td>person $\times m^{-2}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>$T(0) = R(0)$</td>
<td>0</td>
<td>person $\times m^{-2}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>$D(0) = D_1(0) = B(0)$</td>
<td>0</td>
<td>person $\times m^{-2}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>$Y_1(0)$</td>
<td>5.133665×10^{-5}</td>
<td>virus $\times m^{-2}$</td>
<td>Fitted</td>
</tr>
<tr>
<td>$Y_i(0)$</td>
<td>5.133665×10^{-5}</td>
<td>virus $\times m^{-2}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>$Y_{10}(0)$</td>
<td>0</td>
<td>virus $\times m^{-2}$</td>
<td>Assumed</td>
</tr>
</tbody>
</table>
B Proofs of different results

Proof of Proposition 2.1.
Assume that the initial condition is taken in Ω. Using Cauchy-Lipschitz Theorem there exists a maximal solution of the system (21). Assume that the solution is defined and remains nonnegative on a set [0, T_f]. Then, on [0, T_f], \(N \) satisfies
\[
\dot{N} = \sum_{i=1}^{9} (\Lambda_i + b_i X_i) \left(1 - \frac{N}{\kappa} \right) - \rho_1 X_8 - \rho_2 X_9
\]
\[
\leq \sum_{i=1}^{9} (\Lambda_i + b_i X_i) \left(1 - \frac{N}{\kappa} \right).
\]
Thus, the orbit of \(N \) is clearly converges to the set \([0, \kappa] \). \(X_8, X_9 \) and \(X_{10} \) satisfy respectively
\[
\dot{X}_8 = \Lambda_8 \left(1 - \frac{N}{\kappa} \right) + \mu (X_1 + X_2 + X_6 + X_7) - \rho_1 X_8
\]
\[
\leq \Lambda_8 + \mu \kappa - \rho_1 X_8,
\]
\[
\dot{X}_9 = \Lambda_9 \left(1 - \frac{N}{\kappa} \right) + (\mu + d) (X_3 + X_4 + X_5) - \rho_2 X_9
\]
\[
\leq \Lambda_8 + (\mu + d) \kappa - \rho_2 X_9 \text{ and}
\]
\[
\dot{X}_{10} = \rho_1 X_8 + \rho_2 X_9 \geq 0
\]
Hence, \(X_{10} \geq 0 \) and the orbits of \(X_8, X_9 \) converge respectively to the sets \([0, C_D] \) and \([0, C_{Df}] \). On the other hand,
\[
\dot{N}_V = -\nu N_V + \sum_{i=1}^{10} (\pi_i X_i - \omega_i Y_i)
\]
\[
\leq - \left(\nu + \min_{i=1,\ldots,10} \omega_i \right) N_V + \kappa \sup_{i=1,\ldots,10} \pi_i
\]
Looking carefully the system (1) – (20), we can see that \(\forall i = 1, \ldots, 10, \dot{X}_i \) (respectively \(\dot{Y}_i \)) is nonnegative when \(X_i = 0 \) (respectively \(Y_i = 0 \)). This proves the positivity of the solution which is finally global since it is bounded by the attractiveness of \(\Omega \).

Proof of Proposition 2.2.

(i) Regarding the form of the model (21), it is plain that it admits the equilibrium given by \(X = Y = 0 \).

(ii) Again, regarding the form of the model (21) the DFE exists if and only if \(\lambda = 0 \) and \(b_1 (\kappa - X_1) = \mu \kappa \). Indeed, at the equilibrium \(X_2 = \frac{\lambda X_1}{\mu + \alpha_1} \). So it is necessary to have \(\lambda = 0 \).

(iii) Once more, regarding the form of the model (21) the EE exists only if \(\lambda > 0 \) and
\[
c\ell + \sum_{i=1}^{7} \left(b_i \left(1 - \frac{X_1}{\kappa} \sum_{j=1}^{7} c_j \right) \right) - \mu - \lambda = 0.
\]
Solving the last equation leads to the expression of \(X_1^{EE} \) given above. The linear relation \(X_i^{EE} = c_i X_1^{EE} \) come from matrix \(M \).
Proof of Proposition 2.3.

(i) Looking at the expression of \(J \) in \(\{0\}^9 \times \mathbb{R}_+ \times \{0\}^{10} \), we can see that \(J_{1,2} = 0 \) and both matrices \(J_{1,1} \) and \(J_{2,2} \) have all their eigenvalues negative except \(J_{1,1}(10,10) \) which is null (the compartment of buried individuals is a sink). This shows that the set \(\{0\}^9 \times \mathbb{R}_+ \times \{0\}^{10} \) is locally asymptotically stable (LAS) if \(b_1 \leq \mu \).

(ii) If \(b_i \leq \mu, \ i = 1, \ldots, 7 \) then it suffices to look at the equation of \(\bar{N} \) to get that the null equilibrium \(X = Y = 0 \) is GAS. Indeed,

\[
\bar{N} = \sum_{i=1}^{9} \left(\lambda_i + b_i X_i \right) \left(1 \frac{N}{\kappa} \right) - \mu \bar{N} - dX_3 - dX_4 - dX_5
\]

\[
\leq \sum_{i=1}^{7} b_i X_i \left(1 \frac{N}{\kappa} \right) - \mu \bar{N}
\]

\[
= -\frac{\bar{N}}{\kappa} \sum_{i=1}^{7} b_i X_i + \sum_{i=1}^{7} \left(b_i - \mu \right) X_i.
\]

Since the \(X_i \)'s are nonnegative, if \(b_i \leq \mu, \ i = 1, \ldots, 7 \) then \(\bar{N} \) converges to 0 and necessarily \(X \) and \(Y \) converge to zero by construction of the model.

(iii) From (i) other equilibrium than the null equilibrium is unstable if \(b_1 \leq \mu \). So, it is necessary to have \(b_1 > \mu \). The disease free equilibrium is locally asymptotically stable (LAS) if \(J \) is Metzler stable. That is the case if \(J_{1,1}, J_{2,2} \) and \(J_{1,1} - J_{1,2} J_{2,2}^{-1} J_{2,1} \) are all Metzler stable (see Proposition 3.1 in [31]). \(J_{1,1} \) and \(J_{2,2} \) are unconditionally Metzler stable. So it remains the stability of the matrix \(J_{1,1} - J_{1,2} J_{2,2}^{-1} J_{2,1} \).

(iv) Assume that \(b_1 > \mu \) and \(\lambda = 0 \). Due to the linear form of equations (2) - (7), (9) we can easily see that \(X_i, \ i = 2, \ldots, 7, 9 \) tends to zero. Hence, regarding equations (1) and (8) we can check that \(X_1 \) tends to \(X_1^{DFE} \) while \(X_8 \) tends to \(\frac{\mu X_1^{DFE}}{\rho_1} \).

Proof of Lemma 2.1. The solution of (23) - (24) is given by

\[
U(t) = e^{tA} U(0) - A^{-1} (e^{tA} - I) C
\]

\[
V(t) = e^{tA} V(0) - A^{-1} (e^{tA} - I) C + e^{tA} \int_0^t v(s) e^{-sA} B ds.
\]

Let \(\alpha(A) < 0 \) denote the stability modulus of the matrix \(A \). We have

\[
\|U(t) - V(t)\| \leq \|e^{tA}\| \left(\|U(0) - V(0)\| + \int_0^t v(s) \|e^{-sA}\| \|B\| \|ds\| \right)
\]

\[
\leq e^{\alpha(A)t} \left(\|U(0) - V(0)\| + t \|B\| \sup_{t \in [0, \infty]} v(t) \|e^{-tA}\| \right).
\]

The results follows.

Proof of Theorem 2.1. From Proposition 2.3, if \(b_1 > \mu \) and \(\lambda = 0 \) then the DFE is GAS. Using Lemma 2.1 the result is immediate.
transition rates. The average time between two consecutive jumps is the inverse of the jumping rate and
Indeed, the real phenomenon is a tuple of Poisson processes which jumps with rates given by different
The model has an almost triangular form and is Metzler with a negative diagonal. The matrix \mathbf{M} is
The model has an almost triangular form and is Metzler with a negative diagonal. The matrix \mathbf{M} is
Metzler stable by its particular form ($M_{1,1}$ is a negative eigenvalue and the complementary diagonal block
is triangular and Metzler stable). The matrix Q is Metzler and stable since its transpose is strictly diagonal
dominant. Using Proposition 3.1 in [31], the stability is ensured if $G = M - KQ^{-1}P$ is Metzler stable. We
have $-Q^{-1} = D^{-1} + \sum_{k=1}^{\infty} D^{-1} (RD^{-1})^k$, $0 \leq (-KQ^{-1}P)_{i,j} \leq r_{1} \pi_{i} K_{2,1} D_{1,1} (1 - r_{2})$, $i = 3, 4, 5, 6$ and $(-KQ^{-1}P)_{i,j} = 0$ otherwise. Hence, $G_{2,j} = (-KQ^{-1}P)_{2,j}, j = 3, 4, 5, 6$ and $G_{i,j} = M_{i,j}$ otherwise. G is therefore a Metzler.

Proof of Theorem 2.2. The proof is based on the quasilinear form of the model (21). Indeed, the model
(21) can be rewritten as
\[
\begin{bmatrix}
X \\
Y
\end{bmatrix} = \begin{bmatrix}
M(X,Y) & K(X,Y) \\
P(X,Y) & Q(X,Y)
\end{bmatrix} \begin{bmatrix}
X - X^{DFE} \\
Y
\end{bmatrix}
\]
where $M_{1,1} = - \frac{b_{1}X_{1}(N - X^{DFE})}{\kappa (1 - X^{DFE})} - \frac{a_{1}r_{1}X_{1}Y_{1}}{(a_{2} + Y_{1})(1 - X^{DFE})}$, $K_{2,1} = \frac{a_{1}r_{1}X_{1}}{a_{2} + Y_{1}}$, $\forall (i, j) \neq (2, 1), K_{i,j} = M_{2,1} = 0$, $\forall (i, j) \notin \{(1, 1), (2, 1)\}$, $M_{i,j} = M_{i,j}$, $P(i, i) = \varsigma_{i} \pi_{i} X_{i}$, $i = 1, \ldots, 9$, $P_{10,j} = \pi_{j}(1 - \varsigma_{j})X_{j}$, $j = 3, \ldots, 6$.

Proof of Theorem 2.3. Let $\mathcal{J} = \frac{sX + E + J + \frac{3}{2}H + T + R}{sX + E + J + \frac{3}{2}H + T + R}$ and assume that $\forall t \geq 0$, $\lambda(t) = \lambda_{0} e^{-\alpha t}$, $\alpha > 0$. From the model (1)-(20) we have according to probabilistic properties of Poisson processes [8, 17, 33],
\[
\mathcal{J} = \lambda \mathcal{J} + \frac{bN}{\kappa} \mathcal{J} - (b + \beta (1 - p_{d})) \mathcal{J} - (\beta p_{d} - \mu) (1 - \mathcal{J}) \mathcal{J}
\]
\[
\leq \lambda - (\beta (1 - p_{d})) \mathcal{J}.
\]
Indeed, the real phenomenon is a tuple of Poisson processes which jumps with rates given by different
transition rates. The average time between two consecutive jumps is the inverse of the jumping rate and
almost surely only one process in the tuple jumps at a given time. Hence, the average time \(\frac{1}{t} \) spent by an individual from his entry in the compartment \(E \) to his exit from the compartment \(T \) is the sum of average times he spent in of each the compartment \(E \), \(I \), \(Q \), \(H \) and \(T \) respectively. If \(\sigma = \min \{ \alpha, \beta (1 - p_d) \} \) then using the resolvent operator we have \(\forall t \geq 0, \)

\[
\mathcal{J}(t) \leq \mathcal{J}(0) e^{-\beta(1 - p_d)t} + \int_0^t e^{-\beta(1 - p_d)(t - \tau)} \lambda(\tau) d\tau
\]

\[
= \mathcal{J}(0) e^{-\beta(1 - p_d)t} + \lambda_0 e^{-\beta(1 - p_d)t} \int_0^t e^{(\beta(1 - p_d) - \alpha)\tau} d\tau
\]

\[
\leq \mathcal{J}(0) e^{-\beta(1 - p_d)t} + \lambda_0 e^{-\sigma_1 t}
\]

\[
\leq \frac{\mathcal{J}(0)}{\beta (1 - p_d) e t} + \frac{4 \lambda_0}{\sigma_1^2 e^2 t}
\]

The last inequality comes from the fact that \(t^n e^{-kt} \leq \left(\frac{N}{\kappa} \right)^n \) for \(k, n \in \mathbb{N}^* \) and \(t \in \mathbb{R}_+ \). Since \(\bar{N}(t) \leq N(t) \leq \kappa, \forall t \geq 0 \), we have

\[
\mathcal{J}(t) \bar{N}(t) \leq \frac{\kappa \mathcal{J}(0)}{\beta (1 - p_d) e t} + \frac{4 \kappa \lambda_0}{\sigma_1^2 e^2 t}
\]

Let \(\sigma_2 = \min \{ \nu + \omega, \beta (1 - p_d) \} \) and \(\sigma_3 = \min \{ \nu + \omega, \sigma_1 \} \). We have

\[
\mathcal{N}_V \leq - (\nu + \omega) N_V + \pi \mathcal{J} \bar{N}
\]

\[
\leq - (\nu + \omega) N_V + \kappa \pi \mathcal{J}
\]

Again, using the Gronwall’s Lemma we have

\[
N_V(t) \leq N_V(0) e^{-(\nu + \omega)t} + \kappa \pi e^{-(\nu + \omega)t} \int_0^t e^{(\nu + \omega)s} \left(\mathcal{J}(0) e^{-\beta(1 - p_d)s} + \lambda_0 se^{-\sigma_1 s} \right) ds
\]

\[
\leq N_V(0) e^{-(\nu + \omega)t} + \kappa \pi \mathcal{J}(0) e^{-(\nu + \omega)t} \int_0^t e^{-(\beta(1 - p_d) - \nu - \omega)s} ds
\]

\[
+ \kappa \pi \lambda_0 e^{-(\nu + \omega)t} \int_0^t s e^{(\nu + \omega)s} e^{-\sigma_1 s} ds
\]

\[
\leq N_V(0) e^{-(\nu + \omega)t} + \kappa \pi \mathcal{J}(0) te^{-\sigma_2 t} + \kappa \pi \lambda_0 \frac{t^2}{2} e^{-\sigma_3 t}
\]

\[
\leq N_V(0) e^{-(\nu + \omega)t} + \frac{4 \kappa \pi \mathcal{J}(0)}{\sigma_2^2 e^2 t} + \frac{27 \kappa \pi \lambda_0}{2 \sigma_3^3 e^3 t}
\]

\[
\leq \frac{N_V(0)}{(\nu + \omega) e t} + \frac{4 \kappa \pi \mathcal{J}(0)}{\sigma_2^2 e^2 t} + \frac{27 \kappa \pi \lambda_0}{2 \sigma_3^3 e^3 t}
\]

Hence, the respective first times \(T_H^* \) and \(T_V^* \) such that respectively \(\mathcal{J}_G(t) \bar{N}(t) \leq 1 \) and \(\mathcal{N}_V(t) \leq 1 \) satisfy

\[
T_H^* \leq \frac{\kappa \mathcal{J}(0)}{\beta (1 - p_d) e} + \frac{4 \kappa \lambda_0 \mathcal{J}}{\sigma_1^2 e^2} \] and

\[
T_V^* \leq \frac{\mathcal{N}_V(0)}{(\nu + \omega) e t} + \frac{\kappa \pi \mathcal{J}(0)}{2 \sigma_2^3 e^3 t} + \frac{27 \kappa \pi \lambda_0}{2 \sigma_3^3 e^3 t}.
\]
Proof of Theorem 4.1. The existence of the optimal control is guaranteed by the boundedness of the solution of (1)-(20) and subsequently, the boundedness of the functional cost Z which is continuously differentiable with respect to its parameters. The rest of the proof is essentially based on the study of the gradient of the Hamiltonian. Indeed, the minimization consists in moving according to the opposite of the gradient of the Hamiltonian. Precisely, when the gradient is not zero but it is not possible to move in the direction of the gradient of the Hamiltonian while it is possible and necessary. Precisely, when the gradient is the null vector then a singular point is reached. If the gradient is not zero but it is not possible to move in the direction of the gradient of the Hamiltonian while it is possible and necessary. Precisely, when the gradient is the null vector then a singular point is reached. If the gradient is not zero but it is not possible to move again, then the optimum is reached at the boundary of the eligible region.

We have

$$\frac{\partial H}{\partial \omega} = \frac{c_\omega \omega N}{(\omega + \omega)^2} - \sum_{j=1}^9 Y_j Y_j^*,$$

$$\frac{\partial H}{\partial \kappa} = \frac{N}{\kappa^2} \sum_{i=1}^9 A_i X_i^* + \frac{N}{\kappa^2} \sum_{i=1}^9 b_i X_i - mg \frac{(X_1(s) + X_2(s) + X_3(s))}{\kappa},$$

$$\frac{\partial H}{\partial \mu} = \sum_{j=1}^9 \left(\tau_{3,j}^\max - \tau_{3,j}^\min \right) Y_j + \left(\tau_{2,j}^\max - \tau_{2,j}^\min \right) Y_{10} \frac{X_i}{N} Y_i^*$$

$$+ \sum_{j=1}^9 \left(\tau_{1,j}^\max - \tau_{1,j}^\min \right) Y_j - \left(\tau_{2,j}^\max - \tau_{2,j}^\min \right) \frac{X_i}{N} Y_{10} Y_j^*$$

$$- \left(\tau_{1,j}^\max - \tau_{1,j}^\min \right) + \left(\tau_{3,j}^\max - \tau_{3,j}^\min \right) Y_j Y_j^*$$

$$- g \kappa \frac{(X_1(s) + X_2(s) + X_3(s))}{\kappa},$$

$$\frac{\partial H}{\partial u} = a_1 X_1 Y_1 \frac{(X_1^* - X_2^*) (\tau_{4}^\max - \tau_{4}^\min)}{a_2 + Y_1} + a_1 Y_1^2 \frac{(\tau_{4}^\max - \tau_{4}^\min)}{a_2 + Y_1} (Y_1^* - Y_2^*)$$

$$+ \sum_{j=1}^9 \left(\tau_{j}^\max - \tau_{j}^\min \right) (Y_j^* - Y_j^*) \pi_j X_j + c_u N \text{ and}$$

$$\frac{\partial H}{\partial q} = c_s \left(X_1 + X_2 + X_3 + X_6 + X_7 \right) - X_3 X_3^* + p X_3 X_4^* + (1 - p) X_3 X_5^*$$

$$+ \alpha_1 \left(\mu + d + \gamma_1 \right) \frac{(\tau_{4}^\max - u (\tau_{4}^\max - \tau_{4}^\min))}{(a_2 + Y_1) (q + \mu + d + \gamma_1)^2} \text{ with}$$

$$\kappa = \frac{(q + \mu + d + \gamma_1)^2}{(\mu + d + \gamma_1)} \frac{\partial c}{\partial q}$$

$$= - \left((c_1 + c_2) + c_d (\mu + d) \right) \alpha_1 T_0 + \left((c_2 + c_3) + c_d (\mu + d) \right) p \alpha_1 T_0$$

$$+ \left((c_3 + c_d (\mu + d)) (p \alpha + (1 - p) (\alpha_2 + \mu + d + \gamma_1)) \right) \alpha_1 T_0$$

$$\alpha_2 + \mu + d + \gamma_2) (\mu + d + \gamma_3).$$

If the optimal control exists then the Algorithm 1 describes it such as a piecewise continuous feedback which is locally Lipschitz with respect to the state variable and the adjoint state variable. Thus, by the Cauchy–Lipschitz Theorem the optimal control is unique.

C Computation of the optimal control

Algorithm 1: Optimal control (part 1)

\[\kappa^* = \kappa \]
\[q^* = 0 \]
\[u^* = 0 \]
\[m^* = 1 \]
\[\omega^* = 0 \]

\[\text{tmp} = \sum_{i=1}^{9} X_i Y_i \left(\sum_{j=1}^{9} \left(\tau_{\text{max},3,j} - \tau_{\text{min},3,j} \right) Y_j + \left(\tau_{\text{max},2,j} - \tau_{\text{min},2,j} \right) Y_{10} \right) \frac{g(X_1 + X_2 + X_3)}{g(X_1 + X_2 + X_3)} \]
\[+ \sum_{j=1}^{9} \left(\tau_{\text{max},1,j} - \tau_{\text{min},1,j} \right) Y_j - \left(\tau_{\text{max},2,j} - \tau_{\text{min},2,j} \right) Y_{10} \right) \frac{g(X_1 + X_2 + X_3)}{g(X_1 + X_2 + X_3)} \]
\[- \sum_{j=1}^{9} \left(\tau_{\text{max},1,j} - \tau_{\text{min},1,j} \right) + \left(\tau_{\text{max},2,j} - \tau_{\text{min},2,j} \right) Y_{10} \right) \frac{g(X_1 + X_2 + X_3)}{g(X_1 + X_2 + X_3)} \]

if \(X_1^* < 0 \) and \(\text{tmp} \geq 1 \) then
\[m^* = 0 \]
end if
if \(X_1^* = 0 \) then
\[\kappa^* = \text{tmp} \]
end if
if \(\text{tmp} > 0 \) then
\[m^* = 0 \]
end if
if \(X_1^* > 0 \) then
if \(\text{tmp} > 0 \) then
\[\kappa^* = \text{tmp} \]
\[m^* = \frac{\pi N X_1^*}{g(X_1 + X_2 + X_3)} \frac{7}{\sum_{i=1}^{7} b_i X_i} \]
else
\[\kappa^* = \sqrt{\frac{\pi N X_1^*}{g(X_1 + X_2 + X_3)} \sum_{i=1}^{7} b_i X_i} \]
end if
end if
Algorithm 2: Optimal control (part 2)

if $\sum_{j=1}^{9} Y_j^* > 0$ then
 $\text{tmp}1 = c_\omega N - \pi Y_1^*$
 if $\text{tmp}1 < 0$ then
 $\omega^* = \omega_{\text{max}}$
 else
 $\omega^* = \sqrt{c_\omega N \left(\sum_{j=1}^{9} Y_j^* \right)}^{-\frac{1}{2}} - \pi$
 $\omega^* = \max \{0, \min \{\omega^*, \omega_{\text{max}}\}\}$
 end if
else
 $\omega^* = \sqrt{c_\omega N \left(\sum_{j=1}^{9} Y_j^* \right)}^{-\frac{1}{2}} - \pi$
 $\omega^* = \max \{0, \min \{\omega^*, \omega_{\text{max}}\}\}$
end if

if $\pi = \pi_{\text{max}}$ then
 $\text{tmp}2 = c_1 + c_2 + c_3 (\mu + d) \omega N - t_{\text{min}} \text{tmp}3 < 0$ then
 $q^* = \overline{q}$
 else
 if $Y_1 = 0$ then
 $q^* = \overline{q}$
 else
 $\text{tmp}4 = a_1 Y_1 (\frac{\pi_{\text{max}} - \pi}{a_1})$
 $\text{tmp}5 = X_1^* - X_2^* + \frac{c_\omega N}{\text{tmp}4}$
 if $\text{tmp}5 < 0$ then
 $q^* = \overline{q}$
 else
 $\text{tmp}6 = \alpha_1 T_0 (c_1 + c_2 + c_3 (\mu + d) (c_1 + c_g))$
 $\text{tmp}6 = \frac{\text{tmp}6}{\mu + d + \gamma_1}$
 if $\text{tmp}5 > \text{tmp}6$ then
 $q^* = 0$
 else
 $\text{tmp}6 = \text{tmp}5 - \pi_0 (c_1 + c_2 + c_3 (\mu + d) (c_1 + c_g))$
 $q^* = \alpha_1 T_0 (c_1 + c_2 + c_3 (\mu + d) (c_1 + c_g)) - \text{tmp}5 * (\mu + d + \gamma_1) - \text{tmp}6$
 $q^* = q^*/\text{tmp}6$
 end if
 end if
 end if
 end if
else
 if $Y_1 = 0$ then
 $q^* = \overline{q}$
 else
 $\text{tmp}4 = a_1 Y_1 (\frac{\pi_{\text{max}} - \pi}{a_1})$
 $\text{tmp}5 = X_1^* - X_2^* + \frac{c_\omega N}{\text{tmp}4}$
 if $\text{tmp}5 < 0$ then
 $q^* = \overline{q}$
 else
 $\text{tmp}6 = \alpha_1 T_0 (c_1 + c_2 + c_3 (\mu + d) (c_1 + c_g))$
 $\text{tmp}6 = \frac{\text{tmp}6}{\mu + d + \gamma_1}$
 if $\text{tmp}5 > \text{tmp}6$ then
 $q^* = 0$
 else
 $\text{tmp}6 = \text{tmp}5 - \pi_0 (c_1 + c_2 + c_3 (\mu + d) (c_1 + c_g))$
 $q^* = \alpha_1 T_0 (c_1 + c_2 + c_3 (\mu + d) (c_1 + c_g)) - \text{tmp}5 * (\mu + d + \gamma_1)$
 $q^* = q^*/\text{tmp}6$
 end if
 end if
 end if
end if
end if
end if
if $\pi = 0$ then
 if $\alpha_1 T_0 (c_1 + c_2 + c_3 (\mu + d) (c_1 + c_g)) > 0$ then
 $q^* = \overline{q}$
 else
 $q^* = 0$
 end if
end if
Algorithm 3: Optimal control (part 3)

if $\lambda > 0$ then
 if $(\bar{q} + \mu + d + \gamma_1)^2 \, t_{mp2} + \tau_4^\text{min} \, t_{mp3} < 0$ then
 $q^* = \bar{q}$
 else
 if $(\mu + d + \gamma_1)^2 \, t_{mp2} + \tau_4^\text{min} \, t_{mp3} > 0$ then
 $q^* = \bar{q}$
 else
 if $Y_1 = 0$ then
 $q^* = 0$
 else
 $t_{mp4} = \frac{a_1 X_1 Y_1 (\tau_{\text{max}}^\text{max} - \tau_{\text{min}}^\text{min})}{a_2 + Y_1}$
 $t_{mp5} = X_1^* - X_2^* + \frac{c_u N}{t_{mp4}}$
 if $t_{mp5} < 0$ then
 $q^* = 0$
 else
 $t_{mp6} = \bar{q} (\lambda + \alpha_1 T_0 (c_d (\mu + d) + (c_1 + c_g)))$
 $t_{mp6} = t_{mp6} + \alpha_1 T_0 (c_d (\mu + d) + (c_1 + c_g))$
 $t_{mp6} = \frac{t_{mp6}}{\tau_4^\text{max} + d + \gamma_1}$
 if $t_{mp5} > t_{mp6}$ then
 $q^* = \bar{q}$
 else
 $t_{mp6} = t_{mp6} - \lambda - \alpha_1 T_0 (c_d (\mu + d) + (c_1 + c_g))$
 $q^* = \alpha_1 T_0 (c_d (\mu + d) + (c_1 + c_g)) - t_{mp5} \star (\mu + d + \gamma_1)$
 $q^* = \frac{q^*}{t_{mp6}}$
 $t_{mp7} = \sum_{j=1}^{9} (\varsigma_j^\text{max} - \varsigma_j^\text{min}) (Y_{10}^* - Y_j^*) \pi_j X_j$
 end if
 end if
 end if
 end if
 end if
 end if
else
 if $Y_1 \neq 0$ or $t_{mp7} \neq 0$ then
 $t_{mp6} = q^* (\lambda + \alpha_1 T_0 (c_d (\mu + d) + (c_1 + c_g)))$
 $t_{mp6} = t_{mp6} + \alpha_1 T_0 (c_d (\mu + d) + (c_1 + c_g))$
 $t_{mp6} = \frac{t_{mp6}}{q^* + \mu + d + \gamma_1}$
 $t_{mp7} = t_{mp7} + t_{mp4} \star (X_1^* - X_2^* - t_{mp6}) + c_u N + \frac{a_1 Y_1^2 (\tau_{\text{max}}^\text{max} - \tau_{\text{min}}^\text{min})}{a_2 + Y_1} (Y_1^* - Y_2^*)$
 if $t_{mp7} < 0$ then
 $u^* = 1$
 end if
 else
 if $t_{mp7} = 0$ and $\lambda \neq 0$ then
 $u^* = \frac{t_{mp6}}{(q^* + \mu + d + \gamma_1)^2 \, t_{mp2}}$
 $u^* = \frac{\varsigma_j^\text{max} - u^*}{\varsigma_j^\text{min} - u^*}$
 $u^* = \min \{1, \max \{0, u^*\}\}$
 end if
 end if
end if
References

[29] Z. Hu, Q. Cui, J. Han, X. Wang, E. Wei, and Z. Teng. Evaluation and prediction of the COVID-19 variations at different input population and quarantine strategies, a case study in Guangdong province, China. *International Journal of Infectious Diseases*, 2020.

