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In order to estimate key parameters of the variant of concern (VOC) P.1, we developed
a model and fitted it to time-series data of number of hospitalized cases and frequency
of the P.1 variation. Section I describes the model, section II relates the values of the
parameters taken from the current literature, III describes the contact matrix used, and
finally section IV describes the treatment of case data (subsec. IV-A), the choice of
initial conditions (subsec. IV-B), and the fitting procedure (subsec. IV-C).

I. MODEL EQUATIONS

The model is an extended SEIR model that comprises susceptible (S), pre-symptomatic
(E), asymptomatic (A), mild symptomatic (I), severe/hospitalized (H), recovered (R) and
deceased (D) compartments. These compartments are duplicated to account for a second
variant of SARS-CoV-2, and each of them comprises three age classes: young (< 20
years), adults (20-59 years), and the elderly (> 60 years).

We assume that the second variant is capable of reinfecting individuals who have
recovered from infection by the wild variant while the inverse is not possible; in the
absence of data indicating this possibility, allowing reinfection by the wild variant on
recovered of infection by P.1 would have negligible effect due to the small time window
(3 months) considered in the present work. We also consider that a variant is not capable
of reinfecting individuals recovered from the same lineage. Our model does not include
vaccination due to the lack of vaccines in Brazil during the time span of our study.

To model the virus spread in the population, we assume that asymptomatic individ-
uals have equal infectiousness compared to symptomatic ones, while pre-symptomatic



individuals have reduced infectiousness given by w. To model behaviour, we assume that
symptomatic individuals self-isolate themselves to some degree, reducing their contacts
by &. Individuals with severe disease have greater isolation &, due to hospitalization.
The daily contacts between each age class is given by the matrix C. The force of
infection )\, for each variant £ is given below:

e = BrClAg + wWEy + (1 — )1 + (1 — Euer) Hy

The complete system of equations is given by:
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where ('} ad C, are the cumulative hospitalization cases reported, and each variable
of the system (S, Ej,..., Cj) is actually a vector containing each age class, e.g.,
By = (Fiy,F14,E1.)". The equations were numerically solved by the R package
developed by Soetaert et al. (11).

II. PARAMETERIZATION OF THE MODEL

In Table I we have the parameters considered for the wild variant. The parameters
for the P.1 variant are the same except for those considered in the model fitting.

TABLE I: Epidemiological parameters

Parameter  Description Value Source
- Average tlm.e in days between being infected 53 Wei et al. (13)
and developing symptoms
” Average tlme in days between ‘pemg 1nf§ct10us 9.0 Cevik et al. (2)
and recovering for asymptomatic and mild cases
Average time between being infectious and SIVEP-Gripe for
Vs . . 8.4 ~
recovering/dying for severe cases Sdo Paulo State
¢ Reduction on the exposure of syn}ptomatlc 01 Assumed
cases (due to symptoms/quarantining)
Reduction on the exposure of severe cases
Soev (due to hospitalization) 0.9 Assumed
w Relvatvlve infectiousness of pre-symptomatic 10 Assumed
individuals
. . Juvenile (3)
a Proportion of asymptomatic cases [0.67,0.44,0.31] Adult and Elderly (12)
- Propgrtlpn .of symptomatic cases that require [0.001,0.012,0.089] * Salie et al. (10)
hospitalization
o In-hospital mortality ratio [0.417,0.188,0.754]  Portella et al. (7)
X Case report probability 1.0 Assumed

* The proportion is weighted by the age distribution of the population.

III. CONTACT MATRICES

Our model includes three age group categories, namely Young ([0 — 19] y.0.), Adults
([20 — 59] y.0.) and Elderly (greater than 60y.0.). To model contacts between these
groups we use estimated contact matrices computed by Prem et al. (8), but since the
original matrices use five-year age bins going up to 95+ years, we aggregate classes
leading to a 3 x 3 matrix in the following way:

Let A, B be sets of indexes forming age groups (not necessarily of equal sizes),
x;; denoting contact between age groups ¢ and j in the original matrix, d; denoting
population size of the age group 7, then the new contact matrix C is given by:

PIPILES
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where A*, B* denotes a new indexation rule. Note that the contact matrices depend on
local demographics and therefore must be computed for each place of study.



IV. DATA ANALYSIS PROCEDURES
A. Nowcasting

Data used in parameters estimation were collected from the national public health
system of severe acute respiratory illness (SARI) surveillance database, named Sistema
de Vigilancia da Gripe - SIVEP-Gripe. In fact, reporting of cases can be delayed for
several reasons, including the notification system itself and confirmation of RT-PCR
test results. The nowcasting procedure estimates, based on the past delay distribution,
the number of cases that already occurred but were not yet reported. A window of 10
weeks is the acting window on the series, since delays greater than this are rare.

Nowcasting requires a pair of dates: (i) onset date of the event and (ii) report date
of the event. The delay distribution is modeled as being best described as a Poisson
distribution for days since the onset date to the report date. We considered the first
symptoms date as the onset date. For the report date, we used the latest between the test
result date and the clinical classification date. The nowcasting algorithm were developed
by McGough et al 2020 (5), and implemented in the NobBS (Nowcasting by Bayesian
Smoothing) package in R.

B. Initial Condition Estimation

The model requires appropriate mid-epidemic initial conditions in order to give
relevant results. In the model, the number of new hospitalizations at a given time — A,,¢,,
is directly proportional to the number of exposed individuals at that time, therefore data
was used to get an approximation of the number of exposed people. Also, to quantify
the number of people belonging to the recovered class, prevalence was used.

We can estimate the appropriate initial conditions by finding an approximation for
our model that relates more directly to the available data in each class. In the absence
of the variant P.1, the model has four classes of infected compartments, namely y =
(Ey, Ay, I, H,)", and another three classes, represented by z, i.e., z = (S, Ry, D;)T.

To that effect, we can write the system as

y = F(Yaz)_G(Y7Z>7 (3)
z = J(y,z), “4)

where F' comprises all entries of new Infected, coming from classes z, whilst G accounts
for the transitions within infected classes and also recovery and death from the disease.
Then, to find a good approximation for a small time window, we perform a linearization
of our model around a point (y, z). Keeping z fixed, we get

y=(F-Q)y, (5)

where F' and G are the linearized matrices arising from the functions F' and G,
respectively. The only entrance of new infected comes from the 3SA/N terms in the
E) = (E1y, B, ELe)T equations (sub-indexes are y young, a adults and e elderly),
then, the only non-zero elements of F are in its first 3 lines. Before proceeding, it’s
useful to define

~

b = diag(S)C (6)



which allow us to write

~ ﬁ wi) I; (1 - 5)8 (1 - 5861})[;
F= )
09,12

G contains the terms of Exposed, E', the 3 possible forms of the disease considered in
the model, that is Ay, I; and Hy, as the terms in its first 3 rows, whilst the remainder of
its main diagonal contains terms of recovery and death. For simplicity, every constant (or
vector for the terms with o) in G expression (8) should be thought as diagonal matrices
with its elements given by the constants (or vectors) and every O is a 3-dimensional

square matrix where all entries are null.
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The linearization above implies that, for a small time interval, y has an exponential
behavior and that the eigenvalues of L = F — @ are related to the exponential growth
rates. Therefore, a short time after the beglnnmg of the epidemic, the largest eigenvalue
should be the one to dominate. So the exponential growth rate of the wild variant — r, can
be matched to the largest eigenvalue of L to obtain an estimate for 3. The eigenvector
associated with the largest eigenvalue gives the proportions of infected classes, which,
together with the estimated number of exposed individuals — £y = Y1h,e0 /01, results
in an approximation for the number of people in the other infected classes.

Given a (3, the largest eigenvalue of the linearization matrix is computed using the
eigs function of the R package rARPACK (9) and we find the [ that gives r as
the largest eigenvalue through bisection root finding. Finally, subtracting the number
of recovered and infected from the total population gives the number of susceptible
individuals.

C. Maximum Likelihood Estimation

Given the cumulative daily curves of hospitalization for wild variant, C';, and P.1
variant, C5, we can obtain the daily variation of each curve, namely AC’{ and AC’;.
Those curves are summed up to give the total number of weekly new cases:

7
ACT =) (ACT'H + ACTH) )
i=1
where 7 is a discrete index given in weeks.
To calculate the frequency of P.1 in a given time period 7', we use the proportion of
new cases in this period from the wild and P.1 variant as follows:

T
Z AC2Tfl+i

v i=1
P" = T = (10)
ZAOf_H_Z + ZAC;‘F_HZ
=1 =1

where t' is a discrete index given in 1" periods.




The time period 7' depends on the dataset of genome sequences: it is daily in Faria
et al. (4) and monthly in Naveca et al. (6).

Using maximum likelihood, we fitted the model by estimating five parameters, namely,
the relative transmissibility (A/3), the reinfection probability of P.1 (p), initial total preva-
lence (p° = [R/N];—o), initial fraction of cases that were caused by the new variant (P°),
and intrinsic growth rate of the wild variant (r). The parameter r incorporates effects
related to contact rates for the wild variant, such as non-pharmacological interventions
relaxation, elections, and others.

Hospitalization counts were assumed to follow a Poisson distribution, with expected
value given by equation (9). The recorded number of P.1 in clinical samples was assumed
to follow a binomial distribution with an expected value equal to the product of the
total number of genome sequences sampled in each date and the proportion of P.1 cases
(equation (10)). The log-likelihood function for the model fitting was then:

L= Zlog Pois(z'|\ = C") + Zlog Bin(y’|N = n?,0(z?) = P7) | (11)
i j

where Pois is a Poisson distribution with parameter A, 2% is the number of recorded
hospitalizations in week ¢, Bin is a Binomial distribution with parameters /N (total
number of trials) and 7/ (probability of success at each trial), n’ is total number of
sequences in clinical samples in week or day j, 4’ is the number of P.1 sequences in
each of these samples, and 6(.) is the logir function.

The model was then fitted by finding the values of the five above mentioned parame-
ters that maximize the log-likelihood function (equation 11), using the function m1le2,
from the R package bbmle (1).

To find starting values for the optimization performed by m1e2 we calculated the log-
likelihood function for a sample of one million combinations of parameters values within
reasonable ranges. The sets of parameters values that provided the two higher values
of the log-likelihood function were then used as starting values for the computational
optimization.

The confidence intervals for the expected number of cases and frequency were es-
timated from 10000 parametric bootstrap samples assuming that the estimated param-
eters follow a mulivariate normal distribution. The parameters of these multivariate
distributions were the estimated values and estimated variance-covariance matrix of the
parameters. For each sampled combination of parameters, the expected values were
calculated and the confidence interval was estimated as the the 2.5% and 95% quantiles
of the distribution of bootstrapped expected values.

1) Sensitivity analysis: The model fitting assumed a constant Infection Hospitaliza-
tion Rate (IHR, parameter o) for each age group over time for both variants. An increase
in IHR caused by P.1 would increase the number of hospitalizations even without any
increase in transmissibility or reinfection. Since the pathogenicity of the P.1 variant is
unknown, the model fitting was repeated assuming that the odds ratio of the IHR in
each age class was twice for P.1 cases compared to wild variant cases (SA1). Moreover,
as the collapse of Manaus health system hindered hospitalizations of new severe cases
and may have affected case recording in surveillance databases, the model fitting was
repeated considering only the period prior to the collapse (10 January 2021) (SA2).



[1]

(2]

[8]

REFERENCES

B. Bolker and R Development Core Team. bbmle: Tools for General Maximum
Likelihood Estimation, 2020. URL https://CRAN.R-project.org/package=bbmle. R
package version 1.0.23.1.

M. Cevik, M. Tate, O. Lloyd, A. E. Maraolo, J. Schafers, and A. Ho. SARS-CoV-
2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding,
and infectiousness: a systematic review and meta-analysis. The Lancet Microbe,
2(1):e13—22, jan 2021. ISSN 26665247. doi:10.1016/S2666-5247(20)30172-5.
URL https://linkinghub.elsevier.com/retrieve/pii/S2666524720301725.

S. M. de Satide Municipio de Sdo Paulo. Inquérito soroldgico para Sars-Cov-2:
Prevaléncia da infec¢do em escolares das redes publicas e privada da cidade de
Sao Paulo. http://www.capital.sp.gov.br/arquivos/pdf/2021/coletiva_saude_14-01.
pdf, 2021. [Online; accessed 31-January-2021].

N. R. Faria, T. A. Mellan, C. Whittaker, I. M. Claro, D. d. S. Candido, S. Mishra,
M. A. E. Crispim, E. C. Sales, I. Hawryluk, J. T. McCrone, R. J. G. Hulswit,
L. A. M. Franco, M. S. Ramundo, J. G. de Jesus, P. S. Andrade, T. M. Coletti,
G. M. Ferreira, C. A. M. Silva, E. R. Manuli, R. H. M. Pereira, P. S. Peixoto,
M. U. Kraemer, N. Gaburo Jr, C. d. C. Camilo, H. Hoeltgebaum, W. M. Souza,
E. C. Rocha, L. M. de Souza, M. C. de Pinho, L. J. T. Aratjo, F. S. V. Malta, A. B.
de Lima, J. d. P. Silva, D. A. G. Zauli, A. C. d. S. Ferreira, R. P. Schnekenberg,
D. J. Laydon, P. G. T. Walker, H. M. Schliiter, A. L. P. dos Santos, M. S.
Vidal, V. S. Del Caro, R. M. F. Filho, H. M. dos Santos, R. S. Aguiar, J. L. P.
Modena, B. Nelson, J. A. Hay, M. M. Monod, X. Miscouridou, H. Coupland,
R. Sonabend, M. Vollmer, A. Gandy, M. A. Suchard, T. A. Bowden, S. L. K.
Pond, C.-H. Wu, O. Ratmann, N. M. Ferguson, C. Dye, N. J. L. Loman, P. Lemey,
A. Rambaut, N. A. Fraiji, M. d. P. S. S. Carvalho, O. G. P. Pybus, S. Flaxman,
S. Bhatt, and E. C. Sabino. Genomics and epidemiology of a novel SARS-CoV-2
lineage in Manaus , Brazil. 2021. URL https://github.com/CADDE-CENTRE/
Novel-SARS-CoV-2-P1-Lineage-in-Brazil/tree/main/manuscript.

S. F. McGough, M. A. Johansson, M. Lipsitch, and N. A. Menzies. Nowcasting
by bayesian smoothing: A flexible, generalizable model for real-time epidemic
tracking. PLoS computational biology, 16(4):e1007735, 2020.

F. Naveca, V. Nascimento, V. Souza, A. Corado, F. Nascimento, G. Silva, A. Costa,
D. Duarte, K. Pessoa, M. Mejia, M. Brandao, M. Jesus, L. Gongalves, C. da Costa,
V. Sampaio, D. Barros, M. Silva, T. Mattos, G. Pontes, L. Abdalla, J. Santos,
I. Arantes, F. Dezordi, M. Siqueira, G. Wallau, P. Resende, E. Delatorre, T. Griff,
and G. Bello. COVID-19 epidemic in the brazilian state of amazonas was driven by
long-term persistence of endemic SARS-CoV-2 lineages and the recent emergence
of the new variant of concern p.l1. Preprint, Feb. 2021. doi:10.21203/rs.3.rs-
275494/v1. URL https://doi.org/10.21203/rs.3.rs-275494/v1.

T. P. Portella, S. R. Mortara, R. Lopes, A. Sanchez-Tapia, M. R. Donalisio,
M. C. Castro, V. R. Venturieri, C. G. Estevam, A. F. Ribeiro, R. M. Coutinho,
M. A. de Sousa Mascena Veras, P. I. Prado, and R. A. Kraenkel. Temporal
and geographical variation of COVID-19 in-hospital fatality rate in brazil. Feb.
2021. doi:10.1101/2021.02.19.21251949. URL https://doi.org/10.1101/2021.02.19.
21251949.

K. Prem, K. van Zandvoort, P. Klepac, R. M. Eggo, N. G. Davies, A. R. Cook,


https://CRAN.R-project.org/package=bbmle
https://doi.org/10.1016/S2666-5247(20)30172-5
https://linkinghub.elsevier.com/retrieve/pii/S2666524720301725
http://www.capital.sp.gov.br/arquivos/pdf/2021/coletiva_saude_14-01.pdf
http://www.capital.sp.gov.br/arquivos/pdf/2021/coletiva_saude_14-01.pdf
https://github.com/CADDE-CENTRE/Novel-SARS-CoV-2-P1-Lineage-in-Brazil/tree/main/manuscript
https://github.com/CADDE-CENTRE/Novel-SARS-CoV-2-P1-Lineage-in-Brazil/tree/main/manuscript
https://doi.org/10.21203/rs.3.rs-275494/v1
https://doi.org/10.21203/rs.3.rs-275494/v1
https://doi.org/10.21203/rs.3.rs-275494/v1
https://doi.org/10.1101/2021.02.19.21251949
https://doi.org/10.1101/2021.02.19.21251949
https://doi.org/10.1101/2021.02.19.21251949

[9]
[10]

[11]

[12]

[13]

M. Jit, et al. Projecting contact matrices in 177 geographical regions: an update
and comparison with empirical data for the covid-19 era. medRxiv, 2020.

Y. Qiu, J. Mei, and M. Y. Qiu. Package ‘TARPACK’. 2016.

H. Salje, C. T. Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti, J. Paireau, A. An-
dronico, N. Hozé, J. Richet, C.-L. Dubost, Y. L. Strat, J. Lessler, D. Levy-
Bruhl, A. Fontanet, L. Opatowski, P.-Y. Boelle, and S. Cauchemez. Estimating
the burden of SARS-CoV-2 in france. Science, 369(6500):208-211, May 2020.
doi:10.1126/science.abc3517. URL https://doi.org/10.1126/science.abc3517.

K. Soetaert, T. Petzoldt, and R. W. Setzer. Solving differential equations in R:
Package deSolve. Journal of Statistical Software, 33(9):1-25, 2010. ISSN 1548-
7660. doi:10.18637/jss.v033.109. URL http://www.jstatsoft.org/v33/i09.

W. W. Sun, F. Ling, J. R. Pan, J. Cai, Z. P. Miao, S. L. Liu, W. Cheng, and E. F.
Chen. Epidemiological characteristics of COVID-19 family clustering in Zhejiang
Province. Chinese journal of preventive medicine, 54(6):625-629, 2020. ISSN
02539624. doi:10.3760/cma.j.cn112150-20200227-00199.

Y. Wei, L. Wei, Y. Liu, L. Huang, S. Shen, R. Zhang, J. Chen, Y. Zhao, H. Shen,
and F. Chen. A systematic review and meta-analysis reveals long and dispersive
incubation period of covid-19. medRxiv, 2020.


https://doi.org/10.1126/science.abc3517
https://doi.org/10.1126/science.abc3517
https://doi.org/10.18637/jss.v033.i09
http://www.jstatsoft.org/v33/i09
https://doi.org/10.3760/cma.j.cn112150-20200227-00199

	Model Equations
	Parameterization of the model
	Contact Matrices
	Data Analysis Procedures
	Nowcasting
	Initial Condition Estimation
	Maximum Likelihood Estimation
	Sensitivity analysis



