Supplementary Material

Table S1: Results of RT-qPCRs across nCoVPC
plasmid control concentrations

Target descriptive	Level concentrations (viral copies/uL)	Number of Positive Hit Counts	Total Test Counts
N1	100,000	26	26
N1	50,000	3	3
N1	20,000	33	33
N1	2,000	33	33
N1	200	33	33
N1	20	33	33
N1	10	20	21
N1	2	11	33
N2	100,000	26	26
N2	50,000	3	3
N2	20,000	33	33
N2	2,000	33	33
N2	200	33	33
N2	20	33	33
N2	10	18	21
N2	2	17	33

Table S2: qRT-PCR results for pooled 3D-NMT swabs and concurrently collected individual flocked NMT swabs. Pools, and their comprising individuals, are denoted by shaded rows. Individuals of the household who were not available for pooling are marked as not applicable. 24 pools and 106 individual swabs were collected.

Family ID	Subject ID	Ct value	Avg viral RNA copies/uL (NMT)	$\begin{aligned} & \text { Pool result } \\ & \text { +/- } \end{aligned}$	at Value of Pool	Average viral RNA copies/ul of pool	Family ID	Subject ID	α value	Avg viral RNA copies/ul (NMT)	$\begin{gathered} \text { Pool result t } \\ +/- \end{gathered}$	a Value of Pool	Average viral RNA copies/uL of pool			
$\begin{gathered} \text { COV004 } \\ \text { D21 } \end{gathered}$	COV004	undet	0	-	undet	0	$\begin{gathered} \text { COV030 } \\ \text { D22 } \end{gathered}$	Cov030	undet	0	indet	37	3			
	COV004-001	undet	0					COV030-001	undet	0						
	COV004-002	undet	0					COV030-002	undet	0						
	COV004-004	undet	0					COV030-003	undet	0						
$\begin{gathered} \text { COV012 } \\ \text { D1 } \end{gathered}$	COV012	29	2,439	+	23	54,917	$\begin{gathered} \text { COV032 } \\ \text { D7 } \end{gathered}$	COV032	32.5	66	-	undet	0			
	COV012-001	27	7,196					COV032-001	undet	0						
	COV012-002	21.5	144,769					COV032-002	undet	0						
	COV012-003	26	8,223					COV032-003	undet	0						
	COV012-004	23.5	55,478				$\begin{gathered} \text { COV032 } \\ \text { D21 } \end{gathered}$	Cov032	34	24	-	undet	0			
$\begin{gathered} \text { COV017 } \\ \text { D1 } \end{gathered}$	COV017	28	3,603	+	23	99,275		COV032-001	undet	0						
	COV017-001	23	135,846					COV032-002	undet	0						
	COV017-002	30	518					COV032-003	undet	0						
	COV017-003	22.5	162,938				$\begin{gathered} \text { COV033 } \\ \text { D7 } \end{gathered}$	Cov033	undet	0	-	undet	0			
	COV017-004	21.5	481,149					COV033-001	undet	0						
$\begin{gathered} \text { COV020 } \\ \text { D22 } \end{gathered}$	COV020	undet	0	indet	38.5	4		COV033-002	undet	0						
	COV020-001	undet	0					COV033-003	undet	0						
	COV020-002	undet	0					COV033-004	undet	0						
	COV020-003	undet	0				$\begin{gathered} \text { COV041 } \\ \text { D7 } \end{gathered}$	COV041	undet	0	+	24	28,967			
	COV020-004	39.5	3					COV041-001	20	371,312						
$\begin{gathered} \text { COV021 } \\ \text { D14 } \end{gathered}$	COV021	undet	0	-	undet	0		COV041-002	36.5	4						
	COV021-001	undet	0					COV041-003	undet	0						
	COV021-002	undet	0					COV041-004	undet	0						
	COV021-003	undet	0					COV041-005	undet	0						
	COV021-004	undet	0				$\begin{gathered} \text { COV045 } \\ \text { D7 } \end{gathered}$	Cov045	undet	0	-	undet	0			
$\begin{gathered} \text { COV021 } \\ \text { D21 } \end{gathered}$	COV021	undet	0	-	undet	0		COV045-001	undet	0						
	COV021-001	undet	0					COV045-002	undet	0						
	COV021-002	undet	0					COV045-003	n/a	n/a						
	COV021-003	undet	0				$\begin{gathered} \text { COV049 } \\ \text { D7 } \end{gathered}$	COV049	32	607	+	22	9,468			
	COV021-004	undet	0					COV049-001	27.5	59,704						
$\begin{gathered} \text { COV026 } \\ \text { D7 } \end{gathered}$	COV026	undet	0	-	undet	0		COV049-002	27.5	19,719						
	COV026-001	undet	0					COV049-003	24.5	892,519						
	COV026-002	undet	0				$\begin{gathered} \text { COV051 } \\ \text { D9 } \end{gathered}$	C0V051	undet	0	-	undet	0			
	COV026-003	undet	0					COV051-001	undet	0						
	COV026-004	undet	0					COV051-002	undet	0						
$\begin{gathered} \text { COV026 } \\ \text { D14 } \end{gathered}$	COV026	undet	0	-	undet	0		COV051-003	undet	0						
	COV026-001	undet	0					COV051-004	undet	0						
	COV026-002	undet	0				$\begin{gathered} \text { COV052 } \\ \text { D1 } \end{gathered}$	COV052	21	270,034	+	21.5	152,869			
	COV026-003	undet	0					COV052-001	undet	0						
	COV026-004	undet	0					COV052-002	undet	0						
$\begin{gathered} \text { COV027 } \\ \text { D7 } \end{gathered}$	COV027	31	298	+	33.5	34		COV052-003	34.5	22						
	COV027-001	35	24				$\begin{gathered} \text { COV052 } \\ \text { D8 } \end{gathered}$	Cov052	33	69	+	34.5	14			
	COV027-002	35	21					COV052-001	undet	0						
	COV027-003	35.5	16					COV052-002	undet	0						
$\begin{gathered} \text { COV027 } \\ \text { D14 } \end{gathered}$	COV027	undet	0	indet	36	7		COV052-003	undet	0						
	COV027-001	36.5	7				$\begin{gathered} \text { COV055 } \\ \text { D8 } \end{gathered}$	Cov055	undet	0	+	27	6,152			
	COV027-002	33.5	31					COV055-001	37.5	9						
	COV027-003	undet	0					COV055-002	28	3,800						
$\begin{gathered} \text { COV029 } \\ \text { D8 } \end{gathered}$	COV029	undet	0	+	31.5	131		COV055-005	n / a	n/a						
	COV029-001	38	5				$\begin{gathered} \text { COV059 } \\ \text { D8 } \end{gathered}$	Cov059	undet	0	+	27	6,417			
	COV029-002	35	29					COV059-001	27	8,367						
	COV029-003	22	134,705					COV059-002	undet	0						
$\begin{gathered} \text { COV030 } \\ \text { D8 } \end{gathered}$	COV030	29	1532	+	28.5	2183		COV059-003	undet	0						
	COV030-001	undet	0					COV059-004	undet	0						
	COV030-002	28	2767													
	COV030-003	37.5	5													

Figure S1. Schematic of swab collection strategies at enrollment. For each study participant at enrollment, a nasopharyngeal (NP) swab was collected as the gold standard diagnostic test. Up to 2 nasal midturbinate swabs - flocked COPAN swabs (NMT) and/or 3D-printed plastic lattice swabs (3DNMT) - were concurrently collected, one from each nostril, for comparison. 3D-printed swabs were autoclaved before use per manufacturer's instructions

Swabs were either stored in viral transport media (VTM) or $1 \times$ DNA/RNA Shield (1xShield). Samples stored in $1 x$ Shield were further analyzed via aliquots that were either immediately frozen (D1 Shield) or left out at room temperature for 4 or 7 days (D4 Shield, D7 Shield) before storage at $-80^{\circ} \mathrm{C}$. A total of 620 individual swabs were collected at enrollment, while 184 swabs were collected to test pooling at follow-up visits.

Figure S2. Comparison of human RPP30 gene (RP) cycle threshold (Ct) values from paired nasopharyngeal (NP) and nasal mid-turbinate (NMT) swabs. Higher RP Ct values were observed in NMT swabs compared to NP swabs with an average Ct value difference of 3.1 cycles, suggesting better sampling. A $y=x$ line is drawn for reference.

