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Abstract  

 

• Objectives – Sophisticated epidemic models have been created to help governments and large 

healthcare organisations plan the necessary resources to manage the COVID-19 pandemic.  

Whilst helpful, current modelling systems are not widely accessible or easily adapted to 

different populations and circumstances.  Our objective was to develop a widely applicable, 

easily accessible, adaptable model for projecting new COVID-19 infections and deaths that 

requires minimal expertise or resources to use.  The model should be adaptable to different 

populations and able to accommodate social and pharmaceutical interventions as well as 

changes in the disease.    

 

• Design - A Susceptible, Infected and Removed (SIR) infectious disease model was created 

using widely available Microsoft Excel© software. The model is deterministic, generating 

projections based on the available data and assumptions made.  It uses a process of Monitored 

Forecasting through Visual Matching of predicated vs observed curves to improve accuracy 

and facilitate adaptability.  A review of the COVID-19 literature was performed in order to 

produce an initial set of adjustable parameters on which to base the output of the model.  

 

• Setting - This model can be adapted to different regions or countries for which the requisite 

input data (population size and number of deaths due to the disease) are available.  This model 

has been successfully used with data from England, Sudan and Saudi Arabia.  Data from NHS 
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England were used for producing the illustrative results presented here. The model is a generic 

infectious disease forecast model which may be adapted to other epidemics. 

 

• Intervention – Governments, public health organisations, pharmaceutical companies and 

other public institutions may introduce interventions that affect disease transmission or 

severity. Other unknown factors such as new variants of the infective agent may do the same.  

The effects of changes in disease transmission are identified by the model when predicted and 

observed curves deviate.  By aligning the curves an evaluation of the effect of the changes can 

be made. 

 

• Outcome Measures - The model graphically demonstrates projections for daily deaths, 

cumulative deaths, case mix (asymptomatic, symptomatic and severe infections requiring 

admission), hospital admissions and bed occupancy (ICU, general medical and total). 

 

• Results -  The model successfully produced projections for the outcome measures using NHS 

England data.  Users can adapt and continuously update the model correcting its projections as 

further local data becomes available.  The Microsoft Excel platform allows the model to be 

used without expensive health information systems or computing infrastructure. 

  

• Conclusion - We present an SIR epidemic model that projects COVID-19 disease 

progression, is widely accessible, adaptable to different populations and environments as the 

disease progresses and is likely to be of benefit for identifying changing population healthcare 

needs.  
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Introduction 

 

 

First detected in December 2019, COVID-19 is now established worldwide with numbers of 

infections rising globally1 2.  In April 2020 the World Health Organization assessed countries’ 

individual preparedness for the impact of COVID-19 and many countries were classified as 

“not operationally ready”3.  Disease modelling may help prepare healthcare services by 

forecasting the likely number of cases and the associated resources required.   

 

Mathematical models have been used to simulate scenarios and predict the spread and 

distribution of infectious diseases since the early 20th century4.  Although the underlying 

concepts are often quite simple, mathematical formulations for these models can be complex 

especially when they aim to incorporate the potential impact of policies designed to limit the 

spread of the infection5. The availability of modelling expertise globally is limited, and many 

countries might not have the capacity to apply sophisticated models for their local health care 

planning needs.  Furthermore, models that can be contemporaneously updated to assess the 

impact of changes such as non-pharmaceutical interventions (NPI’s) may be useful. 

 

Multiple models have been produced including:  

The Institute of Global Health6, (University of Geneva and the Swiss Data Science Centre, 

ETH Zürich-EPFL), COVID analytics7 the University of California (USA only)8, Los 

Alamos national laboratory9, The University of Washington10, the University of Texas (USA 

only)11 and Northeastern University (USA only)12.   

 

Many are modified SIR models as is the model presented here. However, many rely on 

externally sourced data and assumptions not directly modifiable by the user for a local or 

regional setting.   The data used in these models (frequently from China and Europe) can be 
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from populations with different demographics, social contact patterns and healthcare systems 

and may therefore be poorly applicable to other parts of the world.  Complex modelling 

systems with extensive data requirements also require modelling expertise, advanced 

computing technology, and may need established healthcare information systems that are not 

available in all circumstances where a model might be useful. 

 

It was our objective to develop an accessible, easy to use model that can be periodically 

adjusted in order to improve tracking of current viral growth rates throughout the pandemic 

to aid healthcare planning including the need for hospital intensive care units (ICU) and 

general ward beds. 

 

 

Methods 

 

We developed a modified Susceptible, Infected and Removed (SIR) model13. SIR models 

assume a fixed population14 that is divided into three groups, each representing a fraction of 

that population including; the Susceptible fraction (people yet to be exposed and infected), the 

Infected fraction (people who are contagious) and the Removed fraction (those who survived 

the infection and are assumed to be immune or those who did not survive).  SIR models assume 

that the infection is spread directly from infected individuals to others; any non-

immune individual after sufficient contact with an infectious individual will develop the 

infection and will be infectious to others (within a limited time period) and subsequent to this, 

that individual is immune13 (for a specified time period).  SIR models are routinely used by 

epidemiologists to chart the evolution of epidemics over time. Within SIR based models, the 

infection initially spreads exponentially due to the low level of population immunity, and, as 

immunity increases the susceptible population decreases causing the rate of spread to decrease. 
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Our model 

Microsoft Excel© (Washington, USA) was chosen for the model platform as it is widely 

available and many people are familiar with its use. The model is deterministic in nature15. 

Data requirements are of two types (a) historic data on the population size and the dates of 

recorded deaths (and, if available, test and hospital admission data) and (b) assumptions about 

key characteristics of the disease.  In the latter case the model is pre-populated with a set of 

generic parameters obtained from our literature search at the outset of the pandemic (Table 1).  

These can be used or replaced as local data becomes available. Using a simple visual mapping 

process, growth rates for the epidemic are derived and then used to project the further progress 

of the epidemic. As up-to-date data becomes available, the assumptions (particularly about 

transmission rate) can be further adjusted to produce updated projections.  

 

Low testing capacity can be a limiting factor for many countries hence the number of positive 

tests may under-estimate the actual number of COVID-19 positive patients and adversely affect 

projections. We therefore selected deaths secondary to COVID-19 as a more accurate estimate 

of disease prevalence in order to better estimate epidemic growth rates.  

 

Using the initial numbers of recorded deaths, the model first calculates the number of people 

infected at earlier time points that would be necessary to give rise to these recorded deaths.  It 

then calculates each subsequent day’s infection by using the daily growth factor and the 

susceptible population adjustment factors indicated below to calculate the next day’s new 

infections and then repeats this process.  As new death data becomes available, that data is used 

to re-calculate effective growth factors. 
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Growth factors derived from the initial levels of infection or death at the start of an epidemic 

are less reliable.  Also, it is recognised that data collected may be influenced by factors other 

than disease transmission.  Both of these influence the accuracy with which a growth factor 

can be determined.  Our model therefore uses a weighted average of an early week’s inferred 

infection levels as the basis of subsequent calculations. As more data becomes available the 

graphical matching process is used to update and refine the calculated growth factors and 

projections.    

 

Growth rate calculations 

This model utilises a calculated epidemic growth rate which is inherently linked to the basic 

reproductive number R0 which is more commonly described in the literature. The R0 may be 

defined as the average number of people a person will infect in total, during the entire time 

they are infective, in a population that is susceptible16.  At the early stages of an epidemic a 

given level of R0 will result in an increasing number of new infections each day, with the 

number of new infections each day being a multiple of the number the day before (exponential 

growth). This multiple may be described as the Growth Factor17.  This model determines an 

effective growth factor based on the assumption that each day’s infections are a function of the 

level of infections the day before.  

 

The Growth Factor may be influenced by many variables including the infection itself, 

population characteristics, vaccines and non-pharmaceutical interventions (NPI’s).  The 

growth factor calculated and used by this model incorporates the effect of such variables as 

data becomes available.  The growth factor is applied to the susceptible fraction of the 

population which is assumed to reduce over time the more people become infected.  
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Subsequent new infections are projected using the adjusted growth factor applicable to each 

day as follows: 

 

𝐼𝑛 = 𝐼𝑛−1 𝑥 𝐸𝐺𝐹𝑛 

𝐸𝐺𝐹𝑛 =  𝐺𝐹𝑛 𝑥 𝑆𝑛/𝑃𝑛 

𝑆𝑛 =  𝑆𝑛−1 − 𝐼𝑛−1 

𝑃𝑛 =  𝑃𝑛−1 − 𝐷𝑛−1 

 

𝐼𝑛 is the projected number of people newly infected on day n,  

𝐼𝑛−1 is the number of people newly infected on day n-1 (the day before day n) 

𝐸𝐹𝐺𝑛 is the Effective Growth Factor on day n, which is the factor by which the new infections are greater on day 

n than they were on day n-1.  

It is the Growth Factor at that time (𝐺𝐹𝑛) multiplied by the proportion of the population that is still susceptible to 

the infection. 

𝐺𝐹𝑛 is the Growth Factor on day n which can be expressed as the transmissibility of the infection, the average 

number of people an infected person will infect the next day if everyone they come into contact with is susceptible.  

𝑆𝑛 is the number of the population that are susceptible on day n 

𝑃𝑛 is the number/size of the population on day n 

𝐷𝑛 is the number of deaths due to the infection on day n 

 

Monitored Forecasting 

Some environmental changes will be known (NPIs, vaccines etc), others will not (undetected 

new variants).  Monitored forecasting maintains the continued utility of the model as time and 

circumstances change without the need to know the exact source of the underlying change.  

The model requires the user to input up-to-date data on deaths and if available tests and hospital 

admissions.  By regularly monitoring the actual rates of infections and deaths against the model 

projections, through Visual Matching of the curves, model parameters can be improved 
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whenever actual rates differ.  By adjusting the model parameters in this way, the model’s 

projections remain useful and can demonstrate early changing rates of infection, whether the 

cause be known about or not.   

 

Visual Matching 

In order to fulfil the requirement of a readily accessible and user-friendly model, we choose to 

incorporate a user-led, visual matching process which simplifies the adjustment of the model 

parameters.  The model shows an overlay graph of the projected number of deaths compared 

to the observed number of deaths.  The user then adjusts the growth factor or other assumptions 

so that the predicted deaths match those observed.   

This process alerts the user to a change in growth rate (such as might happen with a new variant 

of the virus, or intervention), provides the user with an evaluation of an intervention’s effect 

and adjusts future projections, using the most recent growth rate.       

 

Modelling changing conditions 

If the model’s graphical projections diverge from the graph representing the observed disease 

data, this suggests that either the value of an assumption(s) on which the model’s projection is 

calculated is inaccurate, or that its value has changed over time. If an initial assumption was 

wrong the value can be corrected to align the model projections with observed data.  If the 

value of the assumption was initially correct but has changed as a result of the effect of new 

variables, such as vaccines or non-pharmaceutical interventions, a new value for the 

assumption can be changed from any specified date.  In some cases, the date of the change will 

be known (e.g. introduction of social distancing measures) whilst in others it may not (e.g. the 

arrival of a new variant).  Such scenario changes can be inserted at the time they occur or at 

appropriate dates in the model to better explain observed data. 
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The model also allows the user to insert hypothetical scenario changes to evaluate the potential 

impact of changed assumptions to test the possible effects of new NPIs, or new variants or 

other changes. 

 

Selecting parameters for the model 

A review of the literature was performed in order to identify the generic parameters to be used 

in the model.  All studies or national/international reports on COVID-19 were considered for 

review. Any duplicate data were excluded. PubMed databases (Medline, PubMed Central) 

were searched on 12 May 2020 for full text articles using the terms “COVID-19” OR “SARS-

CoV-2” OR “Coronavirus” AND “outcomes” OR “mortality” OR “death”. The search was 

limited to clinical studies or case reports and only papers published in the last 6 months in order 

to exclude publications relating to other coronavirus. The reference lists of selected articles 

were also searched manually to identify relevant articles or reports. All authors independently 

reviewed the relevant articles to determine eligibility after which IO, MB and DS extracted 

data to obtain quantitative information for the following parameters: Delay in symptoms 

appearing after infection, Symptomatic cases as a percentage of all cases, Hospital Admissions 

as a percentage of symptomatic cases, Hospital Admission after symptoms, in days, Hospital 

Admissions as a percentage of all cases, Hospital Admission from date of diagnosis in days, 

Admissions to ICU as a percentage of all admissions, Average days a bed is required on ICU, 

Percentage of ward patients who do not survive, Percentage of intensive care unit patients who 

die, Mean days after admission a patient dies, Mean days after infection death occurs, 

Percentage of infected patients dying (including asymptomatic). Following this a virtual 

meeting was held during which authors agreed on a generic set of assumptions for the model 

(Table 1).  

 

Outcome 
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Model Projections 

The model graphically demonstrates: 

● Projected daily deaths. 

● Projected cumulative deaths. 

● Projected case mix - Case mix was defined as asymptomatic (no evidence of 

pneumonia), symptomatic (fever, cough, pneumonia) and severe infections requiring 

admission (including the need for oxygen, fluids or ventilation). 

● Projected hospital admissions - admissions were based on the assumption that only 

severe infection would require admission to hospital. 

● Projected bed occupancy - Bed occupancy was divided into ICU, general medical and 

total beds (ICU plus general medical beds). 

 

Results 

 

 

The generic assumptions were updated for England as country-specific data became available 

(Table 1). In the UK this was largely influenced by the Semple and colleague’s publication 

using the ISARIC WHO Clinical Characterisation Protocol18. In England 12.5% of 

symptomatic patients required hospital treatment which was 2.5% of all COVID cases. We 

assumed that 17% of admissions to hospital would require ICU care and that 59%19 would not 

survive (1% of total infections) at 24 days after infections occurs. 

 

We visually matched an initial daily growth factor to the England COVID-19 daily death rates 

reported by NHS England19. We visually matched the model’s growth factor to the number of 

daily deaths in England to estimate the actual growth factor (Figure 4).  

Un-enforced (non-legally binding) social distancing guidance was issued on the 17th of 

March 2020 in the UK (working from home, no non-essential travel), followed on 24th of 
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March 2020 with the introduction of legally enforceable social distancing guidance 

(monetary fines). The model initially projected approximately 1,900 patients per day 

requiring admission by the third week in March.  Data to mid-April suggested that the growth 

factors had dropped indicating that the government’s interventions and publicity campaign 

were associated with a reduction in growth rate from 1.15 to 0.97 (Figure 5).   

Discussion 

 

There are some limitations of an SIR based approach. One assumption of the SIR approach is 

that the population is fixed, however, populations are not entirely fixed even with the 

introduction of travel bans and movement restrictions. Another assumption is that after 

infection, a person is immune from the virus and therefore cannot be infected again (or pass 

the virus on). Although the ability to factor in temporary immunity exists in our model, we 

recognise this may not be the case and future research is required in order to fully understand 

the duration of immunity after infection with COVID-19 (or vaccination).  None the less, SIR 

type models are a well-accepted methodology for projecting surge capacity requirements in 

viral epidemics.  All models rely on the quality of data available.  The data reported in this 

study utilises deaths in the hospital setting, however, England is a good example of how 

excluding data (e.g. out of hospital deaths or social care settings) can underestimate the true 

number of deaths. This is accentuated in the case of COVID-19 as it disproportionately affects 

the elderly who are more likely to die out of hospital. 

 

Model projections are affected by the assumptions regarding the disease process on which the 

model is based.  The generic assumptions applied to this model from our literature review are 

likely to be weak when applied to regions with divergent socioeconomics, demographics and 

healthcare access, as more often than not the published literature originates in high income 

settings. Use of the model requires basic proficiency in Microsoft Excel.  Allowing the model 
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assumptions to be adjusted introduces the possibility of user error.  However, by allowing the 

adjustments the model can be adapted to better reflect different populations.   

 

The British statistician George Box wrote “All models are wrong, but some are useful” 20.   

Models such as this cannot predict the future.  The outcome of previously untested 

interventions or changing disease scenarios (such as the advent of new disease variants) 

cannot be known.  Models such as this may be useful because as model data is updated the 

user is alerted to possible changes in scenario.  They also facilitate the early evaluation of the 

effect of an intervention or change in disease scenario.  Forecasts of local healthcare 

requirements can be made using model projections based on locally available data and 

assumptions.  Different hypothetical disease scenarios can also be modelled by changing the 

model assumptions.       

 

 

 

Conclusion 

 

An SIR model combined with Monitored Forecasting using Visual Matching has allowed the 

development of a novel, relatively simple to use COVID-19 model that allows the detection 

of early changes in growth rates and helps project the need for healthcare resource without 

the need for resource intensive health informatics infrastructure.  This may allow a non-

specialist to produce useful COVID-19 forecasts adaptable for their country, region or area of 

study. 
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Supplementary information 

 

This Microsoft Excel© based model can be downloaded from http://epidemicprojections.org/ 

at no cost. 

 

No external funding was received for this work. 

 

Definition of terms:  

In this paper we have used the terms Forecast and Prediction to mean an estimate of one 

possible outcome at a future time (based on judgements and the model projections). 

 

We have used the term Projection to mean a calculation of what might occur based on the 

data and assumptions used by the model. 
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Figures and Tables 

Table 1  

 

Model Assumptions 

 

Assumptions Generic 
 

England 

Delay in symptoms appearing after infection, in days 5 5 

Symptomatic cases as a percentage of all cases 20% 20% 

Hospital admissions as a percentage of symptomatic cases 20% 12.5% 

Hospital admission after symptoms in days 5 12 

Admission length of stay in days 14 7 

Percentage of general ward patients who do not survive - 31% 

Admissions to ICU as a percentage of all admissions 33% 17% 

Days after admission to hospital a bed is required on ICU 14 7 

Percentage of ICU patients who do not survive 50% 53% 

Average days after admission a patient dies 14 7 

 

Table showing the initial generic assumptions and the initial assumptions for England.    

 

Figure 1 

 

Figure showing overlay of projected hospital admissions and observed hospital admissions 

(NHS England Data) August 2020 – February 2021. 

 

 
 

 

 
 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.02.28.21252633doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.28.21252633


 

 

Figure 2 

 

Figure showing overlay of projected deaths and observed deaths (NHS England Data) August 

2020 to February 2021. 

 

 
 
 

Figure 3 

 

Figure showing projected bed occupancy by type of ward.  
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Figure 4 

 

Figure showing projected and observed deaths for the period March to August 2020 (NHS 

England data).  

 

 
 
Figure 5 

 

Figure showing diverging projected and observed hospital admissions (NHS England) as 

social distancing measures are introduced.  
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