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Abstract

Following the onset of the ongoing COVID-19 pandemic throughout the world, a large frac-
tion of the global population is or has been under strict measures of physical distancing and
quarantine, with many countries being in partial or full lockdown. These measures are imposed
in order to reduce the spread of the disease and to lift the pressure on healthcare systems. Es-
timating the impact of such interventions as well as monitoring the gradual relaxing of these
stringent measures is quintessential to understand how resurgence of the COVID-19 epidemic
can be controlled for in the future. In this paper we use a stochastic age-structured discrete
time compartmental model to describe the transmission of COVID-19 in Belgium. Our model
explicitly accounts for age-structure by integrating data on social contacts to (i) assess the im-
pact of the lockdown as implemented on March 13, 2020 on the number of new hospitalizations
in Belgium; (ii) conduct a scenario analysis estimating the impact of possible exit strategies
on potential future COVID-19 waves. More specifically, the aforementioned model is fitted to
hospital admission data, data on the daily number of COVID-19 deaths and serial serological
survey data informing the (sero)prevalence of the disease in the population while relying on a
Bayesian MCMC approach. Our age-structured stochastic model describes the observed out-
break data well, both in terms of hospitalizations as well as COVID-19 related deaths in the
Belgian population. Despite an extensive exploration of various projections for the future course
of the epidemic, based on the impact of adherence to measures of physical distancing and a
potential increase in contacts as a result of the relaxation of the stringent lockdown measures, a
lot of uncertainty remains about the evolution of the epidemic in the next months.

Keywords: age-structured compartmental SEIR model, stochastic chain-binomial model, hos-
pitalization and mortality data, serial serological survey, Markov Chain Monte Carlo (MCMC)

1 Introduction

The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), a pathogenic infectious agent, which was initially identified in Wuhan (China), where several
patients presented with pneumonia after developing symptoms between December 8, 2019 and Jan-
uary 2 [1]. COVID-19 was officially declared a pandemic by the WHO on March 11, 2020. More
than 6 million confirmed cases and more than 380,000 deaths were reported globally by June 1,
2020, of which 58,000 confirmed cases and 9,500 deaths occurred in Belgium [2].

In line with other EU countries, the Belgian government issued a travel notice advising against
non-essential flights to China, excluding Hong Kong, on January 29. As of March 6, a travel ban
was issued for school trips to Italy. On March 10, Belgian authorities advised to cancel all indoor
events of 1,000 participants or more. Furthermore, physical distancing measures were taken with
companies being advised to allow their employees to work from home as much as possible. A closure
of all schools, cafes and restaurants was ordered as well as a cancellation of all public gatherings
as of March 13 at midnight. On March 17, the Belgian National Security Council announced addi-
tional measures to be taken, thereby imposing stricter measures of physical distancing, prohibiting
non-essential travel to foreign countries and within the own borders (i.e., only allowing people to
leave their homes to buy food or to go to work, at least when working in healthcare, transport or
other essential professions), closure of shops providing non-essential services with the addition of
penalties for everyone not abiding with the rules. A lockdown was imposed on Wednesday March
18 at noon. The borders were closed as of March 20. Throughout the epidemic, the government
continuously stressed the importance of measures of physical distancing and hygiene, thereby avoid-
ing physical contacts, ensuring regular washing of the hands, coughing and sneezing in the inner
elbow, not shaking hands and staying at home when having COVID-19 related symptoms [3].

Upon having imposed very strict measures of physical distancing, including mobility restrictions and
school closure, a thorough investigation of different exit strategies is required to relax unsustainable
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social life and economic constraints while maintaining control over pressure exerted on the health
care system. After a specific exit strategy is implemented, a careful monitoring of the outbreak is
necessary to avoid subsequent waves of COVID-19 infections.

Here we use a stochastic, discrete, age-structured compartmental model for COVID-19 transmission.
The model is contrasted to Belgian data on the daily number of new hospitalizations and deaths
prior and after mitigation strategies have been imposed. The model accounts for pre-symptomatic
and asymptomatic transmission. Age-specific data on social contacts is used to inform transmission
parameters [4] and serial serological survey data is incorporated in the model to inform the preva-
lence of past exposure to the disease [5]. The impact of the intervention measures as well as various
exit strategies upon relaxing lockdown measures are studied in the context of this model.

The paper is organized as follows. In Section 2, we provide specific details on the (stochastic) com-
partmental model, its parametrization and estimation of model parameters based on several data
sources. Moreover, we study the impact of intervention measures and subsequent exit strategies
on the spread of COVID-19. The results of fitting the stochastic model to the available data is
presented in Section 3. Furthermore, the impact of various exit strategies on the number of new
hospitalizations is visualized using an extensive scenario-analysis. Finally, in Section 4, we discuss
limitations and strengths of the proposed approach and we present avenues for further research.

2 Methodology

2.1 Mathematical compartmental transmission model

We use an adapted version of an SEIR mathematical compartmental model to describe COVID-19
disease dynamics. In this model, individuals are susceptible to infection when in compartment
S, and after an effective contact (between a susceptible and infectious individual) the suscepti-
ble individual moves to an exposed state E at age- and time-specific rate λ(t), referred to as the
force of infection (with boldface notation representing a vector including age-specific rates). After
a latent period, the individual becomes infectious and moves to a pre-symptomatic state Ipresym
at rate γ. Afterwards, individuals either develop symptoms (state Imild) with probability 1 − p
or remain completely free of symptoms (compartment Iasym, probability p). Asymptomatic cases
recover at rate δ1. Symptomatic infections are either very mild and such cases recover at rate δ∗2
(for an age-dependent fraction of these individuals, represented by the vector φ0 = δ2/(δ2 + ψ),
where δ2 = φ0δ

∗
2 and ψ = (1 − φ0)δ

∗
2) or they move to a state Isev prior to requiring hospital-

ization (i.e., severe infection is defined as requiring hospitalization). When severely ill, implying
hospitalization, individuals move to state Ihosp with probability φ1, or become critically ill (IICU )
with probability 1−φ1. Hospitalized and critically ill patients admitted to the Intensive Care Unit
(ICU) recover at rate δ3 and δ4 with probabilities {1− µhosp(a)} and {1− µicu(a)}, respectively,
where µhosp(a) = τ 1/(τ 1 + δ3) and µicu(a) = τ 2/(τ 2 + δ4) represent the age-specific case-fatality
rates (i.e., probabilities of dying when severely ill and hospitalized on a general ward or admitted
to ICU). Hospitalized and ICU patients die at rate τ 1 or τ 2 with probabilities µhosp(a) and µicu(a),
respectively. A schematic overview of the compartmental model is given in Figure 1. Individuals in
the red compartments are able to transmit the disease.

The following set of ordinary differential equations describes the flows in the (deterministic version
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Figure 1: Schematic overview of the flows of individuals in the compartmental model: Following
SARS-CoV-2/COVID-19 infection susceptible individuals (S) move to an exposed state (E) and
after a latent period individuals further progress to a pre-symptomatic state (Ipresym) in which
they can infect others. Consequently, individuals stay either completely symptom-free (Iasym) or
develop mild symptoms (Imild). Asymptomatic individuals will recover over time. Upon having
mild symptoms, persons either recover (R) or require hospitalization (going from Isev to Ihosp or
Iicu) prior to recovery (R) or death (D).

of the) proposed age-structured compartmental model:

dS(t)

dt
= −λ(t)S(t)

dE(t)

dt
= λ(t)S(t)− γE(t)

dIpresym(t)

dt
= γE(t)− θIpresym(t)

dIasym(t)

dt
= θpIpresym(t)− δ1Iasym(t)

dImild(t)

dt
= θ(1− p)Ipresym(t)− {ψ + δ2} Imild(t)

dIsev(t)

dt
= ψImild(t)− ωIsev(t)

dIhosp(t)

dt
= φ1ωIsev(t)− {δ3 + τ 1} Ihosp(t)

dIicu(t)

dt
= (1− φ1)ωIsev(t)− {δ4 + τ 2} Iicu(t)

dD(t)

dt
= τ 1Ihosp(t) + τ 2Iicu(t)

dR(t)

dt
= δ1Iasym(t) + δ2Imild(t) + δ3Ihosp(t) + δ4Iicu(t)
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where, for example, S = (S1(t), S2(t), . . . , SK(t))T represents the vector of number of susceptible
individuals in age group k = 1, . . . ,K in the population at time t. A full account on the definition
of the different compartments and the notation used for the number of individuals therein can be
found in Table A1 in Appendix A. An overview of the different parameter definitions can be found
in Table B3.

The proposed age-structured compartmental transmission model consists of 10 age classes, i.e., [0-
10), [10-20), [20-30), [30-40), [40-50), [50-60), [60-70), [70-80), [80-90), [90, ∞) with the number of
individuals in each age class obtained from Eurostat.

2.2 Social contact data and transmission rates

As mentioned previously, the infectious phase of COVID-19 disease is divided into two different
states: a pre-symptomatic state occurring before the end of the incubation period, followed by a
state in which individuals may either remain asymptomatic or develop (mild to severe) symptoms
(see Figure 1). Transmission of the disease is governed by an age- and time-dependent force of
infection. The age-specific force of infection in age group k = 1, . . . ,K, denoted by λ(k, t), is
defined as the instantaneous rate at which a susceptible person in age group k acquires infection at
time t. Furthermore, the time-invariant transmission rate β(k, k′) represents the average per capita
rate at which an infectious individual in age group k′ makes an effective contact with a susceptible
individual in age group k, per unit of time. Consequently, the force of infection is defined as

λ(k, t) =
K∑
k′=0

β(k, k′)I(k′, t),

where I(k′, t) denotes the total number of infectious individuals in age group k′ at time t and β(k, k′)
can be rendered as

β(k, k′) = qc(k, k′),

when relying on the so-called social contact hypothesis [6]. This hypothesis entails that c(k, k′)
are the per capita rates at which an individual in age group k makes contact with an individual
in age group k′, per unit of time, and q is a proportionality factor capturing contextual and host-
and disease-specific characteristics such as susceptibility and infectiousness. The (K ×K)-matrix
C containing the elements c(k, k′) is referred to as the social contact matrix describing mixing
behaviour within and between different age groups in the population. Social contact rates c(k, k′)
are estimated based on social contact data from Flanders (Belgium) collected in 2010 [7, 8, 4, 9].
We hereby assume that contact rates for Flanders can be used for all regions in Belgium.

In this manuscript, we rely on social contact matrices Csym and Casym estimated for symptomatic
and asymptomatic individuals, implying

βsym(k, k′) = qsymcsym(k, k′) and βasym(k, k′) = qasymcasym(k, k′),

defining transmission rates for both symptomatic and asymptomatic cases, respectively (see Ap-
pendix C). Here, we assume that the relative infectiousness of symptomatic versus asymptomatic
cases is equal to r−1β = qsym/qasym. The age-dependent force of infection is defined as:

λ(t) = βasym × {Ipresym(t) + Iasym(t)}+ βsym × {Imild(t) + Isev(t)} ,

where λ(t) = (λ(1, t), λ(2, t), . . . , λ(K, t)) written as a matrix multiplication with boldface notation
for vectors and matrices. Note that hospitalized individuals are assumed not to contribute to the
transmission process because of isolation.
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2.3 Discrete time stochastic epidemic model

The spread of the virus is hampered by reductions in the number of contacts and changes in the
way contacts are made, either voluntarily or as a consequence of government intervention. These
time- (and age-) dependent behavioural changes introduce substantial uncertainty in the further
course of the outbreak and require stochastic model components to evaluate the effectiveness of the
intervention strategies and to make future predictions in terms of, for example, new hospitaliza-
tions. Moreover, stochastic epidemic models allow to determine the probability of extinction based
on multiple realizations of the model. Therefore, we amended the deterministic model hitherto
described into a discrete time stochastic epidemic model to describe the transmission process under
the mitigation strategies as highlighted hereabove.

Our chain binomial model, originally introduced by Bailey [10], is a so-called discrete-time stochas-
tic alternative to the continuous-time deterministic model based on the health states and transitions
presented in Figure 1. The chain binomial model assumes a stochastic version of an epidemic ob-
tained through a succession of discrete generations of infected individuals in a probabilistic manner.
Consider a time interval (t, t+h], where h represents the length between two consecutive time points
at which we evaluate the model, here h = 1/24 day. Let us assume that there are St(k) susceptible
individuals at time t in age group k, we expect St(k)p∗t (k) newly exposed individuals at time t+ h,
i.e.,

Enewt+h (k) ∼ Binomial
(
St(k), p∗t (k) = 1− {1− pt(k)}It

)
,

where It is the total number of infected individuals at time t and pt(k) represents the transmission
probability conditional upon contact between a susceptible individual in age group k and an infected
individual. The probability that a susceptible individual escapes infection (during a single contact
with an infected individual) is equal to qt(k) = 1− pt(k), hence, assuming all contacts to be equally
infectious, the escape probability is qmt (k) in case the susceptible individual contacts m infectious
individuals. In this setting, the probability of infection p∗k(t) for a susceptible individual in age
group k = 1, . . .K can be obtained as:

p∗t (k) = 1− exp

[
−h

K∑
k′=0

βasym(k, k′)
{
Ipresym,t(k

′) + Iasym,t(k
′)
}

+ βsym(k, k′)
{
Imild,t(k

′) + Isev,t(k
′)
}]

.

The number of individuals in age group k leaving the exposed state (and entering the pre-symptomatic
compartment) within the specified time interval is

Inewpresym,t+h(k) ∼ Binomial (Et(k), 1− exp (−hγ)) ,

where 1/γ equals the mean length of the latency period. Probabilistic transitions in the other
compartments are derived similarly, hence, a discretized age-structured stochastic model (with step
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size h = 1/24 days) is fully specified by

Inewasym,t+h(k) ∼ Binomial (Ipresym,t(k), 1− exp (−hp(k)θ)) ,

Inewmild,t+h(k) ∼ Binomial (Ipresym,t(k), 1− exp (−h[1− p(k)]θ)) ,

Inewsev,t+h(k) ∼ Binomial (Imild,t(k), 1− exp (−hψ(k))) ,

Inewhosp,t+h(k) ∼ Binomial (Isev,t(k), 1− exp (−hφ1(k)ω(k))) ,

Inewicu,t+h(k) ∼ Binomial (Isev,t(k), 1− exp (−h[1− φ1(k)]ω(k))) ,

Dnew
hosp,t+h(k) ∼ Binomial (Ihosp,t(k), 1− exp {−hτ1(k)}) ,
Dnew
icu,t+h(k) ∼ Binomial (Iicu,t(k), 1− exp {−hτ2(k)}) ,

Rnewasym,t+h(k) ∼ Binomial (Iasym,t(k), 1− exp (−hδ1)) ,
Rnewmild,t+h(k) ∼ Binomial (Imild,t(k), 1− exp [−hδ2(k)]) ,

Rnewhosp,t+h(k) ∼ Binomial (Ihosp,t(k), 1− exp [−hδ3(k)]) ,

Rnewicu,t+h(k) ∼ Binomial (Iicu,t(k), 1− exp [−hδ4(k)]) ,

and

St+h(k) = St(k)− Enewt+h (k),

Et+h(k) = Et(k) + Enewt+h (k)− Inewpresym,t+h(k),

Ipresym,t+h(k) = Ipresym,t(k) + Inewpresym,t+h(k)− Inewasym,t+h(k)− Inewmild,t+h(k),

Iasym,t+h(k) = Iasym,t(k) + Inewasym,t+h(k)−Rnewasym,t+h(k),

Imild,t+h(k) = Imild,t(k) + Inewmild,t+h(k)− Inewsev,t+h(k)−Rnewmild,t+h(k),

Isev,t+h(k) = Isev,t(k) + Inewsev,t+h(k)− Inewhosp,t+h(k)− Inewicu,t+h(k),

Ihosp,t+h(k) = Ihosp,t(k) + Inewhosp,t+h(k)−Dnew
hosp,t+h(k)−Rnewhosp,t+h(k),

Iicu,t+h(k) = Iicu,t(k) + Inewicu,t+h(k)−Dnew
icu,t+h(k)−Rnewicu,t+h(k),

Dt+h(k) = Dt(k) +Dnew
hosp,t+h(k) +Dnew

icu,t+h(k),

Rt+h(k) = Rt(k) +Rnewasym,t+h(k) +Rnewmild,t+h(k) +Rnewhosp,t+h(k) +Rnewicu,t+h(k).

Predictions based on the stochastic discrete age-structured epidemic model will account for two
sources of variability, namely (1) variability coming from the observational process reflected in
uncertainty about the model parameters; and (2) variability introduced by the stochastic process.
An overview of the fixed parameter values, sources (incl. literature), and distributional assumptions
are listed in Table B3 of Appendix B.

2.4 Next generation matrix and basic reproduction number

The basic reproduction number R0 for the proposed compartmental model can be obtained by
means of the next-generation approach [11]. More specifically, the basic reproduction number is
equal to the leading eigenvalue of the next generation matrix, i.e., R0 is

max

{
eigenvalues

(
βasym∆NT

θ
+
pβasym∆NT

δ1
+

(1− p)βsym∆NT

ψ + δ2
+

(1− p)(1− φ0)βsym∆NT

ω

)}
,

where M∆V operates by multiplying the ith row of matrix M with the ith element of column vector V .
Note that the vector N ≈ S(0) denotes the population age distribution (i.e., the number of individuals in
each age group in the population). The time-dependent effective reproduction Rt is obtained by replacing
N with the number of susceptible individuals S(t) at time t.
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2.5 Intervention measures

Intervention measures mainly targeted the reduction of face-to-face contacts as an effective way of breaking
the transmission chains of COVID-19 disease. These measures have led to significant alterations in social
mixing patterns, hence, changing the trajectory of the dynamics of COVID-19. To assess the impact of
these measures, we utilize social contact matrices derived using the online SOCRATES tool [4], developed
for social contact data sharing and assessment of mitigation strategies, and including survey data for various
locations, i.e, home, work, school, transport, leisure and other places. The imposed measures have changed
the contacts made on these respective contact locations and altered disease transmission. Different social
contact matrices are considered to describe the data prior to the lockdown measures and those quantifying
contact patterns after the interventions taken. Different choices with regard to the reduction in social contacts
are as outlined in Table 1 and Appendix C, and their performance in terms of model fit is compared using the
Deviance Information Criterion (see Appendix C for specific details). Note that the choice of the intervention
matrix quantifies the extent of social contact reductions, thereby determining the reduction in the effective
reproduction number following the installment of stringent lockdown measures [12].

Compliance to the intervention measures taken is assumed to be gradual and is therefore modelled in a

Table 1: Different social contact matrices considered to quantify the impact of the intervention
measures on social contact patterns. Percentage of average number of pre-pandemic contacts at
different locations. WT: Work and transport reductions, SC: School closure.

Social contact matrix Work & Transport School closure Leisure & other activities

50% WT & SC 50% Yes 10%

60% WT & SC 40% Yes 10%

70% WT & SC 30% Yes 10%

80% WT & SC 20% Yes 10%

90% WT & SC 10% Yes 10%

flexible way. More specifically, we consider a logistic compliance function

pc(t) =
exp[β∗

0 + β∗
1(t− tI)]

1 + exp[β∗
0 + β∗

1(t− tI)]
,

where tI is the time at which the interventions are initiated. The slope parameter associated with the
compliance function (i.e., β∗

1) is estimated based on the available data.

2.6 Exit strategies

Following the intervention measures that the Belgian government imposed towards limiting the spread of
COVID-19 disease, well-tailored exit strategies are needed in order to enable individuals individuals to resume
their normal social life whilst protecting the health care system from unprecedented pressure leading to
unnecessary loss of lives. Here, we explore and compare possible approaches in lifting imposed measures.
The different aspects within the exit strategies are listed below:

• Progressive lifting of lockdown measures on key sectoral pillars of the economy that require physical
presence for workers/staff while keeping non-essential service providers closed. This will entail progres-
sively re-adjusting the social contact matrices made at work, during travel/transport, and contacts at
other places.

• Gradual re-opening of schools. This will entail re-adjusting the contacts made at school. In line with
the exit strategies adopted in Belgium, various partial re-opening dates are considered and their joint
impact is explored.

• Opening social places like restaurants, retail stores and hotels. This will involve re-adjusting the social
contact matrices for those contacts made during leisure activities, work and transportation as well as
those made at other places.
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Note that the aforementioned exit strategies cannot be looked at independently since, e.g., parents going
back to work will have to rely on childcare/schools to take care of their children. Therefore, we will refer to
exit scenarios rather than individual strategies in the remainder of the paper.

To assess the effectiveness of the individual exit strategies and combined scenarios, several comparisons will
be made as follows: each exit scenario will be compared to a (baseline) situation without changes, and with
each other. More details on the exit scenarios and the translation to the relative number of contacts compared
to the pre-pandemic situation are outlined in Table 2. The different scenarios presented in this table give
rise to a gradual relief of the lockdown measures taken, similar to the current strategy in Belgium:

Phase 1a – May 4: Although remote work remains the norm, business-to-business services and com-
panies that are able to comply with physical distancing measures re-opened;

Phase 1b – May 11: Shops re-opened under strict requirements related to organisation of the work and
restricting access to the store to avoid overcrowding;

Phase 2a – May 18: Schools partially re-opened (first phase - selected grades in primary and secondary
schools);

Phase 2b – June 2: Schools partially re-opened further (second phase - pre-primary schools);

Phase 3 – June 8: Restaurants, bars, and cafes re-opened under strict measures including physical
distancing and a limited number of customers;

These comparisons were mainly made on the basis of the daily number of new hospitalizations and admissions
to the ICU. Furthermore, the implementations thereof in combination with the timing of holiday and school
periods will be studied to explore whether rebound effects will occur, i.e., whether deconfinement results in
subsequent COVID-19 waves.

2.7 Data and estimation procedure

In this section we briefly describe the parameter estimation procedure and different data sources that are
considered to fit the models.

2.7.1 Deterministic model

We first fit the deterministic version of the proposed compartmental model to the initial phase of the epidemic.
More specifically, we fit the model to the daily numbers of new COVID-19 hospitalizations (for all age groups
combined) starting from 1 March 2020 until 22 March 2020 (before intervention measures had an influence
on hospital admissions). We use a likelihood-based approach by assuming

Yt ∼ Poisson

(
K∑
k=0

{
Inewhosp,t(k) + Inewicu,t(k)

})
, (1)

where the realization yt of Yt is the observed total number of new hospitalizations across all age groups at
time (day) t (i.e., within the last 24 hours), and Inewhosp,t(k) and Inewicu,t(k) are the expected number of new
hospitalizations (without ICU) and ICU admissions at time t in age group k, respectively. These expected
numbers are obtained by numerically solving the set of ordinary differential equations. The aforementioned
procedure is used to obtain reasonable starting values for the model parameters in order to initialize the
MCMC sampler (see Section 2.7.4 in fitting the stochastic compartmental model to the available outbreak
data).

2.7.2 Stochastic model

Next to the social contact data used to inform the transmission parameters, three different data sources
are considered when fitting the stochastic compartmental model, namely (1) age-specific data on the daily
number of new hospitalizations (until May 4) [13]; (2) age-specific data on the daily number of new deaths
(excluding deaths in elderly homes) (until May 4) [13]; and (3) serial serological survey data collected during
the epidemic [5]. Belgian hospitals are obliged to report the daily number of new hospitalizations to the
Scientific Institute of Public Health, Belgium (Sciensano), which are made publicly available through an online
platform [13]. Age-specific hospitalization data were collected through the clinical surveillance database of
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Table 2: Exit scenarios considered in combination with the best fitting intervention social contact
matrix without any lifting of the measures taken as the baseline scenario. Differences in contact
percentages in subsequent phases highlighted in bold for each scenario.

Scenario Timing Work & Transport School Leisure & other activities

Baseline – 20% 0% 10%

S1 Phase 1a-1b 30% 0% 20%

S2 Phase 1a 30% 0% 20%

Phase 1b 40% 0% 30%

S3 Phase 1a 30% 0% 20%

Phase 1b 50% 0% 40%

S4 Phase 1a-1b 40% 0% 30%

Phase 2a-2b 40% 20% 30%

S5 Phase 1a-1b 40% 0% 30%

Phase 2a-2b 40% 40% 30%

S6 Phase 1a-1b 40% 0% 30%

Phase 2a-2b 40% 60% 30%

S7 Phase 1a-1b 40% 0% 30%

Phase 2a-2b 40% 20% 30%

S8 Phase 1a-1b 40% 0% 30%

Phase 2a 40% 20% 30%

Phase 2b 40% 40% 30%

S9 Phase 1a-1b 40% 0% 30%

Phase 2a 40% 20% 30%

Phase 2b 40% 60% 30%

S10 Phase 1a-1b 40% 0% 30%

Phase 2a-2b 40% 20% 30%

Phase 3 40% 20% 20%

S11 Phase 1a-1b 40% 0% 30%

Phase 2a-2b 40% 20% 30%

Phase 3 40% 20% 30%

S12 Phase 1a-1b 40% 0% 30%

Phase 2a-2b 40% 20% 30%

Phase 3 40% 20% 40%

COVID-19 hospitalized patients [14]. This database is an ongoing multicenter registry collecting information
on hospital admission related to COVID-19 infection. Patient-specific characteristics are collected through
two online questionnaires: one related to admission and one related to discharge. As the reporting is strongly
recommended by the Belgian Risk Management Group, the reporting coverage is high including more than
70% of all hospitalized COVID-19 cases during the first wave [14]. Based on this information, the weekly age
distribution of hospitalized cases (see Figure D1 in Appendix D) is derived such that the total daily incidence
of hospitalizations is transformed to be age-specific. Reporting of the daily incidence of COVID-19 related
deaths by age within hospitals is mandatory and made publicly available on the Sciensano dashboard [13].
The (serial) serological data is obtained from two data collections (30 March – 5 April, 2020 & 20 April – 26
April, 2020) within a prospective cross-sectional seroprevalence study and based on residual sera obtained
from individuals aged 0-101 years. Seropositivity of the samples is determined based on a semi-quantitative
ELISA test kit (EuroImmun, Luebeck, Germany) measuring IgG antibody concentrations against S1 proteins
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of SARS-CoV-2 in serum (see Appendix E for more details).

The following distributional assumptions are made with regard to the different outcome variables:

Yt+1,k =
24∑
j=1

Yt+(j×h),k ∼ Binomial

 24∑
j=1

Isev,t+((j−1)×h)(k), 1− exp (−hω)

 ,

Zt+1,k =
24∑
j=1

Zt+(j×h),k ∼ Binomial

 24∑
j=1

{
Ihosp,t+((j−1)×h)(k) + Iicu,t+((j−1)×h)(k)

}
, 1− exp (−hτ(k))

 ,

Wt∗,k ∼ Binomial

(
nt∗(k), πt∗(k) =

1

N(k)

t∗∑
t=0

psens(t
∗ − t) {Ipresym,t(k) + Iasym,t(k)}

)
,

where Yt,k and Zt,k represent the number of new hospitalizations and new deaths at time t in age group
k, respectively, relying on the assumption of equal age-specific mortality rates τ1(k) = τ2(k) ≡ τ(k) for
hospitalized patients on general and ICU wards. Since we do not have data on referral within hospitals, we
do not explicitly distinguish between hospitalized and ICU admitted patients in terms of hospital discharge
(including death), although the model is equipped to do so.

Moreover Wt∗,k represents the total number of seropositive individuals in age group k in a cross-sectional
serological collection of residual blood samples performed at time t∗. All individuals tested in age group k
at time t∗, denoted by nt∗(k), have a probability πt∗(k) (i.e., equal to the observed seroprevalence) to be
classified as seropositive accounting for sensitivity of the test psens(to) as a function of time since symptom
onset and assuming perfect specificity of the test. The sensitivity of the test is assumed to follow a logistic
growth curve based on available information in the literature [15]. For more details, the reader is referred to
Appendix E. Weighted seroprevalence estimates are used in the analysis [5].

2.7.3 Model initialization

The number of imported cases (and first generation(s) of infected cases through local transmission) is deter-
mined from the age-specific number of confirmed cases on 12 March 2020. More specifically, given a number
n0(k) of confirmed cases in age group k, the expected number of imported cases in age class k equals

n0(k)

(
1

1− p(k)

)
,

where p(k) represents the asymptomatic fraction in age group k thereby assuming that confirmed cases solely
reflect the proportion of mildly and severely ill individuals. The introduction of the imported cases in the
system is presumed to take place on 1 March following the school holiday period.

2.7.4 Estimation

Model parameters are estimated using a Markov Chain Monte Carlo (MCMC) approach. A two phase method
is considered in which the first phase consists of an adaptive Metropolis-within-Gibbs (AMWG) [16, 17]
and/or adaptive mixture Metropolis-Hastings (AMM) algorithm [17] to achieve stationary samples that seem
to have converged to the target posterior distributions (stationarity is obtained after a maximum of 250,000
iterations). In the second phase, a non-adaptive Random-Walk Metropolis (RWM) algorithm [18] is used
to draw final samples from the posterior distributions. More specifically, 500,000 iterations were conducted
thereby retaining every 100th iteration after discarding an initial burn-in part of 250,000 iterations. An
overview of the different prior distributions is presented in Table B4 of Appendix B. In order to ensure
that plausible parameter values are obtained, logit- and log-transformations are considered depending on the
required range for the different model parameters.

3 Results

In this section, we show the results of fitting the stochastic compartmental model to the data at hand. First of
all, we study the fit to the data and the posterior distributions of the model parameters. Next, we investigate
the age- and time-varying (sero)prevalence derived from the model. Finally, we investigate the impact of
different exit strategies on the resurgence of the COVID-19 epidemic.

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 26, 2021. ; https://doi.org/10.1101/2020.06.29.20142851doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.29.20142851
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.1 Baseline scenario accounting for mitigation strategies

Both the probability of experiencing an asymptomatic infection and the probability of having mild symptoms
upon contracting COVID-19, i.e., p and φ0 are assumed to be age-dependent. The latter is estimated using
a prior distribution based on current literature (see Tables B3 and B4 for more details). The relative
infectiousness of asymptomatic versus symptomatic individuals rβ is fixed at a value of 0.51 [19]. Other
model parameters are either fixed or estimated based on the available data (see Table B3 and Appendix F).

The best fitting model included social contact matrices with an 80% reduction of the normal work and
transportation contacts (α = 0.2 in Appendix C), with no school contacts and with 10% of the regular leisure
contacts and contacts related to other activities. In Figure 2, we graphically depict 25 stochastic realizations
of the hospital admissions and deaths since March 1 based on a thinned chain from the joint posterior
distribution of the model parameters together with pointwise 95% credible intervals derived from stochastic
realizations based on 5000 random draws from the joint posterior distribution of the model parameters. The
figure clearly shows that the observed daily number of hospitalizations and deaths (black dots) are well
described by the model. Furthermore, the estimated age-dependent daily numbers of new hospitalizations
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Figure 2: Stochastic realizations of the compartmental model based on a thinned MCMC chain
from the joint posterior distribution of the model parameters and relying on an ‘asymptomatic’ and
‘symptomatic’ social contact matrix composed of 20% of regular work and transportation contacts,
no school contacts and 10% of leisure contacts and contacts related to other activities. Shaded
areas represent 95% credible intervals. Reported daily number of hospitalizations and deaths are
represented by black circles.

and deaths are graphically depicted in Figure 3 for the 10 age categories.

3.2 Posterior distributions

In Table 3, we present summary measures for the posterior distributions of the most important (implicit)
model parameters including the posterior mean, median, standard deviation and 95% credible intervals (CIs).
An overview of posterior quantities for all model parameters is included in Appendix F).

The basic reproduction number R0 at the start of the epidemic - prior to any government intervention - is
estimated to be 2.900 with 95% CI (2.885, 2.918). On May 4, 2020 the effective reproduction number after
the lockdown was estimated to be 0.738 (95% CI: 0.732, 0.744). The time-dependent effective reproduction
number Rt is shown in Figure F3 of Appendix F. The posterior means for the parameters ω( − 1)(k) are in
line with estimates of the median duration between symptom onset and hospitalization [20]. Furthermore,
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Figure 3: Stochastic realizations of the compartmental model based on a thinned MCMC chain
from the joint posterior distribution of the model parameters and relying on an ‘asymptomatic’ and
‘symptomatic’ social contact matrix composed of 20% of regular work and transportation contacts,
no school contacts and 10% of leisure contacts and contacts related to other activities. Number of
new hospitalizations (left upper and lower panels) and deaths (right upper and lower panels) are
shown for all 10 age groups. Shaded areas represent 95% credible intervals. Reported daily number
of hospitalizations and deaths are represented by circles.

the average length of the incubation and asymptomatic infectious period, ρ−1 and σ−1
asym are estimated to

be 3.481 days (95% CI: 3.304, 3.642) and 6.284 days (95% CI: 5.959, 6.555), respectively, very similar to
values reported in the literature (see Table B3). For individuals experiencing severe symptoms, the average
length of the infectious period, constrained due to isolation in hospital, depends on the age-specific time
between symptom onset and hospitalization. Full compliance to the intervention measures was obtained
after approximately 6 days (see Appendix F).

Boxplots of the marginal posterior distributions of the probability of hospitalization are presented in Figure 4.
The probability of hospitalization increases substantially with increasing age. A decrease in hospitalization
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Table 3: Posterior mean, median, standard deviation (SD) and 95% credible interval for the model
parameters.

Parameter Mean Median 95% credible interval SD

γ−1 1.373 1.369 (1.264, 1.489) 0.056

θ−1 2.108 2.103 (1.912, 2.306) 0.100

δ−11 4.176 4.175 (3.817, 4.458) 0.169

δ∗−12 1.324 1.322 (1.240, 1.403) 0.041

ω−1(1) 6.698 7.050 (2.984, 9.797) 1.874

ω−1(2) 10.963 10.665 (7.180, 16.267) 2.265

ω−1(3) 10.194 10.100 (8.320, 12.482) 1.112

ω−1(4) 6.213 6.216 (5.355, 7.053) 0.458

ω−1(5) 2.968 2.958 (2.704, 3.266) 0.140

ω−1(6) 3.642 3.630 (3.264, 4.107) 0.213

ω−1(7) 2.923 2.925 (2.695, 3.174) 0.121

ω−1(8) 2.657 2.672 (2.322, 2.927) 0.159

ω−1(9) 2.995 2.986 (2.773, 3.242) 0.129

ω−1(10) 3.331 3.286 (2.974, 3.968) 0.252

ρ−1 3.481 3.481 (3.304, 3.642) 0.090

σ−1asym 6.284 6.267 (5.959, 6.555) 0.155

R0 2.900 2.899 (2.885, 2.918) 0.009

probability is observed in age class [80, 90) after which it increases again for individuals of age 90+. However,
the probability of hospitalization, as a proxy of disease severity, is likely time-dependent as well as biased for
the oldest age groups due to differential referral policy in elderly homes or end of life choices in the last will
of severely ill persons. More specifically, the general population essentially consists of two subpopulations,
i.e., a nursing home and non-nursing home population. It is likely that in reality, the nursing home residents
were more often exposed than elderly in the general population of the same age. One other explanation for
the decrease in probability of hospitalization is that nursing home residents (which constitute an important
part of the age group between 80 and 89 years of age) were less likely referred to the hospital (as would
have been the case when they were not living in a nursing home), at least during the initial part of the
epidemic, thereby implying a lower hospitalization probability in that age group. Moreover, persons in age
class [80, 90) living in the non-nursing home population are believed to be in better condition than nursing
home residents of that age, being more frail when suffering from more severe comorbidities. Hence, this could
lower the probability of hospitalization further. Estimated mortality and infection fatality rates are shown
in Figure F4 in Appendix F.

3.3 Estimated age- and time-dependent (sero)prevalence of COVID-19

In Figure 5, we show the estimated and observed seroprevalence on March 30, 2020 (left panel) and on April
20, 2020 (right panel) with 95% credible intervals in gray dashed lines and asymptotic 95% error bars for the
weighted seroprevalence.

The estimated age- and time-dependent prevalence of COVID-19 in the Belgian population is shown in
Figure 6. Clearly, the estimated prevalence is higher in the oldest age groups ([80,90), 90+) which is in line
with the observed seroprevalence, the latter providing a cross-sectional snapshot of the (delayed) build-up
of seropositivity in the population upon infection (see Figure 5). The estimated overall weighted prevalence
of COVID-19 is equal to 0.069 (95% CI: 0.064, 0.073) on May 4, 2020 (black dashed line with gray shaded
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Figure 4: Boxplots of the marginal posterior distributions of the probability of hospitalization by
age group.
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Figure 5: Estimated age-dependent seroprevalence of COVID-19 with 95% credible interval on
March 30, 2020 (left panel) and April 20, 2020 (right panel). Observed seroprevalences are depicted
using red dots with 95% confidence intervals in blue. The confidence interval for the age group
[0, 10) is wide due to the low number of individuals (n = 36).

area).

3.4 Exit strategies

We performed short-term predictions of the dynamics of COVID-19 in the Belgian population through the use
of scenario analyses. In Figure 7, we show the impact of relaxing lockdown measures by increasing contacts
made by people at different locations. More specifically, we present stochastic realizations of the model to
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Figure 6: Estimated time-dependent prevalence of COVID-19 in the different age groups and its
weighted average (right panel; black dashed line - right y-axis) based on 5000 stochastic realizations
given random draws from the joint posterior distribution of the model parameters with 95% credible
intervals (shaded regions).

predict the number of new hospitalizations under different scenarios with changes in contact behaviour as of
May 4, 2020 (Phase 1a, Scenarios S1–S3) and May 11, 2020 (Phase 1b). From May 4 onward, we presume
that work-related contacts will increase from 20% (baseline scenario - see Table 2) to 30% of the pre-pandemic
number of contacts at work (or transmissibility is reduced to an extent equivalent with the assumed reduction
in work-related contacts), and that the number of transport contacts and contacts during leisure and other
activities will increase respectively from 20% to 30% and from 10% to 20% of their pre-pandemic values. On
top of that, work, transport and leisure contacts stay constant (scenario S1) or increase to 40%, 40% and 30%
(S2) or 50%, 50% and 40% (S3) of the pre-pandemic values, respectively, from May 11 onward. Moreover, a
delay of one week is considered for each change in social contact behaviour (i.e., a full extent of all changes in
behaviour is reached on May 18, 2020). A small to moderate increase in the contacts at work, transportation
and during leisure (blue and purple scenarios) leads either to a complete reduction of hospitalizations or a
constant number of new hospitalizations over time. Only the most extreme increases in contacts give rise to
a resurgence of COVID-19 implying a second wave of COVID-19 infections (scenario S3 - orange lines).

A partial re-opening of schools as of May 18 (Phase 2a) is studied in detail in Figure 8. Work- and transport-
related contacts and contacts during leisure and other activities increase as of May 4. School-related contacts
are assumed to be 20% (S4 - blue lines), 40% (S5 - purple lines) or 60% (S6 - orange lines) of such contacts
prior to the epidemic. This increase in school-related contacts is imposed between May 18, 2020 and July
1, 2020. The start of the summer holiday on July 1, 2020 implies a reduction of all school-related contact
to 0%. A partial re-opening of schools in combination with a moderate increase in work, transportation and
leisure activities leads to a small to moderate increase in the number of new hospitalizations after lockdown
measures are relaxed.

Finally, we investigate long-term predictions of subsequent COVID-19 waves for a selection of possible exit
scenarios (Figure 9). In those scenarios, we mimic the timing of the Belgian exit strategy. More specifically,
schools are partially re-opened on May 18 and June 2, 2020 yielding 20% of school contacts as of May, 18
(S7), an increase from 20% to 40% or 60% of school contacts between May 18 and June 2 for scenarios S8
and S9, respectively. Schools are closed during the vacation period starting from July 1, 2020 until August
31, 2020. We assume that contact behaviour at schools following partial re-opening on September 1, 2020
is equivalent to 60% of the pre-pandemic social contacts made at school. In the lower panel of Figure 9,
scenarios S10–S12 show the impact of an increase of leisure contacts to 20%, 40% or 60% of pre-pandemic
leisure contacts as of June 8, while assuming school-related contacts to be equal to 20% upon Phases 2a and
2b. Under the assumption of unadapted behaviour given a contact, we observe that due to an insufficient
depletion of susceptibles during a second wave of COVID-19 infections (or a phase with a stable daily number

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 26, 2021. ; https://doi.org/10.1101/2020.06.29.20142851doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.29.20142851
http://creativecommons.org/licenses/by-nc-nd/4.0/


Calendar time

N
ew

 h
os

pi
ta

liz
at

io
ns

Mar 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sept 1

0
50

0
10

00
15

00

Baseline
S1: 30% Work & Transport; 0% School; 20% Leisure & Other (Phase 1b)
S2: 40% Work & Transport; 0% School; 30% Leisure & Other (Phase 1b)
S3: 50% Work & Transport; 0% School; 40% Leisure & Other (Phase 1b)

Figure 7: Impact of various exit strategies in terms of the number of work- and leisure-related
contacts on the number of new hospitalizations in the absence of re-opening of schools.
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Figure 8: Impact of partial re-opening of schools on the number of new hospitalizations.

of new hospitalizations) a large increase in the number of new hospitalizations will occur by the end of the
year with a higher peak size if the one of the second wave (or the plateau level) was lower. The cumulative
number of hospitalizations over time is presented in Appendix F. Moreover, leisure contacts are important in
determining the peak size of the wave at the end of the year (lower panel of Figure 9). In Figure 10, boxplots
of the estimated prevalence over time is shown for scenarios S7–S9 and age groups [0, 10), [30, 40), [60, 70),
90+. The largest increase in prevalence between May 1 (baseline) and December 1, 2020 is observed in the
highest age category with an average increase ranging between 36.5% and 38.4% across different scenarios.
In all age categories, the increase in prevalence is smallest for scenario S7 and highest for scenario S9.
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Figure 9: Long-term predictions of the impact of various exit strategies on the number of new
hospitalizations.

3.5 Validation of the model

Validation of the model is done based on (1) data on new hospitalizations and deaths following the relaxation
of the lockdown measures, (2) serological survey data collected in a third round and (3) infection fatality
derived from Belgian mortality data [21]. In Figure 11, we show stochastic realizations under the baseline
scenario (without change in social contact behaviour after lockdown measures are relaxed) overlaid with new
data points after May 4, 2020 (black solid circles). In general, the stochastic model describes the observed
data well, even in the absence of changes in contact behaviour after intervention measures were relaxed.
Although the observed number of hospitalizations tends to remain constant, thereby deviating from a further
decrease thereof in the baseline scenario, no large differences between observed and predicted values are
found. Following the gradual relief of the intervention measures, no resurgence of the disease is noticeable to
date (end of June).

Next, the estimated seroprevalence based on the model is related to the one obtained from a third cross-
sectional serological survey. Data was collected in a third round, after the initiation of the gradual relaxation
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Figure 10: Predictions of the prevalence in exit scenarios S7–S9 for age group [0, 10) (top row),
[30, 40) (row 2), [60, 70) (row 3) and 90+ (bottom row). Increments in prevalence compared to the
prevalence on May 1, 2020 is added on top of the boxplots.
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Figure 11: Stochastic realizations based on the baseline scenario (without change in contact be-
haviour upon relaxing the stringent lockdown measures) for the number of new hospitalizations
(left panel) and the number of new deaths (right panel) together with observed data points used
for fitting (black open circles) and for validation (black solid circles).

of the stringent measures, between May 18, 2020 and May 25, 2020. The overall weighted seroprevalence was
estimated to be 6.87% (95% confidence interval: 5.89%, 8.01%) [5]. In our model, the posterior mean of the
seroprevalence is 6.8% with 95% credible interval (6.4%, 7.2%) which is similar to the aforementioned values.
Furthermore, the estimated infection fatality rates (IFRs) (see Appendix F) are in line with those reported
by Molenberghs et al. (2020) [21]. These authors report an overall IFR of 0.43% (95% confidence interval:
0.30%, 0.62%) in the non-nursing home population whereas our model suggests a posterior mean of 0.507%
(95% CI: 0.480%, 0.536%) which is nicely in line. Age-specific IFRs are presented in Appendix F.
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4 Discussion

In this manuscript, we used a stochastic age-structured discrete time epidemic transmission model fitted to
daily hospital admission, COVID-19 related mortality data and serial serological survey data with regard to
SARS-CoV-2 antibody presence to describe and study COVID-19 disease dynamics in the Belgian population.
As age-specific heterogeneity has been proven to be of great importance in terms of transmission, clinical
presentation and mortality for COVID-19, our model explicitly accounts for such age differences informed by
age-specific data. Consequently, our model enables a more granular investigation of disease dynamics and
the impact of intervention measures targeting specific age groups. Model predictions of, for example, the
time-dependent prevalence in the population can be made for different age groups, which is especially relevant
to assess whether herd immunity levels are reached in age groups at the highest risk for severe disease.

Using this model, we evaluated the expected impact of the lockdown and exit strategies for the control
of COVID-19 transmission in the population. The basic reproduction number prior to lockdown was esti-
mated to be 2.900 (2.885, 2.918) which is in line with estimates for the epidemic growth in Europe prior
to the implementation of nationwide intervention measures and epidemiological modeling in different coun-
tries [22, 23, 24, 25, 26, 27], based on recent meta-analytic results [28, 29] and on other modeling exercises
specifically tailored to the Belgian setting [30, 31]. Moreover, the intervention measures taken clearly flat-
tened the epidemic curve followed by a progressive reduction of the number of (confirmed) cases over time
and the number of new hospitalizations. The decrease in average number of contacts implied a substantial
reduction in reproduction number Rt = 0.738 (95% CI: 0.732, 0.744) on May 4, 2020.

The proposed mathematical model is a ‘living’ model used for real-time modeling of the Belgian epidemic
and for long-term predictions focusing on, among other things, determining a purchase strategy for medical
supplies. Needless to say, the model is updated progressively as new data becomes available and extensions
towards improving the model and incorporating up-to-date information are considered in future research.
Although several scenarios have been displayed, the single scenario which will unfold in reality in the next
weeks and months is driven by unpredictable human behaviour and governmental decisions in case of a resur-
gence of the disease. Nevertheless, displaying and investigating a range of potential scenarios is crucial in
quantifying the impact of certain imposed changes, and of key importance to guide policy makers to shape
exit strategies.

Based on the various scenarios presented here, one can conclude that a small to moderate level of transmis-
sion in the upcoming months leads to an increased risk of having a large-scale resurgence of the disease later
on. In such a situation, a high number of new hospitalizations will be reported with a peak size which is
inversely related to the level of sustained transmission in the period preceding the wave of new COVID-19
infections. Lifting the stringent lockdown measures without adequate exit strategies put in place would in-
evitably have led to a large increase in the number of new infections as the population immunity is still too
low to rely on herd immunity (see, e.g., estimated seroprevalence in Figure 5). This signals an insufficient
depletion of susceptibles in order to prevent subsequent COVID-19 outbreaks in the future. Our scenario
analyses present both short and long-term predictions of new waves based on the current levels of population
immunity. However, to date, both the level of protection against infection in the presence of IgG antibodies
against SARS-CoV-2 as well as the extent of the (humoral and cellular) immune response in relation to the
symptoms of the infected person are still very unclear [5]. In the model, we assume that acquired immunity
after recovery lasts for the entire time period under study.

Our work suffers from several limitations. The uncertainty regarding the estimate of the reproduction num-
ber on May 4 arises solely from the uncertainty regarding the pre-lockdown reproduction number, given the
fact that the uncertainty with regard to the impact of the lockdown (in terms of social contact behavior and
non-pharmaceutical interventions) depends on the contact matrix used, hence, this source of variability is
absent after selecting the “intervention” contact matrix that provides the best fit to the data. Needless to
say, quantification of the effect of the lockdown on the reproduction number compared to the pre-lockdown
reproduction number is only possible by assuming the contact behavior prior to the lockdown to be fixed and
by having the proportionality factor q in the social contact hypothesis to be time-invariant [12]. In our model,
the reduction in transmission of COVID-19 is completely attributed to a reduction in social contacts rather
than changes in transmissibility due to e.g., use of masks, keeping distance when contacting persons, etc.
However, since social contact data collected during the pandemic was unavailable at the start of this project,
we were unable to disentangle these effects. A social contact survey (CoMix) done during the lockdown in
Belgium measured a reduction of 80% in the overall number of contacts with respect to the pre-lockdown
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situation [32]. The contact matrix of our best fit model implies an overall median reduction in number of
contacts of approximately 75%, so comparable in magnitude. In future work, we will use these social contact
data collected in Belgium within the EpiPose project [32] to quantify the impact of the lockdown and its
relief on the number of contacts made.

Second, in our model, pre- and asymptomatic individuals on the one hand and persons with mild and severe
symptoms (before hospitalization) on the other hand are presumed to have a similar level of infectiousness
thereby contributing in the same way to the transmission process. Patients suffering from severe disease prob-
ably reduce their contacts more than those with mild disease [33], but the associated reduction in contacts
may be compensated by greater infectivity per contact, as more severely affected patients are likely more
infectious (i.e., due to a higher viral load) [34]. Moreover the clinical presentation of the disease and disease
progression is not uniform with highly variable delay distributions between infection, symptoms, hospitalisa-
tion and death. For instance, some individuals with mild symptoms may enjoy a symptom-free intermediate
period after which (more severe) symptoms reappear, and immediate hospitalization may be required [35]. In
our model, isolation (and treatment) of hospitalized individuals is assumed to lead to a complete reduction
in ability to spread the infection. Nevertheless, the contribution of these nosocomial infections is believed to
be very limited.

Our model assumes a (potential) differential length of infectiousness between individuals with no symptoms,
mild symptoms and those with severe symptoms. This assumption is supported by the faster viral clearance
of asymptomatic individuals and individuals with mild symptoms and those individuals with a larger viral
load thereby experiencing more severe symptoms [34, 36]. For symptomatic individuals, however, the average
duration in the respective I-compartments (Imild and Isev) before moving to compartment R or before being
isolated in the hospital (for the severe cases) is a proxy for the (average) duration until individuals completely
isolate themselves to prevent subsequent transmission (although they could still be infectious when doing
so), rather than being equal to the average infectious period.The correspondence between differential infec-
tious periods depending on symptom severity on the one hand and the serial and generation interval on the
other hand is complicated by the fact that the latter quantities depend on both a viral shedding component
(linked to infectiousness) and a contact component (which is subject to behavioral change when displaying
symptoms) [37]. A theoretical assessment of the link between the serial and generation interval on the one
hand and the duration of infectiousness for asymptomatic, mildly infected and severely infected individuals
is considered beyond the scope of this manuscript.

The severe compartment in the stochastic model is used as a way to induce a non-exponential delay (gen-
eralized Erlang delay distribution) between time of first symptom onset and hospitalization. Faes et al.
(2020) [20] showed that the time between symptom onset and hospitalization is indeed non-exponentially
distributed, albeit that the best fitting distribution (i.e., a Weibull one) is difficult to incorporate in this
modeling framework. As important aspects of the transmission dynamics and the disease are still uncertain,
some of the simplifications made in the model will be revisited and updated as biomedical insights improve
(e.g., regarding potential seasonality in COVID-19 transmission). As a result of limited information with re-
gard to hospital discharge, the model is currently not able to directly predict the burden on hospital capacity.
This will be particularly relevant for surveillance of pressure on the healthcare system in future COVID-19
waves. However, based on the model output in terms of new hospitalizations and information with respect
to length of hospital stay, an indirect calculation thereof is straightforward. In the current analyses, we did
not distinguish between hospitalization of individuals in elderly homes and individuals from the general pop-
ulation, nor between deaths in hospitals and nursing homes, mainly due to the lack of detailed information
to do so. Our model therefore focuses on the general population. Next to that, we disregard potentially
important factors such as seasonality (i.e., induced by changes in temperature, humidity, exposure of the
virus to ultraviolet light, etc.) entailing an impact on social behaviour and transmission potential of the
virus to an extent that is largely unknown to date [38, 39]. Finally, in the scenario analyses presented in
this paper, we assume that no external re-importation of the disease in the population occurs, albeit that
the stochasticity of the model is able to account for this, at least to a limited extent.

Several mathematical approaches have been considered in the context of the SARS-CoV-2/COVID-19 epi-
demic in Belgium, all having different merits and limitations [31, 30]. For example, the individual-based
model by Willem et al. [31] enabled the direct study of contact tracing and case isolation as a control mea-
sure. The meta-population model by Coletti et al. [30] studied the impact of mobility on disease transmission.
This stochastic model enabled the detailed fitting to age-specific serology and incidence data using MCMC.
As there is no single best model to study all possible research questions related to the spread and control
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of the disease, we compared model outputs and conclusions, as their predictions need continuous finetuning
and validation [40, 41]. In conclusion, predictions from our model are useful to inform subsequent serological
sample studies and to explore various exit scenarios with respect to disease transmission as an input for the
investigation of the economic impact of COVID-19 epidemics on society.
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A Terminology

In Table A1, we present an overview of the different states and the terminology used throughout
the manuscript.

Table A1: Notations related to the compartments in the model

State Description

S(t) Susceptible individuals

E(t) Infected individuals not being infectious yet

Ipresym(t) Individuals pre-symptomatically infected

Iasym(t) Asymptomatically infected individuals

Imild(t) Infected individuals with mild symptoms

Isev(t) Infected individuals with severe symptoms requiring hospitalization

Ihosp(t) Hospitalized individuals

Iicu(t) Individuals admitted to intensive care unit

D(t) Number of deaths

R(t) Recovered individuals

B Model parameters

In this appendix, we provide a detailed overview of the different assumptions related to the trans-
mission process and the change in behaviour upon (severe) symptomatic infection.

B.1 Susceptibility and infectiousness in children

Until recently, there was no (conclusive) evidence of differential infectiousness and/or susceptibility
to COVID-19 infection in children. Some authors claimed that no significant differences in viral
load were present between (symptomatic) children and adults, even after revising their work [1].
A re-analysis of these (initial) findings by Held and McConway and Spiegelhalter [2, 3], however,
clearly shows that children between 1 and 10 years old have on average only 27% (95% CI: 8% -
91%) of the viral load of adults aged 20 years or more. For the mathematical model proposed here,
we do not differentiate between infectiousness and susceptibility in children as compared to adults
directly [4]. However, as children are presumed to be more likely to have a higher probability of being
asymptomatically infected (see Section B.2), and the relative infectiousness of asymptomatic versus
symptomatic individuals rβ is (assumed) equal to 0.51 [5], children are implicitly less infectious,
hence, contribute less to the transmission process relative to adults.

B.2 Age-dependent proportions of asymptomatic cases

The age-dependent proportions of asymptomatic cases, represented by the vector p, are based on
a study by Wu et al. (2020) [6]. More specifically, we use the age-specific relative susceptibility to
symptomatic infection reported by Wu et al. (2020) [6] to inform the proportion of asymptomatic
cases. In order to do so, we start from an overall age-weighted proportion of asymptomatic cases
in the Belgian population equal to 50% [6] implying that

p = (0.94, 0.90, 0.84, 0.61, 0.49, 0.21, 0.02, 0.02, 0.02, 0.02)T .

Although we are fixing the age-dependent proportions of asymptomatic cases in the model, we do
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Figure B12: Relative susceptibility to symptomatic infection as a function of age (in years) reported
by Wu et al. (2020) [6] (left panel) and the proportion of asymptomatic cases by age relying on the
assumption of 50% of asymptomatic infections.

allow for differential probabilities of hospitalization through the specification of an age-dependent
probability of only having mild symptoms upon being symptomatic. The reason for this constraint
is the fact that based on the available data, we cannot disentangle the age-specific probability of
being asymptomatic from the probability of having mild symptoms.

B.3 Symptom severity upon symptomatic infection

In Table B1, the proportion of hospitalizations and ICU admissions are reported for COVID-19
cases by age group in the United States (between February 12 - March 16, 2020) [7].

Table B1: Hospitalization and Intensive Care Unit (ICU) admission percentages (%) for reported
COVID-19 cases by age group based on data from the USA, February 12 - March 16, 2020 [7].

Age group Hospitalization Average ICU Average Age group φ0 φ1

0-19 1.6-2.5 2.05 0.0 0.00 [0,10) 98.0 100.0

20-44 14.3-20.8 17.55 2.0-4.2 3.10 [10,20) 98.0 100.0

45-54 21.2-28.3 24.75 5.4-10.4 7.90 [20,30) 79.0 85.0

55-64 20.5-30.1 25.30 4.7-11.2 7.95 [30,40) 79.0 85.0

65-74 28.6-43.5 36.05 8.1-18.8 13.45 [40,50) 67.0 76.0

75-84 30.5-58.7 44.60 10.5-30.0 20.25 [50,60) 67.0 76.0

≥ 85 31.3-70.3 50.80 6.3-29.0 17.65 [60,70) 50.0 73.0

[70,80) 35.0 69.0

Total 20.7-31.4 26.05 4.9-11.5 8.20 [80,100) 32.0 74.0

In our model, we estimate the age-specific probability of developing only mild symptoms φ0. Fur-
thermore, the probabilities φ1 are fixed to the values reported in Table B1. Note that if, for example,
φ1(k) = 0.75 and φ0(k) = 0.8, representing the probability of hospitalization conditional on having
severe symptoms and the probability of having mild symptoms in age group k, then the probability
of hospitalization in symptomatic individuals is equal to 0.2 × 0.75 = 0.15. Since we lack detailed
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age-specific information about the relative proportions of ICU admissions as compared to the to-
tal number of hospitalizations, and data on referral between ICU and hospital wards throughout
hospital stay, we are not able to inform φ1.

B.4 Case fatality rates - Probability of dying upon hospitalization

Age-dependent case fatality rates have been adopted from Riou et al. (2020) [8] which were esti-
mated from outbreak data obtained in Hubei, China in the period January to February. In Table B2,
we present these age-specific case-fatality rates µ̃(k) (number of deaths relative to confirmed cases).
In our analysis, the rates µ(k) are rather representing the probability of dying upon hospitalization
(deaths relative to number of hospitalized individuals), taken to be equal for hospitalized individu-
als and critically ill individuals (i.e., µ(k) ≡ µhosp(k) = µicu(k)), which also relates to the inability
of disentangling hospitalization from ICU admission based on the available data. In the stochastic
model, however, we estimate these rates µ(k) from the available mortality data. Due to the low
number of deaths in young age categories, we assume that µ(1) = 0 and µ(2) = µ(3), comprising
parameters to be estimated from the data. A complete list of model parameters with reference
values is presented in Table B3.

Table B2: Age-dependent case-fatality rates.

[0-10) [10-20) [20-30) [30-40) [40-50) [50-60) [60-70) [70-80) [80-90) [90, ∞)

0.000094 0.00022 0.00091 0.0018 0.004 0.013 0.046 0.098 0.18 0.18

B.5 Overview of epidemiological and model parameters

An overview of important epidemiological parameters related to SARS-CoV-2/COVID-19 transmis-
sion dynamics is provided in Table B3 together with relevant sources. Some of these parameters are
directly or indirectly included in the modeling approach. In the last column we indicate whether
these parameters are estimated or fixed in the estimation procedure. A detailed overview of all
model parameters can be found in the next subsection.

B.6 Prior distributions

In Table B4, we present an overview of the prior distributions considered for the various model
parameters.
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Table B3: List of epidemiological parameters; ∗: for asymptomatic individuals only.

Notation Description Value Source Model

ρ−1 Average length of incubation period 5.2 (4.1, 7.0) [5] Estimated
5.2 days [9]
5 days [10]
4 days [11]

γ−1 Average length of latency period 2 days – Estimated

θ−1 Average length of pre-symptomatic 3.2 days ρ−1 − γ−1 Estimated
infectious period

σ−1 Average length of infectious period 4.5 days [12] –
5 days∗ [13]
6 days∗ [14]
5–7 days [4, 15]
9.3 (7.8, 10.0) [16]

ω−1 + δ∗−12 Average time between (severe) symptom 5.9 (0.8, 11.0) [17] Estimated
onset and hospitalization 2.7 (1.6, 4.1) [10]

3 – 10.4 [18]

δ−11 Average length of infectious period when 3.5 days – Estimated
asymptotically infected (after pre-symptomatic
phase)

δ∗−12 Average length of infectious period when 3.5 days – Estimated
mildly infected (after pre-symptomatic phase)

δ∗−13 Recovery period of hospitalized individuals – 11.5 (8.0, 17.3) [19] Estimated
length of stay in the hospital 13.3 (7.3, 19.3) [17]

δ∗−14 Recovery period of critically infected in ICU – 14 days – Estimated
length of stay in ICU

p Proportion of asymptomatic cases 0.42 (0.17, 0.67) [20, 21] Fixed
0.35 (0.30, 0.39) [22]

1− φ0 Proportion of symptomatic cases 0 (children) [23] Estimated
developing severe to very severe symptoms 0.1 (adults) [24]

0.2 (seniors) [25]
0.2 (constant) –

φ0 Proportion of symptomatic cases 1− (1− φ0) – Estimated
developing only mild symptoms

1− φ1 Proportion of hospitalized persons 0.25 (constant) – Fixed
requiring ICU admission

rβ Relative infectiousness of pre-symptomatic 0.51 [5] Fixed
and asymptomatic individuals

R0 Basic reproduction number 2.24 (1.96, 2.25) [26] Estimated
2.35 (1.15, 4.77) [27]
2.36, 2.5 [28, 29]
3.00 (2.80, 3.20) [30]
3.00 (2.60, 3.30) [31]
3.10 (2.90, 3.20) [32]
3.60 (3.49, 3.84) [33]
3.60 (3.20, 4.20 [34]
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Table B4: Prior distributions for the model parameters.

Baseline scenario

Parameter Prior distribution # parameters

γ N(0.500, 0.0502) 1

θ N(0.286, 0.0502) 1

δ1 N(0.286, 0.0502) 1

δ∗2 Un(0, 1) 1

δ∗3 Un(0, 1) 1

ω(k) Un(0, 1) 10

β∗1 Un(0, 5) 1

φ0(k) Un(0, 1) 10

µ(k) Un(0, 1) 8

R0 N(2.500, 0.1002) 1

C Social contact data

C.1 Baseline contact matrices

The contact matrices for the asymptomatic individuals (Casym) is taken to be equal to the general
contact matrices collected in the Belgian survey in 2010–2011. Thus we assume that individuals
do not change their contact behaviour when being asymptomatically infected with COVID-19.
The overall contact matrix is the sum of the contact matrices encompassing contacts made at the
following locations: home, work, school, transportation, leisure and other places.

Thus Casym is obtained as follows:

Casym = Chome +Cwork +Cschool +C leisure +Ctransport +Cother

In Figure C1, we graphically depict the social contact matrix Casym in terms of the average number
of daily contacts for individuals of different age groups contacting each other. The contact matrices
for symptomatic individuals are obtained by re-scaling the matrix Casym in the respective locations
by the relative change in the number of contacts observed by Van Kerckhove et al. [35] during
the 2009 A/H1N1 pandemic Influenza in England. Hence, we presume that social contacts are
adapted in a similar way in the Belgian population upon contracting the disease and experiencing
symptoms. Thus, Csym is defined as a weighted sum of the aforementioned contact matrices at
specific locations, i.e.,

Csym = Chome + 0.09Cwork + 0.09Cschool + 0.13Ctransport + 0.06C leisure + 0.25Cother

C.2 Intervention contact matrices

The contact matrices for the asymptomatic individuals during the lockdown depend on the inter-
vention considered (see Table 1). The contact matrices made in all locations are changed except for
the one accommodating contacts made at home. The framework of assigning relative reductions to
the social contact matrices obtained at the different locations can be illustrated as follows:

Casym = Chome + αCwork + αCtransport + βCschool + ρC leisure + ρCother,

where 1 − α represents the percentage of telework considered (people working from home and/or
who have stopped working), β represents the percentage of school contacts retained (hence, 0 in
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Figure C1: Average number of contacts per day between individuals of different age classes - social
contact matrix Casym based on the social contact data from Belgium anno 2010–2011.

case of school closure), ρ represents the fraction of contacts during leisure and other activities that
are still made given the imposed measures targeting physical distancing. The contact matrices of
the symptomatic Csym are obtained in a similar manner:

Csym = Chome + α (0.09Cwork + 0.13Ctransport) + 0.09βCschool + ρ (0.06C leisure + 0.25Cother) .

All location-specific contact matrices from the Belgian social contact survey in 2010 are directly

Figure C2: Average number of contacts per day between individuals of different age classes -
social contact matrix Casym based on the social contact data from Belgium anno 2010–2011 after
intervention measures are imposed according to the 80% TW & SC scenario outlined in Table 1.

available at http://www.socialcontactdata.org/socrates/.

The performance of the matrices presented in Table 1 are compared based on the Deviance Infor-
mation Criterion (DIC), introduced by Spiegelhalter et al. [36] to compare the relative fit of a set of
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Bayesian hierarchical models. DIC is a relative measure balancing goodness-of-fit and complexity
of a model and is based on the deviance. An overview of the respective DIC-values related to the
different choices of the intervention contact matrices is presented in Table C5.

Table C5: Deviance Information Criterion (DIC) values for the different social contact matrices
considered to quantify the impact of the intervention measures on social contact patterns. Percent-
age of average number of pre-pandemic contacts at different locations. WT: Work and transport
reductions, SC: School closure.

Social contact matrix Work & Transport School closure Leisure & other activities DIC

50% WT & SC 50% Yes 10% 12930.98

60% WT & SC 40% Yes 10% 12896.75

70% WT & SC 30% Yes 10% 12459.82

80% WT & SC 20% Yes 10% 11577.97

90% WT & SC 10% Yes 10% 12477.25

D Hospitalization incidence data

In Figure D1, we depict the weekly age distribution of hospitalized cases derived from the clinical
surveillance database of COVID-19 hospitalized patients during the first wave of COVID-19 in
Belgium. As mentioned in the main text, the day of introduction is considered to be March 1, 2020.
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Figure D1: Weekly age distribution of hospitalized patients in Belgian hospitals during the first
COVID-19 wave in Belgium.

E Serological survey data

We use serial serological survey data collected during two cross-sectional periods and based on
residual samples coming from 10 private laboratories [37]. Serological survey data is collected
at different cross-sectional sampling times and blood samples are tested for the presence of IgG
antibodies against the SARS-CoV-2 virus. Consequently, individuals are classified as seronegative,
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equivocal or seropositive based on their measured IgG antibody concentration against S1 proteins
of SARS-CoV-2 obtained from the EuroImmun semi-quantitative ELISA test kit (EuroImmun,
Luebeck, Germany). The age-specific seroprevalence is derived as the proportion of seropositive
individuals in each age class.

In order to relate the model-based prevalence of COVID-19 in the population to the observed
seroprevalence, we assume that the seroprevalence at calendar time t and age a is denoted by
π(a, t) and that IgG antibodies against SARS-CoV-2 are detectable upon infection according to the
following logistic function:

psens(t0) = expit(β0 + β1t0) =
exp(β0 + β1t0)

1 + exp(β0 + β1t0)
,

where psens(t0) represents the probability of having a sufficiently high IgG antibody concentration
to indicate past SARS-CoV-2 infection. The sensitivity of the diagnostic tests is considered to be a
function of the time since symptom onset t0 (at least in the presence of symptoms), i.e. sensitivity
of the diagnostic testing procedure as a function of time since onset of symptoms presuming a
sensitivity of zero prior to symptom onset. In this modeling approach, we rely on estimates of
the sensitivity curve obtained from the literature [38], reaching a sensitivity of 99% 14 days after
symptom onset, albeit that sufficient information regarding the sensitivity of the specific diagnostic
test in use is currently lacking. In this exercise, specificity of the test is presumed to be very high
(100%), implying no false positive test results. A lower specificity would lead to more false positive
cases, thereby overestimating the seroprevalence as compared to the true underlying prevalence in
the population. Since the model is calibrated on hospitalization data, the increase in false positives
would imply an underestimation of the probability of hospitalization and an overestimation of the
total number of infected cases in the population (the so-called dark number). However, we do
believe that the general conclusions with regard to the impact of exit strategies on the burden of
the healthcare system through the number of hospitalizations and deaths are not affected by this
lower specificity, especially since there is little acquired immunity.

The total number of individuals of age a at the time of data collection t (expressed as days since
the start of the epidemic) in the population that will test positive can be written as:

np(a, t) =
t∑

j=0

psens(j)
{
Inewsym,t−j(a) + Inewasym,t−j(a)

}
,

where Inewsym,t(a) and Inewasym,t(a) refer to the number of new individuals of age a with symptom
onset at time t and the number of individuals of age a entering the asymptomatic state at time t,
respectively. Although still uncertain to date, asymptomatic individuals are presumed to be similar
to symptomatic ones in terms of their humoral immune response following exposure to the SARS-
CoV-2 virus.

More recently, Borremans et al. (2020) [39] showed that IgG antibody detection probabilities
increase with time since symptom onset, implying that nearly all (98–100% of) individuals had
detectable antibodies by day 22–23 after symptom onset. Although detection probabilities are
estimated based on different assays, these authors showed that all assays exhibit comparable growth
rates except for a slower increase in antibody levels for IgG ELISA-Spike assays. As a sensitivity
analysis, we show the impact of altering the logistic sensitivity curve psens(t0) (black line) with a
delayed 99% detectability of IgG antibodies in line with the aforementioned findings by Borremans
et al. (2020) (red line in Figure E2) in Appendix F.
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Figure E2: Presumed sensitivity curves with time since onset of symptoms. The black solid line
represents the sensitivity curve constructed based on results in Lou et al. (2020) [38] and the red
line is based on the findings by Borremans et al. (2020) [39].

F Additional results

F.1 Posterior summary measures

Here, we present an overview of the posterior mean, median and 95% credible intervals (CIs) for
all model parameters, and parameters derived thereof, in the final model (Table F1). In total,
the final model has 35 parameters. As mentioned in Appendix B, the vectors defining the age-
specific probability of being asymptomatic p and the probability of regular hospitalization versus
ICU admission φ1 are fixed, δ2 = φ0δ

∗
2 and ψ = (1 − φ0)δ

∗
2 . Moreover, δ3 = δ4 = (1 − µ)δ∗3 and

τ 1 = τ 2 = µδ∗3 . Note that µ(1) is fixed to zero as there are no deaths observed in the age group
[0, 10) and µ(2) = µ(3) given the very small number of deaths in age groups [10, 20) and [20, 30).
Furthermore, q is an implicit model parameter governing the extent of R0. Prior distributions for
all 35 model parameters are listed in Table B4.

F.2 Number of individuals in different compartments

In Figure F1, the evolution of the proportions of susceptible, exposed, pre-symptomatic, asymp-
tomatic, mildly infected and individuals with severe symptoms (prior to hospitalization) are shown
by age group until May 4, 2020.

F.3 Compliance to intervention measures

The compliance to the intervention measures is modelled using a logistic curve which is depicted in
Figure F2. Full compliance to the measures is reached after approximately 6 days.
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Table F1: Posterior mean, median and 95% credible interval for the model parameters; CI: credible
interval.

Parameter Mean Median 95% CI Parameter Mean Median 95% CI

q 0.051 0.051 (0.049, 0.54) δ1 0.240 0.240 (0.224, 0.262)

γ 0.729 0.730 (0.672, 0.791) δ∗2 0.756 0.756 (0.713, 0.806)

θ 0.475 0.476 (0.434, 0.523) δ∗3 0.185 0.185 (0.171, 0.200)

β∗1 1.404 1.401 (1.283, 1.551) R0 2.900 2.899 (2.885, 2.918)

φ0(1) 0.972 0.972 (0.968, 0.975) φ0(6) 0.971 0.971 (0.969, 0.972)

φ0(2) 0.992 0.992 (0.991, 0.993) φ0(7) 0.958 0.958 (0.956, 0.960)

φ0(3) 0.984 0.984 (0.982, 0.985) φ0(8) 0.926 0.926 (0.922, 0.929)

φ0(4) 0.987 0.987 (0.986, 0.988) φ0(9) 0.956 0.956 (0.954, 0.958)

φ0(5) 0.977 0.977 (0.975, 0.978) φ0(10) 0.926 0.926 (0.921, 0.930)

ω(1) 0.167 0.142 (0.102, 0.335) ω(6) 0.275 0.275 (0.244, 0.306)

ω(2) 0.095 0.094 (0.061, 0.139) ω(7) 0.343 0.342 (0.315, 0.371)

ω(3) 0.099 0.099 (0.080, 0.120) ω(8) 0.378 0.374 (0.342, 0.431)

ω(4) 0.162 0.161 (0.142, 0.187) ω(9) 0.334 0.335 (0.308, 0.361)

ω(5) 0.338 0.338 (0.306, 0.370) ω(10) 0.302 0.304 (0.252, 0.336)

µ(1) – – – µ(6) 0.068 0.068 (0.060, 0.076)

µ(2) 0.005 0.005 (0.001, 0.011) µ(7) 0.183 0.184 (0.170, 0.195)

µ(3) 0.005 0.005 (0.001, 0.011) µ(8) 0.325 0.325 (0.310, 0.340)

µ(4) 0.024 0.024 (0.017, 0.033) µ(9) 0.446 0.446 (0.430, 0.464)

µ(5) 0.037 0.037 (0.030, 0.045) µ(10) 0.611 0.611 (0.568, 0.653)

F.4 Time-dependent reproduction number

In Figure F3, we display the effective reproduction number over time with a 95% credible interval
as a red shaded area around the posterior mean. The reproduction number decreased from 2.900
prior to the lockdown to a value of 0.738 (95% CI: 0.732, 0.744) on May 4, 2020.

F.5 Mortality rates

Age-specific mortality rates are presented in Figure F4. Mortality rates are considered to be equal
for persons admitted to ICU and to a regular hospital ward as no distinction could be made between
referrals within hospitals, nor between deaths in ICU and hospital wards. Needless to say, mortality
rates increase by age with the highest mortality rate in the 90+ age category.

F.6 Infection fatality rates

Infection fatality rates (IFRs) are calculated based on the observed number of deaths by age group
and the estimated total number of infections in a specific age group (thereby accounting for asymp-
tomatic infections) by May 4, 2020. The overall IFR is estimated to be equal to 0.507% (95%
credible interval: 0.480%, 0.536%), excluding nursing home deaths. Note that the model disregards
the number of deaths in elderly homes (as this is considered to be a separate COVID-19 outbreak
which is not fully accommodated in the considered approach), thereby potentially underestimating
the IFRs in the highest age groups, at least if the increase in deaths exceeds the increase in ad-
ditional infections in nursing homes. Next to that, individuals infected prior to May 4, 2020 that
will pass away after that date are not included in the calculations, thereby underestimating the
IFRs. A more thorough estimation of the IFRs is performed by Molenberghs et al. (2020) [40],
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Figure F1: Evolution of the proportion of individuals in the different compartments by age group.
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Figure F2: Estimated compliance function to the intervention measures taken by the government.
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Figure F3: Time-dependent effective reproduction number.

accommodating delay in mortality following infection. According to Molenberghs et al. (2020),
the IFRs in the nursing home population are much higher compared to those in the non-nursing
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Figure F4: Boxplots of the marginal posterior distributions of the mortality rates by age group.

home population and differences in IFRs in older age categories are linked to frailty and underlying
prevalence of comorbidities, characteristics which are very much different in nursing and non-nursing
home populations.
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Figure F5: Infection fatality rates by age group with 95% credible intervals in blue.
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F.7 Cumulative number of hospitalizations (exit scenario analyses)

In Figure F6, we show the total number of hospitalizations over time in the different scenarios
S7–S12. In general, the cumulative number of hospitalizations is highest in scenarios S10–S12 with
the cumulative number of hospitalizations on average being comparable by the end of December,
2020 in scenarios S7–S9 on the one hand, and S10–S12 on the other hand.
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Figure F6: Long-term predictions of the impact of various exit strategies on the total number of
hospitalizations over time.

F.8 Sensitivity to transmission potential of children

As a sensitivity analysis, we studied the impact of varying the infectiousness of children on the final
results. As mentioned in Section B.2, the role of children is still unclear albeit that some authors
have tried to investigate the transmission potential of children. More specifically, children present a
smaller viral load upon contracting the infection [1, 2, 3, 41, 42]. Furthermore, some authors claim
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that children have a reduced transmissibility [43, 44], albeit that it remains unclear whether this
is due to a lower probability of presenting symptoms and differential transmissibility for asymp-
tomatic versus symptomatic cases or directly by lowering infectiousness for both asymptomatic and
symptomatic children.

We present stochastic simulation results based on a 50% reduction in the infectiousness of symp-
tomatic and asymptomatic children in age category [0, 10). Posterior measures are very similar
with only a small increase in the basic reproduction number R0 (3.021, 95% credible interval:
2.987, 3.056).

In Figures F7 and F8, we depict similar exit scenarios as the long-term scenarios S7–S12 presented
in the main text. In general, the reduction in infectiousness leads to a decrease in peak size of the
next wave of hospitalizations with a small delay in timing of the peak.
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Figure F7: Long-term predictions of the impact of various exit strategies S7–S9 on the number of
new hospitalizations.
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Figure F8: Long-term predictions of the impact of various exit strategies S10–S12 on the number
of new hospitalizations.

F.9 Sensitivity to diagnostic performance of serological IgG ELISA test

Changing the underlying sensitivity curve, leaving the presumed impact of intervention measures
on the reduction of social contacts unchanged, mainly leads to a decrease in the posterior mean
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for R0 to 2.962 (95% credible interval (CI): 2.909, 3.018) and an increase for ρ−1, the average
length of the latent period, with posterior mean 5.101 (95% CI: 5.016, 5.190). In Figure F9, the
impact on the estimated overall prevalence over time is depicted. The estimated overall prevalence
and corresponding 95% credible interval are shown for the original sensitivity curve (black dashed
line with gray shaded area) and the alternative sensitivity curve (red solid line with red shaded
area) as presented in Appendix E. In case of the different sensitivity curve the estimated prevalence
is lower which is as expected given the faster detectability of IgG antibodies after SARS-CoV-2
infection. The estimated seroprevalence at the cross-sectional time points is almost identical for the
two sensitivity curves (not shown).

In addition, we present the IFRs under different assumptions with regard to the sensitivity curve
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Figure F9: Estimated time-dependent prevalence of COVID-19 under different assumptions for the
sensitivity of the IgG ELISA test.

in Figure F10. A small increase in estimated average IFRs is observed for the higher age categories
in case of the new sensitivity curve (red line in Figure E2).
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