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Abstract

The prediction, prevention, and management of infectious diseases in the United States is either ge-
ographically homogeneous or is coordinated through ad-hoc administrative regions, ignoring the intense
spatio-temporal heterogeneity displayed by most outbreaks. Using influenza as a case study, we charac-
terize a regionalization of the United States. Based on influenza time series constructed from fine-scale
insurance claims data from 2002-2009, we apply a complex network approach to characterize regions of
the U.S. which experience comparable influenza dynamics. Our results identify three to five epidemiolog-
ically distinct regions for each flu season, with all locations within each region experiencing synchronous
epidemics, and with an average of a two week delay in peak timing between regions. We find that there
is significant heterogeneity across seasons in the identity of the regions and the relative timing across
regions, making predictability from one season to the next challenging. Within a given season, however,
our approach shows the potential to inform on the shaping of regions over time, to improve resources
mobilization and targeted communication. Our epidemiologically-driven regionalization approach could
allow for disease monitoring and control based on epidemiological risk rather than geopolitical bound-
aries, and provides a tractable public health approach to account for vast heterogeneity that exists in
respiratory disease dynamics.

1 Introduction

The spatio-temporal dynamics of infectious diseases are complex to interpret, but are key to the success of
public health responses. Seasonal influenza, for example, exhibits variability in onset, peak time, duration,
and geographic distribution between seasons, and is thought to be affected by a number of environmental,
socio-demographic, and biological factors [1, 2, 3, 4, 5]. In the United States, surveillance, vaccination
policies, and resource allocation for influenza are managed at the level of ad-hoc health administration
mega-regions (each consisting of multiple U.S. states) [6]. Current sentinel surveillance provides a region-
level situational awareness on seasonal influenza epidemics, however it provides limited information due to
its aggregate nature [1]. Basing surveillance, prevention, and control efforts on large geographies grounded
on administrative boundaries fails to capture the underlying spatial variation in epidemiological dynamics
of infectious disease.

An alternative to existing strategies is regionalization which groups localities together based on epidemiolog-
ical risk rather than traditional geopolitical boundaries. Operationally, regionalization has been leveraged
in public health to improve coordination, standardization, and centralization of public health services to
maximize constrained resources and minimize poor outcomes [7]. However, identifying regions in a region-
alization strategy can be complex, particularly for infectious diseases, given the different and sometimes
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opposing goals: epidemiological heterogeneities may exist at very small scales, while large spatial regions
may be required for efficient public health management. Successful examples of infectious disease regional-
ization can be found in animal health management efforts with the Designated Surveillance Area plan for
brucellosis in Yellowstone National Park [8] and the bovine tuberculosis zones in Michigan and Minnesota
[9]. However, such efforts remain on a small scale, and implementing nationwide regionalization requires an
empirically-driven analytical tool which selects regions based on epidemiological dynamics.

The analysis of complex networks may provide an analytical approach to regionalization. If network nodes
represent individual geographical units (e.g. counties), and edges represent a functional similarity of epidemic
time series between pairs of counties; the analysis of the large-scale network structure properties would allow
for a holistic study of the connectivity and make it possible to optimize regions from a global perspective.
Community structure detection, also known as graph partitioning, [10, 11, 12], is a method of large-scale
network structure analysis that aims to identify communities based simply on the information encoded in
the network structure, where a community is defined as a set of nodes more densely connected to each other
than the rest of the network. In general, communities are of intrinsic interest because they correspond to
functional units within the network that can be identified without any extrinsic knowledge about the node
characteristics. Epidemiologically, such network communities can correspond to spatial regions composed of
locations that have similar disease dynamics, thus creating an ”epidemiological geography.”.

An analytical regionalization approach necessitates a high-resolution source of epidemiological data that
can distinguish transmission dynamics at smaller spatial scales. One such source of disease data with high
geographic resoluation is medical claims; in the United States, medical claims for influenza-like illness (ILI)
have been validated at multiple spatial scales to sentinel surveillance data reported by the roughly 3000
physicians participating in the CDC system ILINet [13], and have identified population-level associations
with factors thought to drive influenza transmission [1].

Previous work also hints at ecological mechanisms that may contribute to natural influenza regions. In the
United States, while influenza season introductions may be linked to air travel, seasonal influenza spreads
spatially in hierarchical wave-like patterns [14] through local travel patterns [2, 5, 15, 4]. Consideration
of age patterns is also thought to be an important component to understanding the spatial patterns of
transmission. Within influenza seasons and pandemics, school-aged children are thought to drive local
influenza transmission because of their large number of contacts, while adults are thought to seed influenza
in different locations owing to their global mobility [16, 17, 18, 19].

In this work, we leverage a large-scale fine-grain data source on influenza incidence to characterize an epi-
demiological geography for the United States composed of regions with similar epidemiological dynamics.
We hypothesize that such a regionalization will illustrate the spatio-temporal dynamics of influenza epidemi-
ology, and elucidate variation in dynamics across seasons. We also hypothesize that epidemiologically-driven
influenza regions will be spatially contiguous overall, and that the regions defined by adult influenza dynamics
will be more spatially dispersed than the regions describing child dynamics. This quantitative regionalization
approach can be used to inform spatial public health policy at the federal and state levels for identifying
optimal sentinel surveillance locations, resource allocation, and targeting of interventions such as vaccination.

2 Methods

We adapt network-based time series clustering methods to identify regions with similar ILI dynamics across
the United States (Figure 1) [20, 21]. We define a spatial network where nodes represent U.S. counties, and
edges represent similarity in disease dynamics between each pair of locations. We analyze the spatial struc-
ture of this network, and then perform community structure detection to identify groups of locations with
homogeneous epidemiological dynamics, taking into account practical limitations. Finally, we consider pre-
dictive models on the results to evaluate the potential for nowcasting or forecasting epidemiological dynamics
based on region membership or regional membership based on epidemiological dynamics or covariates.
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Figure 1: Methods Overview. Step 1: Isolate incidence time series for the disease in question, at a fine
spatial resolution. Step 2: Generate a similarity network in which edges link locations that experience
similar epidemics. Step 3: Perform community structure detection on the similarity network to identify
geographic regions with homogeneous epidemiological dynamics. Step 4: Increase spatial contiguity of
geographic regions for ease of public health implementation.

2.1 Influenza Incidence Data

Weekly visits for influenza-like illness (ILI) and visits for any diagnosis were obtained from a records-level
database of US medical claims managed by SDI Health (now IQVIA) from October 2002 to April 2009
and aggregated to three-digit patient U.S. zipcode prefixes (zip3s). ILI was defined with International
Classification of Diseases, Ninth Revision (ICD-9) codes for: direct mention of influenza, fever combined
with respiratory symptoms or febrile viral illness, or prescription of oseltamivir. Previous work has compared
these data to U.S. CDC sentinel surveillance and other sources [13] and discusses the data coverage, data
processing, and its characterization of U.S. ILI spatiotemporal dynamics in greater detail [1, 2]. Our data
represented roughly 24% of visits for any diagnosis from approximately 37% of all health care providers
across 95% of U.S. counties during influenza season months, averaged over the years in our study period.
We use ILI data for the total population (all age groups) in each U.S. county, as well as data specific to ILI
among school-age children (aged 5-19 years), and adults (aged 20-69 years).

As described in detail elsewhere [1], we defined a county-level time series of weekly ILI ratio as the percentage
of visits for any diagnosis that were due to ILI, as it accounts for seasonal variation in total underlying visits
to healthcare providers. We detrended each county-level time series of ILI ratio and fit a linear regression
model with annual harmonic terms and a time-trend to non-flu period weeks. Counties had “epidemics”
in a given flu season if at least two consecutive weeks of detrended ILI observations exceeded the epidemic
threshold (defined as the upper bound of the 95% confidence interval for the linear model prediction). These
detrended epidemic time series were then z-normalized to put them on the same scale.

2.2 Constructing Time Series Similarity Networks

To generate time series similarity networks, we calculated the pairwise similarity between z-normalized
seasonal epidemic time series for each pair of counties, i and j using the Pearson correlation coefficient (ρij).
(We note that this is equivalent to the Euclidean distance for normalized time series, [22]). Each U.S. county
was specified as a node in the epidemic similarity network, and pairs of counties, i and j, were connected via
an edge if ρij ≥ 0.8. Edges were weighted with ρij . We selected a similarity threshold (0.8) after performing
a sensitivity analysis to optimize epidemiological utility. (For more information on our inference of networks
from epidemic time series data, please see the supplement.) We construct such networks from ILI data for
the entire population, and separately for the adult and child populations.
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2.3 Analyzing Time Series Similarity Networks

We analyze the spatially-embedded network of epidemic similarity by measuring the spatial and network
structure of the inferred networks. In particular, we measure the degree distribution of the network. The
degree represents the number of counties that share similar epidemic dynamics with a given node, thus the
degree distribution, pk summarizes the distribution of connectivity at the county level. We fit the observed
degree distribution to a power law distribution (pk = ck−θ) .

We measure spatial dispersion, the average distance (in kilometers) of the neighbors (county nodes with
which a given county node shares edges) of each county, as a summary statistic of the spatial structure of
the network. We hypothesize that the spatial dispersion of the epidemic similarity network for the total
population will differ from the ones for other demographic groups, particularly that children will have a
lower spatial dispersion on average than adults or the total population.

2.4 Clustering Time Series: Community Detection

We propose the use of complex network community structure detection to provide a quantitative approach
to public health regionalization efforts. This method will effectively cluster nodes (counties) into groups of
nodes (geographical regions) that are more connected within than between. The resulting clustering will thus
represent a regionalization of the U.S. in which regions consist of counties that have more similar influenza
epidemics to each other than to other regions. One benefit of the network-based community detection
approach over traditional clustering methods is that community detection does not require user specification
of the number of clusters (regions, in this case); instead the number of clusters emerge organically from the
data connectivity [23].

For community detection, we use the Louvain method [24], a multiscale method in which modularity is first
optimized using a greedy local algorithm. An initial application of the algorithm to our county-level network
produces a “supernetwork” — a network where nodes represent the algorithm-identified communities —
that maximizes modularity, a network-level metric of community detection [25]. The algorithm is applied
iteratively on each successive supernetwork until no further improvements in modularity are possible. This
method has become widely used due to its computational efficiency and high quality results [26, 27, 28]. We
perform the Louvain algorithm on the similarity network with edge weights (i.e. time series correlations) using
a igraph implementation in Python [29]. We also validated our results using two networkx implementations
[30, 31]. (More information in supplement).

2.4.1 Partition quality

We measured the quality of a community structure partition using two measures: (a) relative modularity,
which can be calculated as the fraction of within-community edges beyond a random expectation [25]; to allow
for the comparison of modularity values between networks of different sizes, we normalize the modularity by
the maximum modularity possible for that network [32]; (b) silhouette, which is a measure of how similar a
network node is to its own community compared to other communities [33]. Normalized mutual information
(NMI) was used to compare pairs of community structure partitions [34]. To measure the cohesion of each
region, we also measure the intraregion connectivity, as the proportion of edges in a region that are within
the region, and the intraregion similarity, as the average time series similarity within a region.

2.4.2 Robustness

We performed a robustness assessment of the community structure using a set of “bootstrap networks”, {Bi}
where i = 1, .., 10. For each bootstrap network, network edges were preserved from the original network, but
for each edge, a new edge weight was drawn from a Poisson distribution with mean wij , the original edge
weight (i.e. time series correlation). The community structure algorithm was performed on each bootstrap
network. A consensus value, βi, was then calculated as the sum of the NMIs between the community
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structure partition of bootstrap network Bi and all other bootstrap networks. The partition with the largest
consensus value was defined as the robust community structure partition.

2.4.3 Feasibility

The partitioning identified by our community structure algorithm, while theoretically optimal, may be
challenging for public health implementation as it may contain a number of small regions, and each region
may not be spatially contiguous. We thus introduce methods to make the epidemiological regionalization
feasible for public health implementation. First, we eliminated small regions, ≤ 94 counties in size (3% of
all US counties). Second, we developed an algorithm to increase feasibility by eliminating counties with
missing communities and island communities that are disconnected (geographically) from other parts of the
community. To achieve this, we first define the nearest neighbor network, Gnn, in which an edge exists
between a pair of nodes if they are spatial neighbors, that is, they share a boundary in geographical space.
For each community, we consider the nearest neighbor subgraph of Gnn made up by the nodes in that
community; we then identify small (i.e. fewer than four nodes) disconnected components and merge them
with the most common neighboring community.

To measure the success of our algorithm, we define spatial contiguity is defined as the mean reachability
(the fraction of node pairs that have a path from one to another) of all community subgraphs of the nearest
neighbor graph, Gnn. Thus, spatial contiguity requires that all parts of a district be physically connected;
practically speaking, it is a region in which one can travel to all parts of without entering a different region.

2.4.4 Validation

We validated the community structure partition results methodologically and epidemiologically. To validate
our results methodologically, we performed a traditional hierarchical clustering method on the normalized
epidemic time series (implemented using the scipy.cluster module in Python) on our data. We compared
our community structure partition results to the hierarchical clustering results using NMI.

To validate our results epidemiologically, we focused on two metrics of public health importance: the influenza
season onset time, defined as the first week above the epidemic threshold; and the peak time, the week during
which the largest incidence was experienced during the outbreak. We used Welch’s unequal variance t-test to
measure if the onset times and peak times of different communities or regions identified within our community
structure partition were statistically different.

2.5 Predictive Methods

2.5.1 Prediction of Time Series

To measure the potential of epidemic dynamics in one region to forecast the epidemic dynamics in another
region during the same season, we measure the Granger causality between the epidemic time series from
different regions. We first verify that the time series have order of integration of one, meaning that the
differenced time series with a lag of one is stationary. Then, we measure the Granger causality using the
F distribution between the average epidemic time series for region i and j, where the epidemic in region j
occurs after i. We consider lags up to five weeks. The null hypothesis is that the epidemic for region i does
not Granger cause the epidemic in region j.

2.6 Nowcasting regionalization

To evaluate the potential for the prediction of regionalization within seasons, we applied our network-based
regionalization approach on partial time series through the epidemic season. For every week of an epidemic
which lasts for T weeks, t ∈ [0, T ], we inferred a network and performed robust community structure detection
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Figure 2: Spatial structure of the epidemiological network. (A) We visualize a sample of the epidemiological
network for the 2005-2006 influenza season in which nodes are US counties and edges represent epidemic
time series similarity. (25% of western counties and 1% of eastern counties are shown). (B) The probability
distribution of degree (i.e. node connectivity) for the 2005-2006 influenza season epidemiological network is
highly skewed. (C) The spatial dispersion of edges in the 2005-2006 epidemiological network do not show
variation by demographic group.

of county-level time series from weeks 0 to t. To evaluate nowcasting potential, we measure the region-specific
recall (or sensitivity) of the region membership based on the complete time series by the region membership
identified by the partial time series at every week, t. Recall is defined as the number of true positives divided
by the sum of true positives and false negatives. Thus, region-specific recall is based on the number of
counties correctly identified (based on a partial time series) to be part of a region divided by the number of
counties truly in the region (as identified by the complete time series).

2.6.1 Forecasting regionalization

To evaluate whether epidemic regionalization could be predicted across seasons, we used a machine learning
approach. For each influenza season in our study period, we gathered county-level data on previously
hypothesized drivers of influenza transmission. We considered 15 previously described county-level covariates
[1] including vaccine coverage in toddlers and elderly, the distribution of A/H3 and B influenza subtypes,
prior immunity, age distribution, household size, population density, poverty, healthcare access, insurance
coverage, and healthcare-seeking rates. Additionally, we included covariates on the latitude of the county
centroid, the Euclidean distance from most probable source county, and the pre-epidemic anomaly in specific
humidity (See supplement for details).

We tested the ability for random forest models to predict clusters in future influenza seasons. For each
influenza season, we trained a random forest model composed of 2000 trees to a cluster-stratified random
sample of 85% of observations [35]. Model fit was evaluated by comparing classification error in the training
set and 15% test set. For each influenza season model, we then predicted influenza season classifications
for the following season (e.g., the 2006-2007 model was used to predict the 2007-2008 season clusters) and
calculated prediction error as the percentage of county pairs that were incorrectly predicted to belong to
different clusters.
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Figure 3: A) The robust community structure partition identified by the Louvain algorithm and our robust-
ness analysis for the 2005-2006 influenza season. B) The epidemiological regionalization for the 2005-2006
influenza season generated by making the theoretically optimal community structure shown in panel A more
feasible for public health implementation. Counties of the same color belong to the same epidemiological
region. C) The epidemic time series of all US counties during the 2005-2006 influenza season grouped by
region based on the regionalization shown in panel B. Color shades denote the timing of epidemic dynamics
with lighter shades denoting successively later epidemic dynamics.

We also sought to identify whether any covariates were consistently important classifiers of influenza season
clusters. We measured variable importance with the mean decrease in accuracy, which represents the mean
decrease in model classification accuracy after permuting the covariate [35]; larger values indicate covariates
with greater potential importance to model prediction.

For sensitivity analysis, we compared the model performances for fit, prediction, and variable performance
with an analogous set of models with a cluster-stratified random sample of 70% of observations.

3 Results

Our goal is to characterize regions with similar epidemic dynamics which can be treated as discrete geograph-
ical units in the implementation of public health policies. To achieve this, (a) we inferred U.S. county-level
epidemic time series using medical claims data collected from 120,000 physicians totalling 2.5 billion visits
for flu seasons during 2002-2008; (b) represented correlations in these time series as a complex network, and
analyzed the structure of the inferred networks; (c) used a network theory approach to identify groups of
epidemic time series (and thus locations) that are more dynamically correlated within than between; and
(d) considered predictive models on this regionalization (Figure 1). Here, we present our results on the per-
formance of our method, the structure of the epidemiological dynamics, and regionalization patterns across
scales.

3.1 Spatial Structure of Epidemiological Dynamics

We analyze the inferred spatial network structure in which nodes represent U.S. counties and an edge
between a pair of nodes represents that the epidemic time series in the two counties are similar with a
Pearson’s correlation coefficient of 0.8 or above (Figure 2A) shows the network visualization for the season
2005-2006 (visualizations for other seasons can be found in the supplement).
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Figure 4: The epidemiological geographies for influenza seasons from 2002 to 2008. The regionalization
shown is the result after our community structure detection, robustness analysis, and feasibility analysis.
Colors represent the relative timing of the epidemic for each community with darker colors representing
earlier epidemic dynamics.

We show the degree distribution (Figure 2B for the 2005-2006 season (degree distribution plots for other
seasons can be found in the supplement). All seasons show power law behavior meaning that most counties
have low degree and share epidemic dynamics with only a few other counties, while a few counties have
very high degree and have similar epidemic dynamics to a large number of locations. We also find that the
mean degree varies greatly by season (e.g. 170 in 2005-2006 and ∼ 720 in 2007-2008), suggesting that the
heterogeneity of epidemic dynamics is larger in some seasons than others.

We separately compare the the spatial network inferred for the adult population to that of the child popu-
lation. Our hypothesis was that the adult population network would be more spatially dispersed than the
child network. We find that the distribution of spatial dispersion across network edges has a distribution
centered on connectivity at 1000 kilometers (∼ 600 miles) (Figure 2C), and that there is no statistically
significant difference in spatial dispersion between the two demographic groups.

3.2 Regionalization of Epidemiological Dynamics

We constructed robust epidemiological geographies based on epidemic incidence data from influenza seasons
during 2002-2008. To measure the performance of our regionalization results, we calculated the modularity
of the epidemic similarity network. Relative modularity is high (ranging from 0.39-0.79 with an average of
0.59) across seasons, as are the silhouette scores (details can be found in Figure S1). We also compared
the regionalization results from our network-based method to those from the popular method of hierarchical
agglomerative linkage clustering. We find qualitatively similar results with an average normalized mutual
information score of 0.43 (Please see Table S3 in the supplement).

The results of our network-based community structure detection identify a regionalization of U.S. counties
where each region experiences similar epidemic dynamics. The method results in a structurally optimal
regionalization which may not be feasible for public health implementation. We thus spatially smooth the
regionalization post-hoc to achieve more results that would be more feasible for public health implementation
given their geographic cohesiveness, while losing some network quality. Figure 3A and 3B shows the results
for the 2005-2006 season before and after the smoothing for feasibility (maps for other seasons can be found
in Figure S4 in the supplement. We note that the feasibility adjustment does not result in significantly
different partitions (with normalized mutual information scores of 0.77-0.87 (see Table S6).

We consider the epidemic dynamics of each region separately (Figure 3C), and find that the regionalization
corresponds to different waves of influenza outbreaks during the season. We find that the time series of
the epidemics in each region are epidemiologically distinct from others, and regions experience statistically
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A. B.

Week 6 Week 14Week 10

Week 18 Week 22 Week 26

Figure 5: A) We consider regionalization results based on partial epidemic time series data up to Week 6,
10, 14, 18, 22, and 26 starting at November 1st for the 2005-2005 influenza season. B) For every week, t, we
consider the region-specific recall (or true positive rate) for a regionalization based on partial epidemic time
series with data from week 0 to t. The membership of each region is resolved as it reaches its epidemic peak.

different onset and peak times separated by one or more weeks (t-test results can be found in Table S2.
We find that the regions are also highly cohesive with an average intraregion connectivity of 70% and an
average intraregion similarity of 88% across regions and seasons. (Full results can be found in Figure S4).
The identity of the regions thus captures the progression of the epidemic through the country, making this
of epidemiological value.

We hypothesized that the regionalization patterns across influenza seasons would be consistent, as past work
has shown that influenza epidemics start in the southern United States and progress northward[4]. Our
results show that the progression of the influenza season across the country in fact varies significantly across
seasons (Figure 4). We find that the earliest region in the country to experience influenza is often in the
southwest (2005-2006, 2007-2008, 2008-2009 seasons) but can also be in the southeast (2006-2007 seasons)
or in the central south (2002-2003 season). Epidemics thus progress from west to east in a one-dimensional
wave (as in the case of a southwest start) or have more complex progressions. We also find that seasons
fall into three classes with respect to the respective timing of epidemics across regions: in the 03-04 season,
all regions peak early; in the 04-05, 07-08, and 08-09 seasons all regions peak late; and during the 02-03,
05-06, and 06-07 seasons, regions are distributed in their peak timing (Table S1). We also hypothesized
that regionalization patterns would vary by demographic group. However, we do not find any qualitative
differences in the regionalization patterns.

Lastly, we compare our results to the existing regionalization used by the U.S. Department of Health
and Human Services (HHS) for resource allocation and public health administration. We find that our
epidemiologically-driven regionalization does not show much consistency with the administrative regional-
ization of the HHS regions (Figure S7 and Table S7).

3.3 Prediction of Regionalization

Our results suggest that our method of epidemiological regionalization produces regions that correspond to
the progression of the influenza epidemic through the country. We consider three follow-up questions based
on this result: a) Can epidemic dynamics from one region be used to predict the epidemic dynamics of
the next region?; b) Can regionalization patterns be nowcast through the course of an epidemic? and c)
How can we predict regionalization patterns across seasons based on demographic, social and environmental
processes? The answer to the first question can help us understand the epidemic forecasting potential of
the region-specific epidemic time series; and the answer to the second and third question can allow for the
prediction of regions based on partial epidemic data or covariate data.

To address the forecasting potential for epidemic dynamics, we use the Granger causality test. We find

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.24.21252361doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.24.21252361
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Variable importance for random forest classification of influenza season clusters. Variable impor-
tance is represented as the mean decrease in accuracy across influenza seasons (point is mean of the mean
decrease across seasons, line range is the range of mean values across seasons).

that regions with earlier outbreaks do indeed Granger cause the outbreaks that occur subsequently in other
regions. That is, past values of an earlier region’s epidemic time series have a statistically significant effect on
the current value of a later region’s epidemic, taking past values of the later region’s outbreak into account.
However, we did not find that this was true for all lags, making this a less robust result. (Details can be
found in S8).

To evaluate the potential to nowcast regionalization within an influenza season, we applied our network-
based regionalization approach to partial epidemic data. We find that while partial epidemic data is not
able to identify all regions given the lags in epidemic trajectories between regions (Figure 5A). However,
the partial regionalization succeeds in characterizing individual regions, and this success is correlated with
the timing of the epidemic in each region– the membership of each region is resolved as the region reaches
its epidemic peak (Figure 5B). Thus while epidemic data from a full season is necessary to characterize a
national regionalization, the identification of individual regions earlier in the season provides information
about the regions of the country which will face later epidemics.

Random forest models were used to quantify the predictability of future regionalization clusters for previous
ones. Models were first fit to clusters for an individual season, and model performance was assessed by
comparing test error to out-of bag error for the regionalization classifications of each influenza season model
(Table S8). Both test and out-of-bag errors ranged from 8 to 14% across models. Models were then used
to predict the regionalization clusters for one-season-ahead, and the prediction errors across models ranged
from 28% (2006 model predicting 2007 regionalization clusters) to 61% (2002 predicting 2003) (Table S9).
Variable importance was quite consistent across influenza seasons, with distance to most probable source
location, latitude, elderly vaccination coverage, and proportion of H3 circulation contributing to the greatest
mean decreases in accuracy with relative stability across models (Figure 6). Results were consistent in
sensitivity analysis (See supplement for details).
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4 Discussion

Infectious diseases like seasonal influenza exhibit highly dynamic and complex spatio-temporal patterns, and
our understanding of these dynamics remains limited. Current public health surveillance and mitigation
efforts rely on the assumption that infection diseases respect administrative or geopolitical borders, when
they have been shown to not (e.g. [36, 37, 38, 39]). In this study, we have presented a quantitative method of
identifying a fine-scale regionalization that is based on epidemiological characteristics rather than geopolitical
boundaries. Our results suggest that seasonal influenza regionalizes the United States into three to five
epidemiologically distinct regions. All locations within each spatial region experience synchronous influenza
epidemics, and the outbreak exhibits wave-like propagation with an average ∼ 2 week delay between regions.
However, we find that there is significant heterogeneity across flu seasons in the identity of the regions and
the relative timing of epidemics across regions and that the regions from one season are not predictive of
those in future seasons. Our work is also consistent with the recent work of Polyakov et al. who used a
similar methodology to explore spatial optimization of an epidemic alert system in France [40].

This regionalization approach necessitates a high-resolution source of epidemiological data that can dis-
tinguish transmission dynamics at smaller spatial scales. The U.S. ILI outpatient ILI surveillance system
(ILINet) is composed of roughly 3,000 sentinel physicians in the United States. While this surveillance sys-
tem may be sufficient for capturing the broad geographical distribution of ILI during the influenza season,
these data may not provide the geographic resolution necessary to infer geographical clusters that are useful
for public health practice. Non-traditional sources of ILI data such as medical claims provide a high volume
and high-resolution alternative to ILI sentinel surveillance, and previous work has validated the similari-
ties between the ILI patterns observed in medical claims data [13] and shown its utility in re-thinking ILI
surveillance design [1].

Our time series clustering approach relies on defining time series similarity with the Pearson correlation
coefficient [41]. Shape-based clustering approaches, such as ours, are expected to be more effective compared
to feature-based approaches as they incorporate information about the entire time series, and can be used
across different times and scales [42]. Our interest in the synchronicity of epidemic outbreaks made the
unit-independent Pearson correlation the appropriate measure. Our approach is, however, generalizable to
other time series distance measures if other aspects of the dynamics are of interest [41]. We interpret the
time series similarities through a complex network representation and apply a well-established community
detection algorithm. This clustering method has been shown to outperform traditional time series clustering
algorithms [43].

The communities in a disease dynamics-driven regionalization may not correspond to administrative bound-
aries nor be spatially contiguous areas, and are in fact the result of a variety of complex factors such as
environmental variability and human mobility. Recent efforts have shed light on the socio-environmental
factors that may drive spatio-temporal seasonal influenza dynamics in temperate zones [1, 2, 3, 4], but a
thorough understanding remains elusive. The advantage of our method is that it identifies communities
without knowledge of these factors or a mechanistic understanding of them, and is instead based simply on
empirical disease dynamics. In the absence of such an a priori understanding, our method can be used to
make some inferences about mechanism. Indeed, the wave-like propagation and relative spatial cohesiveness
of the epidemiological regionalization produced by our method suggests that counties proximal to each other
often experience similar influenza epidemics, suggesting that geographic proximity is an important driver for
influenza dynamics. The consistent importance of the distance from source location and latitude in explain-
ing the regionalization clusters further corroborates previous studies that have characterized the hierarchical
dynamics of seasonal influenza [14, 15, 2] in which transmission decays as geographic distance between two
locations increases [2] and transmission is mainly driven by local commuting and work flow patterns rather
than long-distance or airline mobility [2, 5, 15, 4]. Surprisingly, our regionalization results did not provide
any evidence for our mobility-based hypothesis for more dispersed spatial dynamics of ILI among adults.

Our work also confirms that most influenza epidemics start in the southern U.S. [2, 4], and some seasons
(e.g. 2005) match the west to east pattern proposed by Wenger et al. for influenza (among adults over 65)
[44]. Additionally, the regionalization reveals a unique feature of epidemic timing across regions in which
seasons are homogeneously early or late, or heterogeneous in their peak timing across regions. We note that
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this partitioning of influenza is consistent with the severity classification we proposed in [45] and suggests
that severe seasons are homogeneously early, moderately severe seasons are uniformly late, and mild seasons
are distributed in their timing, which is consistent with a previous study by Dahlgren et al. [46]. The
wave-like progression of flu through the U.S. also allows for the prediction of epidemic dynamics in a region
based on other regions (as demonstrated by our Granger causality results) and for the prediction of region
membership during the course of the epidemic (as highlighted by our partial regionalization results). This
finding shows that it is possible to provide an understanding of how regions are shaping over time, yielding
expected trajectories of the epidemic evolution in different parts of the country. Resources can potentially be
mobilized according to the accruing of information provided by the method, together with communication
targeting areas with soon-to-be-expected peak or those experiencing a delayed epidemic. This information
cannot be easily gathered by simply looking at county-level surveillance data, because of the intrinsic noise
and possible changes of tendency. A higher level analytical tool that is able to have a systemic view to
identify similarities across space is therefore needed to identify the robust signal beyond the local noise and
guide planning in real-time.

The epidemiological dynamics of influenza have long been modeled with metapopulation models [47, 48, 49].
Such models rely on the definition of subpopulations which are assumed to exhibit homogeneous disease
dynamics within. The optimal spatial scale of these subpopulations, however, remains unknown. This
spatial scale relates to the characteristic scale for influenza dynamics, and can be thought of as the spatial
resolution at which maximum spatial variance exists between locations and minimum variance exists within
locations. The question, for the US for example, is: are influenza dynamics homogeneous on the scale
of counties, states, or multiple states? We argue that our regionalization approach provides a means to
address this question and suggests that the characteristic scale of influenza is quite large and spans multiple
states, albeit not following administrative boundaries. (However, we note that since our data are limited
to a spatial resolution of U.S. counties, we may not be able to identify heterogeneity that may exist at
finer scales [50].) In countries and regions smaller than the U.S., influenza dynamics have been shown to
be synchronous nationally and internationally [51, 52, 40], also suggesting a characteristic speed for disease
movement. Future work on better understanding the spatial scales of transmission can inform the scales of
intervention strategies to prevent local intensification and regional propagation of disease [53].

Some data and methodological limitations affect our study. First, we use ILI data as a proxy to understand
the spatio-temporal dynamics of influenza, but this has been known to be a reliable method for characterizing
influenza incidence [14]. Second, our data are derived from healthcare interactions and thus may be subject to
spatially-varying bias. We have mitigated this concern by normalizing our data on ILI visits by metadata on
healthcare visits for any cause. This normalization helps capture spatial and temporal variation in healthcare
access, insurance coverage and healthcare-seeking behavior. We also note that while these biases may affect
time series amplitude significantly, the period (which is of relevance to our study) is less likely to be affected.
Third, our regionalization results depend on the edge weight (i.e. time series correlation) threshold chosen.
However, recent work demonstrates that community structure is preserved with edge weight thresholding
[54], and we highlight that the regionalization results across thresholds are related hierarchically (Figure S2).

Our method of using fine-scale epidemiological data to inform regionalization has the potential to inform
disease prevention and management for ILI. We compare our regionalization to the current regions used by
HHS for public health management, and find that epidemiological dynamics within HHS regions are highly
heterogeneous, suggesting that homogeneous policy is unlikely to be efficient (Figure S7). Our approach more
accurately groups areas that have similar epidemic epidemics, using a systemic approach while also identifying
a simple heuristic (peak time) that differentiates epidemic regions which may be more readily used in public
health contexts. While our work highlights that our ability to predict influenza regionalization across seasons
remains limited (perhaps due to limited data), there is potential to use our approach to inform real-time
regionalization during a season to divert resources to regions yet to experience outbreaks. We find that
influenza regionalization may be partially explained by epidemiological factors such as elderly vaccination
coverage, suggesting it may be beneficial to group these locations for vaccination prioritization. Our results
also suggest that planning the timing of vaccine distribution based on regionalization is likely to minimize
the effects of waning immunity [55]. Furthermore, optimal regionalization results can also inform novel
surveillance approaches [56], as well as to plan efficient coordination between local health departments [57].
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Public health preparedness and response in the face of high heterogeneity demands effective but tractable
approaches; regionalization as a strategy has the potential to balance both.
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SUPPLEMENT

1 Data Source

Weekly visits for influenza-like illness (ILI) and any diagnosis from October 2002 to April 2009 were obtained
from a records-level database of US medical claims managed by SDI Health (later known as IMS Health and
now known as IQVIA) and aggregated to three-digit patient U.S. zipcode prefixes (zip3s), where ILI was
defined with International Classification of Diseases, Ninth Revision (ICD-9) codes for: direct mention of
influenza, fever combined with respiratory symptoms or febrile viral illness, or prescription of oseltamivir.
Medical claims have been demonstrated to capture respiratory infections accurately and in near real-time
[58, 59], and our specific dataset was validated to independent ILI surveillance data at multiple spatial scales
and age groups and captures spatial dynamics of influenza spread in seasonal and pandemic scenarios [13, 1].

We also obtained database data from SDI Health on total visit volume for any cause (”all cause visits”). ILI
visits and all cause visits were redistributed to the county-level according to population weights derived from
the 2010 U.S. Census ZIP Code Tabulation Area (ZCTA) to county relationship file, assuming that ZCTAs
that shared the first three digits belonged to the same zip3 [1]. We normalize the time series of ILI visits by
all cause visits to account for spatio-temporal variation in healthcare access, healthcare seeking, and database
coverage. Epidemic time series are defined for the period of November 1 to April 30. For the 2008-2009 flu
season, we restricted our data to March 31 given the late dynamics of the H1N1 pandemic. To summarize
the epidemic characterisitcs for validation, we defined onset and peak times. The epidemic period was the
consecutive period bookended by periods where detrended ILI exceeded the epidemic threshold during the
flu period wording [1]. We defined onset timing as the number of weeks from November 1 until the first week
in the epidemic period. We defined peak timing as the number of weeks from week 40 until the week with
the maximum epidemic intensity during the epidemic period.

1.1 Data Ethics

Patient records and information in the medical claims dataset were anonymized, deidentified, and aggregated
by SDI Health. All analyses were performed with aggregated time series data for influenza-like illness rather
than patient-level information. Ethical review was sought from the Institutional Review Board at Georgetown
University and was deemed exempt.

2 From Time Series to Complex Network

2.1 Determining Similarity Threshold

When making the epidemic time series correlation networks, we chose to limit the network edges to time
series correlations of 0.8 or higher. We chose this threshold to reduce the size and complexity of the net-
work, to ensure that the network only included strong correlations, and because this threshold balanced
high network statistics with epidemiological value. We evaluated a number of network metrics when de-
termining the threshold including: silhouette score, modularity, percent coverage of all U.S. counties, and
number of communities. The first two metrics measure how clustered the regions are, the latter two are to
measure public health implementation effectiveness and ease. In Figure S1, we summarize modularity and
silhouette values for each threshold for each year along with the percent of all U.S. counties in the resulting
regionalization after any communities smaller than 94 counties (3% of all US counties) were removed, the
number of communities for each threshold, and whether or not communities peaked during the same week.
We identified the threshold of 0.8 by maximizing silhouette score, modularity, and coverage and minimizing
the number of communities. Our chosen threshold of 0.8 also is appropriate for differentiating the regions
epidemiologically in terms of peak timing (Figure S1). In Figure S2, we also illustrate that the regionalization
across thresholds is quite similar.
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Figure S1: Determining Threshold for Network Structure. Figures showing the silhouette score, modularity,
percentage of counties included in the final regionalizations, number of communities in each regionalization,
and whether or not communities peak in the same week for each flu season in the study. A threshold of .8
was identified based on maximizing silhouette and modularity values, keeping coverage above 80% of U.S.
counties. We disqualified thresholds of 0.85 and 0.9 based on having multiple years with coverage of less
than 80%. Lower thresholds were disqualified based on their low network metrics and the fact that they
did not fully highlight the granularity of the differences in the communities based on their low number of
communities. Additionally, we highlight that the threshold of 0.8 also differentiates regions by peak timing.
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Figure S2: Epidemiological regionalization for the 2005-2006 flu season using different thresholds for the time
series similarity network (e.g. a threshold of 0.5 means that only pairs of counties with a Pearson’s correlation
≥ 0.5 are connected in the similarity network). The regionalization across thresholds is consistent.

3 Validating Community Structure

We validated our method epidemiologically and methodologically. Our epidemiological validation consisted
of analyzing the timing of two important epidemiological characteristics, the onset time and the peak time,
as an average for each community. Please see Table S1 for a list of average peak weeks and onset weeks for
each community in each year using a threshold of 0.8. Furthermore, we evaluated whether or not the peak
times were statistically different across communities for a flu season by running a two-sided t-test, please see
Table S2.

Our second method of validation compared our results based on the Louvain algorithm (our chosen algo-
rithm) with another common clustering method to test for sensitivity to the method. We used average
linkage hierarchical clustering with Pearson’s correlation as the distance function. Figure S3 shows a dis-
ease geography for the 2005-2006 flu season for both the Louvain algorithm and the hierarchical clustering
algorithm showing very similar but not identical geographies. Furthermore, we quantified this variation
by calculating the mutual information between the two regionalizations (Table S3), and find that the two
methods generally find consistent regionalization results.

4 Evaluating Community Structure

Following the identification of the community structure in the epidemic time series similarity networks,
we evaluated the structure of the communities, the mean correlation of epidemic time series within each
community or region, the standard deviation of those correlations, and the within-degree ratio of the regions.
Table S4 shows that the correlation of time series within each community was high, ranging from 86-90%
which suggests that the community structure characterized regions exhibiting highly uniform epidemics.
Additionally, we found that the regions were highly cohesive with within-degree ratios of 54-98% which
measures the ratio of degrees within a given community compared to those outside of the community.
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Table S1: Comparing Average Onset and Peak Time. Here is a table of the average epidemic onset time and
peak time for each community in every flu season using the .8 threshold results. No flu season has commu-
nities that have onset or peak times in the same week suggesting epidemiologically-significant differences in
dynamics between communities.

Average Onset Average Peak Community Number Flu Season
4.17 8.57 0.0 2002.0
7.00 12.74 1.0 2002.0
8.36 14.28 2.0 2002.0
11.44 17.00 3.0 2002.0
0.0 0.33 0.0 2003.0
0.97 4.74 1.0 2003.0
2.57 6.82 2.0 2003.0
6.44 14.24 0.0 2004.0
7.45 16.04 1.0 2004.0
4.59 9.32 0.0 2005.0
6.99 15.22 1.0 2005.0
10.09 18.19 2.0 2005.0
11.78 20.27 3.0 2005.0
2.77 10.48 0.0 2006.0
6.54 14.07 1.0 2006.0
8.25 15.61 2.0 2006.0
8.72 17.62 3.0 2006.0
6.16 14.35 0.0 2007.0
7.53 16.52 1.0 2007.0
9.16 15.17 0.0 2008.0
12.19 17.15 1.0 2008.0
15.87 18.96 2.0 2008.0
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Table S2: Evaluating Differences in Communities Based on Peak Time. Here we show the results of a Welch’s
two-sided T test for comparing the differences in peak time between every community for every flu season.
Communities are statistically different with p values less than .05.

Community Community P Value T Statistic Flu Season
1.0 2.0 3.49E-227 -38.36 2002.0
1.0 0.0 3.01E-162 39.83 2002.0
1.0 3.0 3.60E-196 -55.71 2002.0
2.0 0.0 7.68E-227 53.25 2002.0
2.0 3.0 9.47E-132 -34.04 2002.0
2.0 1.0 3.50E-322 48.07 2003.0
2.0 0.0 1.39E-123 117.13 2003.0
1.0 0.0 3.81E-157 65.92 2003.0
1.0 0.0 5.66E-238 36.65 2004.0
1.0 2.0 0.0 -46.76 2005.0
1.0 0.0 2.41E-153 38.96 2005.0
1.0 3.0 8.05E-120 -42.23 2005.0
2.0 0.0 5.31E-222 59.24 2005.0
2.0 3.0 6.21E-46 -17.72 2005.0
0.0 3.0 6.04E-255 -60.57 2005.0
1.0 2.0 2.55E-113 -24.80 2006.0
1.0 0.0 9.14E-70 19.95 2006.0
1.0 3.0 1.17E-129 -29.73 2006.0
2.0 0.0 1.99E-117 28.95 2006.0
2.0 3.0 5.52E-57 -17.56 2006.0
0.0 3.0 9.01E-173 -34.93 2006.0
1.0 0.0 0.0 49.34 2007.0
0.0 1.0 7.54E-271 -41.08 2008.0
0.0 2.0 0.0 -61.38 2008.0
1.0 2.0 1.47E-142 -34.13 2008.0

Table S3: Evaluating similarity between the Louvain community detection algorithm and a hierarchical
clustering algorithm . We show normalized mutual information scores between the Louvain partition and
the hierarchical clustering partition for each flu season.

Mutual Information Flu Season
0.59 2002.0
0.36 2003.0
0.07 2004.0
0.71 2005.0
0.53 2006.0
0.22 2007.0
0.48 2008.0
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Table S4: Evaluating Regional Structure. We evaluated the structure of the regions comprising the epi-
demiological geographies for each flu season by measuring the mean correlation between time series within
a region and the within-degree ratio of each region.

Flu Season Region Mean Correlation Std of Correlation Within-Degree Ratio
2002 0 0.87 0.05 0.88
2002 1 0.88 0.04 0.76
2002 2 0.88 0.04 0.69
2002 3 0.86 0.05 0.65
2003 0 0.90 0.05 0.69
2003 1 0.89 0.05 0.61
2003 2 0.91 0.04 0.75
2004 0 0.88 0.04 0.63
2004 1 0.88 0.04 0.67
2005 0 0.88 0.06 0.98
2005 1 0.86 0.04 0.87
2005 2 0.87 0.04 0.87
2005 3 0.87 0.05 0.54
2006 0 0.86 0.04 0.62
2006 1 0.87 0.04 0.65
2006 2 0.88 0.04 0.58
2006 3 0.86 0.04 0.63
2007 0 0.89 0.05 0.62
2007 1 0.90 0.04 0.71
2008 0 0.88 0.04 0.74
2008 1 0.88 0.04 0.70
2008 2 0.89 0.05 0.59
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Figure S3: Validation of community structure by methodological comparison. We compared the resulting
regionalization map for the 2005-2006 flu season from (A) the Louvain community structure detection (our
method) to (B) an average linkage hierarchical clustering method.

Figure S4: Louvain Regionalizations for all Years. Here we present all Louvain regionalizations for all flu
seasons included in this study. These are the raw results before we applied our post-hoc feasibility analysis
for the ease of public health implementation.

5 Louvain Regionalizations

We created regionalizations for each flu season (2002-2008) using the Louvain clustering algorithm. Please
see Figure S4 for all maps for the 0.8 threshold.

5.1 Evaluating Regionalizations

The disease geographies exhibit a high degree of heterogeneity across flu seasons. We quantified the variation
in community structure by calculating the mutual information for every combination of flu season as seen
in Table S5. Mutual information is low across seasons ranging from .005 to .1 suggesting a high degree of
variation across years.
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Figure S5: Time series for all communities in the 2002-2008 flu seasons.The average time series for each
community is shown as a thick line.
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Table S5: Comparing Normalized Mutual Information Scores between Seasons. Here we present the Nor-
malized Mutual Information (NMI) scores between all combinations of flu seasons. NMI scores range from
.005 to .1 which suggests that influenza seasons show significant heterogeneity across flu seasons and exhibit
differential epidemiological characteristics from year to year.

Mutual Information Flu Season 1 Flu Season 2
0.079 2002.0 2003.0
0.024 2002.0 2004.0
0.101 2002.0 2005.0
0.069 2002.0 2006.0
0.033 2002.0 2007.0
0.021 2002.0 2008.0
0.029 2003.0 2004.0
0.073 2003.0 2005.0
0.027 2003.0 2006.0
0.041 2003.0 2007.0
0.007 2003.0 2008.0
0.037 2004.0 2005.0
0.008 2004.0 2006.0
0.006 2004.0 2007.0
0.012 2004.0 2008.0
0.053 2005.0 2006.0
0.044 2005.0 2007.0
0.024 2005.0 2008.0
0.005 2006.0 2007.0
0.040 2006.0 2008.0
0.038 2007.0 2008.0

5.1.1 Degree Distributions

6 Comparing Louvain to Feasible Results

To assess the level of similarity of the feasible maps with the optimal regionalizations produced by the Louvain
community detection algorithm, we assessed the percent match and the Normalized Mutual Information
Scores (NMI) for each season using the .8 threshold, as seen in Figure S6

7 Comparison to HHS regions

We evaluated the epidemiological dynamics exhibited by each region of the Department of Health and Human
Services regions in Figure S7. There is significant variability in the epidemic dynamics observed within each
region. The peak times are often not significantly different for each season, and the HHS regions had low
mutual information similarity scores to the Louvain results for each season which ranged from .07 to .24
(Table S7) suggesting that the HHS regions, and thus current disease management strategies that are based
on geographic mega-regions do not capture underlying epidemiological dynamics.

8 Granger Casuality

To characterize the forecasting potential of epidemic dynamics of earlier regions to predict dynamics in later
regions, we consider Granger causality for all pairs of regions, i and j, in which region i has an earlier
epidemic peak than region j. We performed the Granger causality test on the average of all county epidemic
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Figure S6: Degree Distributions Diagrams. Here we present degree distribution diagrams for each flu season
using the .8 threshold. Mean degrees varied from 170 to 719 which suggests

Table S6: Assessing similarity of Louvain results to feasibility results. To determine the impact of increasing
spatial contiguity of the regions resulting from the Louvain community detection algorithm on the complex
network, we calculated the percent match and normalized mutual information score between the two for
each flu season.

Flu Season Match Mutual Information
2002 0.20 0.78
2003 0.97 0.86
2004 0.97 0.82
2005 0.96 0.86
2006 0.93 0.77
2007 0.97 0.83
2008 0.94 0.77

time series for each region, and considered all weekly lags up to five weeks. We calculated p-values using
the chi2 test. The directed acyclic graphs in Figure S8 summarize our results, and highlight that all pairs of
ordered regions are in a Granger causal relationship. However, we note that we did not find this result for
all possible lags, reducing the robustness of this result.

9 Random Forest Models

9.1 Covariates

We considered the following continuous covariates: log population density, average household size, child and
adult populations, toddler and elderly influenza vaccine coverage, population protected due to prior season
exposure, percent H3 subtype among influenza type A samples, percent B type among positive influenza
samples, hospitals per capita, percentage of single-person households, percentage of the population in poverty,
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Figure S7: Community time series by HHS region. Here we show the epidemic time series using HHS regions
as the community structure for all counties in the U.S for the 2005-2006 flu season. Most regions do not
experience uniform epidemics and therefore do not experience similar influenza dynamics.

Table S7: Similarity between Louvain regionalization and HHS Regions. Normalized Mutual Information
Scores for the regions our method identified and the corresponding HHS regions.

Mutual Information Flu Season
0.24 2002.0
0.18 2003.0
0.07 2004.0
0.24 2005.0
0.15 2006.0
0.07 2007.0
0.11 2008.0
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Figure S8: A summary of the results of the Granger causality tests. Each panel corresponds to a different
influenza season, and illustrates the directed acyclic graph in which a node represents a region (with increasing
region ids representing later epidemic peaks) and the directed edge from node i to node j represents that the
epidemic dynamics of region i Granger cause the epidemic dynamics in region j. The edgeweight denotes
the number of lags for which the Granger relationship between the nodes exists. Any edge pair not shown
suggests that the test was not significant for any lags.

percent of the population with health insurance, percentage of physicians reporting to the medical claims
data, and all visits per capita reported to the medical claims data. Data collection and processing for
these covariates has been previously described in [1]. We added three county-level covariates as potential
predictors of regionalization clustering: latitude, Euclidean distance from most probable source county, and
pre-epidemic anomaly in specific humidity.

Latitude was added as a predictor because latitude is correlated with global influenza seasonality and peak
timing and may serve as a proxy for typologies that jointly characterize influenza trends by temperature and
humidity[60]; higher latitude locations tend to have annual influenza epidemics with greater peak intensity
than lower latitude locations, which tend to be characterized by biannual or endemic influenza transmission.

In considering the hierarchical, wave-like spread of influenza [14], we hypothesized that regionalization clus-
ters might be predicted by their distance from most probable source county in a given season. To identify
the most probable source county, we first identified the top 10% of counties with earliest epidemic onset
according to the detrended ILI ratio. Using the latitude and longitude of county centroids, we calculated the
Euclidean distance between these top 10% most probable source locations and all other counties. We then
used the Pearson correlation coefficient (Ho: no difference from zero) between distance to potential source
location and onset week to identify the most probable county or state source locations for a given influenza
season (higher correlation coefficient means higher probability of being source location). The covariate was
then presented as the Euclidean distance to the most probable source county.

Influenza season onset has previously been linked with anomalies in absolute humidity in temperate regions[61],
and we hypothesized the seasonal onset might predict regionalization clusters. We calculated this county-
level covariate as the mean local daily deviation in specific humidity (a measure of absolute humidity) over
the four weeks prior to seasonal onset, where the deviation is the difference between daily absolute humidity
and the daily average values over the study period.

9.2 Results

We examined the performance of our random forest models by comparing their test and out-of-bag errors.
We also compared our primary results (15% sample test set) to an analogous set with a 30% sample test set.
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Table S8: Test error and out-of-bag error for random forest models by influenza season with 15% and 30%
sample test sets. These errors are reported as proportion of misclassified counties.

Flu Season Test (15%) Out-of-bag (15%) Test (30%) Out-of-bag (30%)
2002 0.11 0.12 0.15 0.13
2003 0.09 0.09 0.10 0.09
2004 0.14 0.14 0.15 0.15
2005 0.08 0.08 0.07 0.09
2006 0.13 0.08 0.18 0.14
2007 0.09 0.10 0.11 0.11
2008 0.14 0.12 0.16 0.14

Table S9: Random forest model prediction error for one-season-ahead regionalization clusters with 15% and
30% sample test sets. These errors are reported as proportion of all county pairs that incorrectly fall in
different clusters.

Model Year Prediction Year Prediction Error (15%) Prediction Error (30%)
2002 2003 0.61 0.62
2003 2004 0.31 0.30
2004 2005 0.49 0.48
2005 2006 0.55 0.55
2006 2007 0.28 0.33
2007 2008 0.50 0.50

Out-of-bag errors and test errors for influenza season models ranged from 8 to 14% for the 15% sample test
set results (Table S8). There were no major differences in the results between sample test set sizes, although
both test errors and out-of-bag errors were slightly higher among the models with the 30% sample test set.

We used our influenza season random forest models to predict regionalization clusters for the following
year’s influenza season. We then compared the similarity of the predicted clusters to the clusters that were
identified by the regionalization process after the end of the real influenza season. We calculate prediction
error as the proportion of counties that were incorrectly predicted to fall into different clusters (Table S9).
The one-season-ahead prediction errors were large (range 28-61%) relative to the out-of-bag errors, but there
was little difference in prediction performance between the 15% and 30% sample test sets.

The most important variables in the 15% sample test set were also the most important variables in the 30%
sample test set, with very similar results for the mean decrease in accuracy across influenza seasons (Figure
S9)
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Figure S9: Variable importance for random forest classification of influenza season clusters using the 30%
sample test set for sensitivity analysis. Variable importance is represented as the mean decrease in accuracy
across influenza seasons (point is mean of the mean decrease across seasons, line range is the range of mean
values across seasons).
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