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Abstract

Background: Ambitious population-based screening programs for latent and active 

tuberculosis (TB) were implemented in the Republic of the Marshall Islands (RMI) in 2017 

and 2018.

Methods: We used a transmission dynamic model of TB informed by local data to capture 

the historical dynamics of the RMI epidemic. We then used the model to project the future 

epidemic trajectory following the active screening interventions, as well as considering a 

counterfactual scenario with no intervention. We also simulated future scenarios including 

periodic interventions similar to those previously implemented, to assess their ability to reach

the End TB Strategy targets and TB pre-elimination in RMI.

Findings: The screening activities conducted in 2017 and 2018 were estimated to have 

reduced TB incidence and mortality by more than one third in 2020, and are predicted to 

achieve the End TB Strategy milestone of 50% incidence reduction by 2025 compared to 

2015. Screening interventions had a considerably greater impact when latent TB screening 

and treatment was included, compared to active case finding alone. Such combined programs 

implemented at the national level could achieve TB pre-elimination around 2035 if repeated 

every two years, and around 2045 if repeated every five years.

Interpretation: Our model suggests that it would be possible to achieve TB pre-elimination 

by 2035 in RMI through periodic repetition of the same interventions as those already 

implemented in the country. It also highlights the importance of including latent infection 

testing in active screening activities.

Funding: Australian National Health and Medical Research Council and World Health 

Organization.



Introduction

Every year, around ten million people develop tuberculosis (TB) disease globally.1 The 

causative agent of TB (Mycobacterium tuberculosis, M.tb) was first identified in 1882 – and 

yet more than 130 years later, TB is estimated to be the world’s leading cause of death from a

single infectious agent.1 The availability of effective vaccines and treatments has not been 

sufficient to eliminate TB. Consequently, disease elimination is not expected in the coming 

decades without dramatic changes to current approaches to public health management.

Improving case detection is a promising way to progress the global TB response because 

millions of diseased individuals are currently undetected.1 We now know that ACF activities 

can identify significant numbers of individuals with active disease who may not have been 

detected otherwise or may only have been detected after substantial delays. Recent large-

scale randomised trials of active case finding (ACF) interventions in high burden settings 

have demonstrated the efficacy of these approaches and generated great hope for dramatically

improved control by reducing the pool of infectious individuals.2,3 Further in the past, large-

scale ACF programs achieved dramatic and sustained reductions in TB burden in developed 

countries, such as Australia, after the Second World War.4

While classic ACF approaches focus on active disease only, screening and treatment of latent

TB infection (LTBI) can also be included in these ambitious programs in order to prevent 

future TB reactivation in infected individuals. Population-wide use of preventive treatment 

(PT) is not a new intervention. Large-scale cluster-randomised trials of isoniazid PT were 

conducted in the late 1950s in Alaska, Greenland, and Tunisia, all demonstrating significant 

reductions of TB incidence.5–7 However, a more recent trial conducted in a South African 

mining population with high prevalence of HIV was not successful at reducing TB burden.8 

This demonstrates that the effectiveness of mass PT programs depends on the characteristics 

of the population and epidemic in which the intervention is implemented,9 and that it is 



difficult to anticipate the effects of future intervention by extrapolating observations made in 

other settings.

Ambitious population-level screening programs were recently completed in the Republic of 

the Marshall Islands (RMI), an archipelago nation in the western Pacific. RMI is a high TB 

burden country with an estimated TB incidence approaching 500 cases-per-100,000-persons-

per-year in 2019 according to the World Health Organization (WHO).10 The screening 

activities were conducted in the two most populous islands of RMI – Ebeye and Majuro – 

together representing nearly three quarters of the national population. In 2017, a first ACF 

intervention aimed to screen the entire adult population (those aged 15 years or older) of 

Ebeye Island for active TB disease and treat those with suspected disease. The following 

year, an even more comprehensive intervention was conducted on Majuro Atoll to screen 

individuals of all ages for both latent and active TB and provided appropriate treatment for 

both these conditions. These programs have enabled identification and treatment of a large 

number of individuals with latent and active TB. It is now critical to estimate the long-term 

effects of these interventions and to identify effective follow-up approaches that would 

sustain significant reductions of TB incidence in RMI. 

Mathematical modelling has the ability to predict the long-term effects of control 

interventions, as well as to guide future TB control by considering different hypothetical 

scenarios of intervention. In this modelling study, we incorporated local data collected during

the interventions into a transmission dynamic model of TB in order to assess whether the End

TB Strategy targets and pre-elimination could be achieved in RMI under the current strategy 

as well as under various future intervention scenarios.



Methods

Overall approach

We used a deterministic compartmental model to simulate M.tb transmission in RMI using a 

similar approach to previously published studies.11–14 After calibrating the model to local data 

using Bayesian techniques, we projected the long-term effect of the large-scale LTBI and TB 

screening activities undertaken in RMI in 2017 and 2018. The projected epidemic trajectories

were compared to a counterfactual scenario corresponding to the predicted epidemiological 

trajectory in the absence of these interventions. We then projected repeated periodic 

interventions similar to those previously implemented and covering the entire country every 

two, five or ten years, to assess prospects for reaching the End TB Strategy milestones and 

targets, and the pre-elimination incidence threshold (see Table 1).

Tuberculosis model

The base model consisted of six compartments that each represent a particular clinical status 

with regards to M.tb infection or disease (Figure 1). LTBI was modelled using two sequential

compartments (E and L) in order to capture the declining risk of disease progression over 

time from infection.15,16 Individuals progressing to active TB (I) were stratified based on their 

form of disease: smear-positive pulmonary TB (PTB), smear-negative PTB and 

extrapulmonary TB. Diseased individuals may either recover spontaneously, receive 

treatment (T) or die. Recovered individuals were modelled as a separate compartment (R), 

such that differential susceptibility to future infection could be considered, as compared to the

original risk of infection associated with the “susceptible” population. Reinfection was also 

permitted for latently infected individuals and was modelled through a flow returning from 

the late latent compartment to the early latent compartment, with LTBI assumed to confer 

partial protection against reinfection (Table 2).



The simulated population was then stratified by age according to five categories: 0-4, 5-14, 

15-34, 35-49 and 50+ years old. Finally, the model was further stratified at the population 

level to explicitly simulate three different locations: Majuro Atoll, Ebeye Island and all other 

islands of RMI. We incorporated heterogeneous mixing by age and location. The impact of 

type 2 diabetes was accounted for by adjusting the age-specific rates of progression from 

latent to active disease based on age-specific diabetes prevalence estimates. Age-specific 

diabetes prevalence was assumed to increase progressively between 1950 and 2020 and 

remained constant in the future in our base case analysis. Both increasing and decreasing 

future diabetes prevalence were explored in sensitivity analyses. The effect of BCG 

vaccination was modelled by adjusting the age-specific susceptibility to infection and this 

adjustment varied with time to reflect the progressive scale-up of BCG coverage.

We used programmatic data to inform the simulated detection and treatment processes and 

previously published estimates to inform the natural history of TB,17 as well as the rates of 

progression from latent to active TB.16 Model parameters were fitted to local data on 

population size, TB prevalence, LTBI prevalence and TB notifications using an adaptive 

Metropolis algorithm. This calibration approach allowed consideration of the substantial 

uncertainty around the most critical model parameters (Table 2). In particular, various 

profiles of time-variant passive TB screening were considered to cover a wide range of 

assumptions regarding the future performance of passive case finding. The code used to 

implement the model is publicly available on Github 

(https://github.com/monash-emu/AuTuMN/tree/master/apps/tuberculosis/regions/

marshall_islands).18

Modelled interventions

When LTBI screening and treatment were implemented, latently infected individuals were 

assumed to transition to the recovered compartment on completion of treatment. The 



transition rate associated with the preventive treatment was defined as the product of a time-

variant LTBI screening rate, the sensitivity of the LTBI test and the efficacy of preventive 

treatment. ACF was modelled through an additional flow from the undetected disease 

compartment to the treatment compartment. The rate governing this transition was defined by

a time-variant ACF screening rate, which was multiplied by the sensitivity of the diagnostic 

test used during the ACF intervention.

The time-variant functions used to characterise both the LTBI screening rate and the ACF 

screening rate were defined such that the modelled proportions of screened individuals at the 

end of the interventions were consistent with those measured in the field. In Ebeye, 85% of 

individuals aged 15 years old and over were screened for active TB, while in Majuro 81% of 

the entire population were screened for both LTBI and active TB. In order to capture the 

future effect of increased TB awareness due to the large-scale community interventions, we 

increased the rate of passive screening of active TB from 2018 - the end point of the 

completed intervention, considering relative improvements in the screening rate ranging from

zero to 50%.

In addition to simulating the previously implemented interventions, we modelled scenarios in

which the community-wide interventions would be repeated periodically at the national level,

starting from 2021. We considered interventions repeated every two, five or ten years in 

separate scenarios and we assumed a similar proportion of the population screened to that of 

the intervention conducted in Majuro in 2018. Finally, we also estimated the effect of 

intensive contact tracing and preventive treatment provision in the contacts of individuals 

with active TB.

Role of the funding sources

The funders of the study had no role in the collection and analysis of data. TI and KR are 

employed by the WHO, one of the funders of this study, but contributed as technical experts. 



They both contributed to developing the concept, interpreting the data, reviewed the 

manuscript and agreed to publish it.



Results

Figure 2 presents the base case model fits to local data and posterior parameter estimates are 

shown in the Supplement (Table S3).

Figure 3 presents the future projected epidemic trajectories with and without implementation 

of the active screening interventions. At the national level, we estimated that the interventions

had reduced TB incidence by around 37% in 2020 from 447 (95% credible interval 353-548) 

to 281 (95% CrI 221-363) per-100,000-persons-per-year. TB mortality was predicted to have 

decreased by around 42% from 127 (95% CrI 108-160) to 74 (95% CrI 61-100) per-100,000-

persons-per-year in 2020 due to the screening interventions. The community-wide 

interventions had a considerably greater effect on the epidemic in Majuro than in Ebeye. In 

Majuro, the interventions achieved an estimated 55% reduction in the local TB incidence and 

mortality in 2020, compared to the counterfactual no intervention scenario, with effects 

sustained until at least 2050 with no further intervention. In Ebeye, the estimated incidence 

reduction induced by the screening activities reached 43% in 2050, compared to the 

counterfactual no intervention scenario. If current programmatic conditions were continued 

with no future ACF interventions and assuming enhanced TB awareness following the 

interventions, we predicted that RMI could achieve the 2025 End TB incidence milestone 

(Figure 4). However, the country would fall short of reaching any TB mortality targets as 

well as the 2035 TB incidence target.  

The results of our analysis considering different assumptions for the future trend of diabetes 

prevalence are shown in Supplementary Figure S2. This analysis included the interventions 

previously conducted in Majuro and Ebeye and assumed that TB control would remain 

similar to the current programmatic situation until 2050. If diabetes prevalence increased by 

20% by 2050, the predicted TB incidence in 2050 would be 140 (95% CrI 73-245) per-

100,000-persons-per-year. In contrast, a decline of 20% in diabetes prevalence was estimated 



to be associated with a further decrease in TB incidence to 92 (95% CrI 51-151) per-100,000-

persons-per-year in 2050. 

The results of the projections considering repeated interventions at the country level every 

two, five or ten years are presented in Figure 4. If LTBI screening was not included in the 

ACF programs, we predicted that the 2035 End TB Strategy targets would not be reached, 

regardless of the intervention frequency considered. Combining ACF with LTBI screening 

and treatment would have considerably greater impacts on future TB burden. We estimated 

that all the End TB Strategy targets would be reached, whether this intervention was repeated 

every two, five or ten years. Similar results to those presented in Figure 4 are shown on a log-

scale in Supplementary Figure 3, also displaying the pre-elimination threshold defined as a 

TB incidence rate of 1 case per-100,000-persons-per-year.19 This showed that pre-elimination

could be achieved around 2035 with community-wide screening of latent and active TB 

repeated every two years at the country level, and around 2045 with the same intervention 

implemented every 5 years. The ten-year cycle was not predicted to reach pre-elimination by 

2050.

Our analysis considering the use of preventive treatment provided through intensive contact 

tracing showed that such an intervention would yield a comparable overall effect compared to

using community-wide ACF at the country level every 5 years. This intervention would not 

achieve any of the targets set by the End TB strategy for 2035.



Discussion

In 2017 and 2018, unprecedented TB and LTBI screening activities were conducted in RMI. 

These ambitious community-led interventions were supported by exceptional efforts 

produced by local and external stakeholders and supported by volunteers. Success has already

been demonstrated through the large number of detected individuals with latent or active TB 

who completed treatment. Our modelling projections now suggest that these efforts will have 

considerable effects on the long-term trajectory of the local TB epidemics, and we estimate 

that periodic use of interventions such as those implemented in RMI could achieve pre-

elimination goals over the coming decades.

ACF is a high-intensity, high-resource effort. Going beyond TB case-finding by adding 

treatment of LTBI greatly increases the cost and the time to screen a population, but our 

model demonstrates a considerably higher impact when both active and latent TB are 

addressed together. This suggests that considerable resources are likely to be required to yield

the dramatic impacts on TB burden we projected. However, our analysis also shows that 

impacts could be sustained in the long term and that pre-elimination could be achieved 

through such interventions. This means that substantial returns on investment are anticipated 

as many TB cases and deaths will be averted over several decades. In addition to the human 

and societal benefits, these direct health effects also translate into economic savings because 

of the known catastrophic impact that TB has on the finances of individuals, families and 

countries.20 Our results therefore highlight the importance of adopting a long-term vision 

when planning TB control and when funding the TB response.  

Our analysis has important implications for future TB control in RMI. First, we suggest that 

while it is critical to address the issue of latent infection, classic approaches relying on tracing

the contacts of diagnosed TB cases would be unable to achieve dramatic reductions in 



burden. An explanation for this is that such strategies would not capture infections that result 

from old transmission events, whereas these remote infections may still contribute to the 

future burden of active TB through late reactivation. This suggests that population-wide 

screening of LTBI may be a necessary component of any program aiming to achieve TB pre-

elimination in RMI. The critical importance of reducing the size of the latent infection pool 

had already been demonstrated by previous modelling works, which suggested that even if 

transmission totally ceased from 2015 onwards, this would be insufficient to achieve the End 

TB Strategy targets at the global level.21 In the present analysis, we demonstrate that these 

goals could be achieved by using large-scale screening interventions that are realistic, 

practical and utilise only existing technologies, given that such interventions have already 

been implemented in the field. Our study also reinforces the importance of addressing risk 

factors and comorbidities in addition to TB itself. In particular, we found diabetes to be a key 

determinant of the long-term trends of the TB epidemic in the RMI context, consistent with 

findings from other Pacific Island settings.14 This calls for multifactorial approaches that 

combine TB-specific measures with interventions addressing TB risk factors, whether these 

tools are medical or social. Finally, our model suggests a clear pathway to reaching TB pre-

elimination in RMI. Indeed, we estimated that TB incidence could be brought below one new

case-per-100,000-persons-per-year by 2035 if the ambitious intervention conducted in 

Majuro in 2018 could be repeated every two years from 2021 at the national level.

The strengths of our study include the fact that our calibration approach was able to capture 

key disease indicators accurately while incorporating uncertainty around the most 

fundamental parameters. Furthermore, the model was directly informed by the most relevant 

data possible, since these were directly measured in the field, including through the 

interventions themselves. This includes data on the prevalence of active and latent TB which 

are critical to replicate the local TB burden accurately, along with TB notification data that 



ensured that the historical trends in case detection were captured appropriately. Finally, 

simulations were conducted using state-of-the-art computing techniques that are publicly 

available and have been extensively tested and documented,18 such that our model could be 

easily reused to assist TB control in RMI as well as in other settings.

Limitations of our study include the significant uncertainties that remain in TB epidemiology.

In particular, model projections could be refined with improved knowledge about the effect 

of preventive therapy on the risk of future reinfection, although our model considers a broad 

range of assumptions regarding this parameter. Similarly, even if recent studies have 

produced estimates for the rates of progression from latent to active TB,16,22 the rate of late 

reactivation remains poorly characterised due to the limited data available.23 Refining 

estimates of this parameter would undoubtedly increase the accuracy of predictions related to 

intervention involving preventive treatment. Second, while our model demonstrates the 

effects of two different strategies for ACF in a high-incidence area, it may not capture all 

impacts of coordinated TB screening efforts. More nuanced impacts to a local or national TB 

program could include implementation of improvements to TB diagnosis, scaling up efforts 

to identify close contacts, and increasing resources for LTBI identification and management 

among contacts and other high-risk groups. These programmatic changes are more difficult to

quantify in a way that could be incorporated into a model, and could also lead to sustainable 

reductions in TB incidence. Third, the model allows interactions between individuals of 

different islands, although empiric data were not available to quantify this social mixing 

process. Therefore, the extent of the diffusion of the interventions effects between the 

different locations relies on our assumption that 95% of interpersonal contacts occur between 

individuals of the same geographical stratum. Finally, we stress that the projections presented

in this study are intended to be primarily relevant to the RMI context and, given the 



variability of TB epidemics in different settings, drawing quantitative conclusions for other 

settings would require dedicated analyses.

Repeating screening of LTBI within the same population may present some practical issues 

that are not considered in this modelling study. It can be difficult to interpret positive tests in 

individuals who were previously treated since LTBI tests frequently remain positive after 

treatment. Thus, some individuals may be treated unnecessarily if all positive tests were 

interpreted as evidence of current infection. Conversely, reinfection occurs, and some 

infections may be missed if positive tests were systematically interpreted as false positives in 

previously treated individuals, in which case testing would become redundant for this 

population. These issues suggest that repeating active screening programs every five years or 

every ten years may be more realistic than using two-year cycles. They also highlight the 

importance of developing highly accurate infection screening tools that could distinguish 

between previous and current infections or to identify biomarkers that could predict short-

term progression risk.

In conclusion, our analysis suggests that while the End TB Strategy targets may not all be 

reached in RMI under the current programmatic situation, it would be possible to achieve 

pre-elimination in the next ten-to-twenty years through periodic repetition of the same 

interventions as those already implemented in the country, using a similar screening rate at 

the national level. If this is to occur, it is a rare example of the capability of existing tools to 

achieve END TB targets.
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Figure captions

Figure 1. Illustration of the model structure

Boxes represent the different compartments types: susceptible (S), early latent (E), late latent 

(L), infectious (I), on treatment (T) and recovered (R). The subscripts indicate whether 

compartments are stratified by age (a), geography (g) and form of TB (f). Blue and orange 

arrows represent progression flows and transmission flows respectively. The flows associated

with the modelled interventions are shown in purple.

Figure 2. Comparison between model outputs and local data for the calibration targets

The black dots represent local empiric data. The model predictions are represented in blue as 

median (solid line), interquartile range (dark shade) and 95% central credible interval (light 

blue shade). The effect of the 2017-2018 interventions was included in these projections.

Figure 3. Projected effect of the active screening interventions implemented in 2017 and 

2018

The solid lines represent the median estimates. The shaded areas show the interquartile 

ranges (dark shade) and 95% credible intervals (light shade) projected in the absence of any 

intervention (pink) and under a scenario including the interventions implemented in 2017-

2018 in Majuro and Ebeye (blue).

Figure 4. Projected effect of periodic community-wide interventions and contact-

tracing-based preventive treatment

The solid lines represent the median estimates and the shaded areas show the interquartile 

credible ranges. The “status-quo” scenario is represented in blue in all panels. The left 

column of panels presents scenarios including nationwide active case finding (ACF) repeated 



every two years (purple) or every five years (orange) or every ten years (green). The central 

column of panels presents scenarios including nation-wide ACF combined with mass latent 

infection screening and treatment, repeated every two years (purple) or five years (red). The 

right column of panels shows a hypothetical scenario where all contacts of TB patients would

be screened for latent infection and treated if they had a positive test (beige). The light and 

dark grey dots show the 2025 milestones and the 2035 targets, respectively, according to the 

End TB Strategy.



Tables

Target or milestone Definition
TB incidence
2025 milestone24 50% reduction between 2015 and 2025
2035 target24 90% reduction between 2015 and 2035
Pre-elimination threshold19 TB incidence below 1 case per-100,000-per-year

TB mortality
2025 milestone24 75% reduction between 2015 and 2025
2035 target24 95% reduction between 2015 and 2035

Table 1. End TB Strategy targets and milestones and pre-elimination threshold



Parameter Value or uncertainty 

range

Source

Population characteristics

Targeted total population size (2011, all RMI) 53,158 2011 National Census

Population size at the start of simulation (1800) 200 - 1000 Fitted

Population proportions in Majuro, Ebeye and 

other islands (2011)

52% / 20% / 28% 2011 National Census

Proportion of contacts that occur with 

individuals from the same geographic group

95% Assumption. Remainder of contacts distributed 

evenly between the two other locations (2.5% each)
Crude birth rate Time-variant United Nations Population Division data for the 

Federated States of Micronesia
All-cause mortality rate Age-specific and time-

variant

United Nations Population Division

Type 2 Diabetes prevalence Age-specific and time-

variant

Assumed diabetes proportions in 2020 based on the 

age-adjusted prevalence reported by the IDF Diabetes

Atlas:25

    0-4: 1%

    5-14: 5%

    15-34: 20%

    35-49: 40%

    50+: 70%

M.tb infection and TB disease

Transmission scaling factor 0.2 - 1 Fitted

Relative infectiousness (smear-positive / 

smear-negative / extrapulmonary TB)

1 / 0.25 / 0 26,27

Relative infectiousness by age Progressive increase through

childhood (Supplement)

28,29

Relative infectiousness during treatment (ref. 

untreated TB)

0.08 Based on the assumption that patients are infectious 

for the first two weeks of a 6-month regimen
Rate of stabilisation from early to late latency 

(age 0-4 / 5-14 / 15+)

4.4 / 4.4 / 2 per year 16

Rate of rapid progression to active TB (age 0-4

/ 5-14 / 15+)

2.4 / 2 / 0.1 per year 16

Rate of late reactivation (age 0-4 / 5-14 / 15+) 7e-9 / 2.3e-3 / 1.2e-3 per year 16

Uncertainty multiplier for the rates of TB 

progression

0.5 - 2 Fitted 16

Relative risk of TB progression for individuals 

with type-2 diabetes

2 - 5 30

Proportion of PTB among incident TB 85% Adjusted to replicate observed prevalence proportions

by form of TB
Proportion of smear-positive TB among 75% Adjusted to replicate observed prevalence proportions



incident PTB by form of TB

Rate of self recovery (smear-positive TB / 

other forms of TB)

0.18 - 0.29 / 0.07 - 0.21 per 

year

17

Rate of TB-specific mortality (smear-positive 

TB / other forms of TB)

0.34 - 0.45 / 0.017 - 0.035 

per year

17,31

Relative risk of reinfection while latently 

infected (ref. infection-naive)

0.2 - 0.5 32

Relative risk of reinfection after recovery (ref. 

infection-naive)

0.2 - 1.0 32

TB control

BCG vaccination coverage Time-variant Global Health Observatory data repository (WHO)

Reduced susceptibility to infection due to BCG

vaccination

Age-specific 33,34

Passive TB screening rate Varies with time and 

location

Fitted (see supplement)

TB screening sensitivity (smear-positive / 

smear-negative / extrapulmonary TB)

100% / 70% / 50% Assumption*

Treatment success rate Time-variant WHO

Proportion of death among non-successful 

treatment

20% WHO

Average treatment duration 6 months Assumption

Active case finding rate Varies with time, location 

and scenario

-

LTBI screening rate Varies with time, location 

and scenario

-

Preventive treatment efficacy (intention-to-

treat)

75 - 85% Based on completion rate during intervention

Relative improvement in passive screening rate

following interventions

0 - 50% Assumption based on discussions with the national 

program

Table 2. Model parameters

The ranges presented for the fitted parameters correspond to the ranges used to inform the 

prior distributions in the adaptive Metropolis algorithm. The values of the parameters that are

time-variant and/or age-specific are presented in the Supplement. *These parameters are 

multiplied by the fitted screening rate parameter, such that their absolute values are less 

significant than the relative values between the different forms of TB.



Figure 1



Figure 2



Figure 3



Figure 4


	Abstract
	Introduction
	Methods
	Overall approach
	Tuberculosis model
	Modelled interventions
	Role of the funding sources

	Results
	Discussion
	Contributions
	Declaration of interests
	Acknowledgments
	References
	Figure captions
	Tables
	Figure 1
	Figure 2
	Figure 3
	Figure 4

