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Supplementary Information S1. Genetic and Environmental Risk for Alzheimer’s 
disease Consortium (GERAD1) Collaborators 
 
Names 
Denise Harold1, Rebecca Sims1, Amy Gerrish1, Jade Chapman1, Valentina Escott-
Price1, Nandini Badarinarayan1, Richard Abraham1, Paul Hollingworth1, Marian 
Hamshere1, Jaspreet Singh Pahwa1, Kimberley Dowzell1, Amy Williams1, Nicola 
Jones1, Charlene Thomas1, Alexandra Stretton1, Angharad Morgan1, Kate Williams1, 
Sarah Taylor1, Simon Lovestone2, John Powell3, Petroula Proitsi3, Michelle K Lupton3, 
Carol Brayne4, David C. Rubinsztein5, Michael Gill6, Brian Lawlor6, Aoibhinn Lynch6, 
Kevin Morgan7, Kristelle Brown7, Peter Passmore8, David Craig8, Bernadette 
McGuinness8, Janet A Johnston8, Stephen Todd8, Clive Holmes9, David Mann10, A. 
David Smith11, Seth Love12, Patrick G. Kehoe12, John Hardy13, Rita Guerreiro14,15, 
Andrew Singleton14, Simon Mead16, Nick Fox17, Martin Rossor17, John Collinge16, 
Wolfgang Maier18, Frank Jessen18, Reiner Heun18, Britta Schürmann18,19, Alfredo 
Ramirez18, Tim Becker20

, Christine Herold20, André Lacour20, Dmitriy Drichel20, 
Hendrik van den Bussche21, Isabella Heuser22, Johannes Kornhuber23, Jens 
Wiltfang24, Martin Dichgans25,26, Lutz Frölich27, Harald Hampel28, Michael Hüll29, Dan 
Rujescu30, Alison Goate31, John S.K. Kauwe32, Carlos Cruchaga33, Petra Nowotny33, 
John C. Morris33, Kevin Mayo33, Gill Livingston34, Nicholas J. Bass34, Hugh Gurling34, 
Andrew McQuillin34, Rhian Gwilliam35, Panagiotis Deloukas35, Markus M. Nöthen20, 
Peter Holmans1, Michael O’Donovan1, Michael J.Owen1, Julie Williams1. 
 
Affiliations 
1Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and 
Genomics, Neurosciences and Mental Health Research Institute, Department of 
Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, 
UK. 2Department of Psychiatry, Medical Sciences Division, University of Oxford, 
Oxford, UK. 3Kings College London, Institute of Psychiatry, Department of 
Neuroscience, De Crespigny Park, Denmark Hill, London, UK. 4Institute of Public 
Health, University of Cambridge, Cambridge, UK. 5Cambridge Institute for Medical 
Research, University of Cambridge, Cambridge, UK. 6Mercers Institute for Research 
on Aging, St. James Hospital and Trinity College, Dublin, Ireland. 7Institute of 
Genetics, Queens Medical Centre, University of Nottingham, UK.  8Ageing Group, 
Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, 
Queens University Belfast, UK. 9Division of Clinical Neurosciences, School of 
Medicine, University of Southampton, Southampton, UK. 10Clinical Neuroscience 
Research Group, Greater Manchester Neurosciences Centre, University of 
Manchester, Salford, UK. 11Oxford Project to Investigate Memory and Ageing 
(OPTIMA), University of Oxford, Department of Pharmacology, Mansfield Road, 
Oxford, UK. 12University of Bristol Institute of Clinical Neurosciences, School of Clinical 
Sciences, Frenchay Hospital, Bristol, UK. 13Department of Molecular Neuroscience 
and Reta Lilla Weston Laboratories, Institute of Neurology, UCL, London, UK. 
14Laboratory of Neurogenetics, National Institute on Aging, National Institutes of 
Health, Bethesda, Maryland, United States of America. 15Department of Molecular 
Neuroscience, Institute of Neurology, University College London, Queen Square, 
London WC1N 3BG, UK. 16MRC Prion Unit, Department of Neurodegenerative 
Disease, UCL Institute of Neurology, London, UK. 17Dementia Research Centre, 
Department of Neurodegenerative Diseases, University College London, Institute of 
Neurology, London, UK. 18Department of Psychiatry, University of Bonn, Sigmund-
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Freud-Straβe 25, 53105 Bonn, Germany. 19Institute for Molecular Psychiatry, 
University of Bonn, Bonn, Germany. 20Department of Genomics, Life & Brain Center, 
University of Bonn, Bonn, Germany. 21Institute of Primary Medical Care, University 
Medical Center Hamburg-Eppendorf, Germany. 22Department of Psychiatry, Charité 
Berlin, Germany. 23Department of Psychiatry, Friedrich-Alexander-University 
Erlangen-Nürnberg, Germany. 24Department of Psychiatry and Psychotherapy, 
University Medical Center (UMG), Georg-August-University, Göttingen, Germany. 
25Institute for Stroke and Dementia Research, Klinikum der Universität München, 
Marchioninistr. 15, 81377, Munich, Germany. 26Department of Neurology, Klinikum der 
Universität München, Marchioninistr. 15, 81377, Munich, Germany. 27Central Institute 
of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany. 
28Institute for Memory and Alzheimer’s Disease & INSERM, Sorbonne Universities, 
Pierre and Marie Curie University, Paris, France; Institute for Brain and Spinal Cord 
Disorders (ICM), Department of Neurology, Hospital of Pitié-Salpétrière, Paris, 
France. 29Centre for Geriatric Medicine and Section of Gerontopsychiatry and 
Neuropsychology, Medical School, University of Freiburg, Germany. 30Department of 
Psychiatry, University of Halle, Halle, Germany. 31Neuroscience Department, Icahn 
School of Medicine at Mount Sinai, New York, US. 32Department of Biology, Brigham 
Young University, Provo, UT, 84602, USA. 33Departments of Psychiatry, Neurology 
and Genetics, Washington University School of Medicine, St Louis, MO 63110, US. 
34Department of Mental Health Sciences, University College London, UK. 35The 
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, 
Cambridge, UK. 
 
 
 
Supplementary Information S2. Mendelian Randomization scope  
In-line with core MR checklist outlined by Burgess et al. (1).  
Note: this document includes scope for planned analyses only – and does not extend 
to post-hoc analyses. 
 

1. Motivation and scope 
 

a. The primary hypotheses of interest 
 

i. Metabolites which genetically predict AD have a causal 
relationship with the disease. 

ii. Metabolites which genetically predict AD have a causal 
relationship with earlier protective factors such as education and 
cognition. 

iii. Factors such as education and cognition have a protective 
causal effect on Alzheimer’s Disease (AD). 

iv. Education and cognition exert some of their protective effect on 
AD through changes to levels of genetically predictive 
metabolites. 

v. A causally relevant feedback loop exists between education and 
cognition which bidirectionally reinforces their protective effect 
on AD. 
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b. Motivation for using Mendelian Randomization 
 
Metabolites which genetically predict Alzheimer’s Disease status are 
indictive of possessing some degree of shared aetiology. However, 
association does not necessarily equal causation, and in the instance 
where causation is present, directionality of effect cannot be 
concluded. If metabolites are to contribute to effective sources of 
targeted intervention, a causal relationship must be demonstrated. MR 
offers a statistical technique which – in the absence of a randomized 
control trial – can help to tease out, from a wider set of metabolites 
demonstrating genetic overlap with AD, which ones may be on the 
causal pathway to the disease. Directionality can also be established to 
rule out potential reverse causation.  
 
Motivation for incorporating multivariable analyses, lies in the 
knowledge that, whilst factors such as education and cognition are 
established risk factors for AD, the aetiological underpinnings of this 
relationship remain elusive. Multivariable MR allows for mediating 
relationships to be interrogated, which if demonstrated, could offer 
insight into the underlying forces driving the overarching relationship 
observed, and offering both direct and indirect sources of intervention.   
 
 

c. Study scope 
 

i. Harness the use of polygenic risk scores to tease out, from a 
wider set of blood metabolites, those demonstrating evidence of 
genetically predicting clinical AD status. 
 

ii. Of those blood metabolites demonstrating predictive genetic 
association with AD, utilise univariable MR to: 

1. Investigate bidirectional causal associations with each 
metabolite and AD; both metabolite → AD, and AD→ 
metabolite, to investigate the presence of reverse 
causation. 

2. Investigate bi-directional causal associations between 
each metabolite and education and each metabolite and 
cognition – two established AD-related risk factors.  
 

iii. Utilise bi-directional univariable MR to re-confirm previous 
reports of a causal association between education and AD, and 
of cognition and AD.  
 

iv. Utilise bi-directional univariable MR to confirm the causal 
relationship between education and cognition. 
 

v. Utilise multivariable MR to investigate: 
1. Metabolites which may mediate the causal relationship 

between education and AD. 
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2. Metabolites which may mediate the causal relationship 
between cognition and AD. 

3. Whether there is evidence of education mediating causal 
relationships between each metabolites and AD. 

4. Whether there is evidence of cognition mediating causal 
relationships between each metabolites and AD. 

5. Whether there is evidence of education mediating causal 
relationships between cognition and AD. 

6. Whether there is evidence of cognition mediating causal 
relationships between education and AD. 
 
 

d. Primary MR analyses (what and how any) 
 

i. Univariable bidirectional MR to test the following causal 
relationships (Note: metabolite N is determined by the number of 
metabolites found to genetically predict AD case/control status 
in prior cross-trait polygenic score analyses): 

1. Metabolite (1…N) → AD. 
2. Metabolite (1…N) →Education. 
3. Metabolite (1…N) → Cognition. 
4. Education → AD. 
5. Cognition → AD. 
6. Education → Cognition. 

 
ii. Multivariable mendelian randomization to investigate: 

1. Metabolites (1 at a time) as mediators of education → AD 
causal associations. 

2. Metabolites (1 at a time) as mediators of cognition → AD 
causal associations. 

3. Education as a mediator of metabolite (1 at a time)  → 
AD causal associations. 

4. Cognition as a mediator of metabolite (1 at a time)  → AD 
causal associations. 

5. Education as a mediator of cognition  → AD causal 
associations. 

6. Cognition as a mediator of education → AD causal 
associations 
 

Note: For justification of multivariable analyses, univariable 
analyses are required to show a direct causal association 
between X→M (a path), and between M→Y (b path). For X to be 
included in multivariable analysis, it must show a univariable 
X→M relationship, but is not required to show a significant 
univariable X→Y (c path) causal association, as this may be 
non-significant due to suppression via M.   
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2. MR data sources 
 
Summary-level GWAS data were used for all MR analyses: 

i. Metabolites: Kettunen et al. (2).  
N = ~24,925 individuals of European decent. 123 circulating 
blood metabolites measured using nuclear magnetic resonance 
imaging spectroscopy.  
Participant ages range from 31-61 years (mean=44.6 years). 
Of the 123 metabolites available, a thirty-four were selected for 
causal analyses based on those evidence of polygenic 
association with AD case/control status. 

ii. Alzheimer’s Disease: Kunkle et al. (3). 
N = 94,437 individuals of European decent.  
Cases include clinically diagnosed late-onset (>65 years) AD 
only. 

iii. Education: Lee et al. (4). 
N = 1.1million individuals of European decent. 
Attainment = highest level of education at age 30. 

iv. Cognition: Savage et al. (5). 
N = 269,867 individuals of European decent. 
Cognition was measured using a test battery. Scores were 
combined into a common latent cognition (‘g’) factor. 
Cohorts ranged from children to older adults (range=5-98 
years), with older adults screened for cognitive decline to 
exclude prodromal dementia.  
 

To the best of the authors knowledge, no sample overlap existed across 
studies.  
 
 

3. Selection of Genetic variants 
 

a. GWAS selection (including p-value thresholding / clumping) 
 
GWAS summary statistics were utilised to select instrumental variables 
using a genome-wide approach. As in our previous MR study (6), this 
approach was favoured over that of a candidate gene-region(s) 
strategy due to the polygenic nature of all phenotypes of interest. With 
the exception of APOE, per-SNP effect sizes remain small, making a 

a b

C’

IV(s) X Y

M
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pooled IV approach most appropriate. 
 
To ensure independence amongst instrumental variables, instruments 
were clumped using an r2 threshold of 0.001 for AD, education, and 
cognition exposures. This was not required for metabolites as 
instruments were selected using a list of pre-curated metabolite 
quantitative trait loci (mQTLs) extracted from Kettunen et al (2016) 
(readily available within the MR-Base catalogue). 
 
 

b. Exclusion criteria 
 
Univariable analyses: 
 

i. SNPs with an F statistic <10 
 

Univariable and mediation analyses: 
 

ii. Exposures with cross-trait PRS p>0.05 (metabolites only) 
iii. SNPs significant with both exposure and mediator at p>5*10-08 
iv. SNPs in linkage disequilibrium >r2=0.001 
v. SNPs associated with the outcome at p<5*10-08 
vi. SNPs with known pleiotropy (ApoE) 

 
Mediation analyses: 
 

vii. Exposures with no significant univariable association with 
mediator 

viii. Mediator(s) with no significant univariable association with 
outcome 
 
 

c. Assessment of instrument validity 
 

i. Assessment of per-instrument F statistic 
ii. Sensitivity analyses: leave-one-out, MR-Egger, weighted 

median, Cochran’s Q. 
 
 
 

4. Harmonization procedure 
 
For all MR analyses, inferable SNPs were aligned across the exposure and 
outcome datasets, and any non-inferable palindromic SNPs were removed. 
 
 

5. Primary analyses: multiple testing 
 
Multiple testing was corrected for using a Bonferroni corrected adjustment 
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which takes into consideration correlation amongst variables. The procedure 
was as follows: 

i. A metabolite*metabolite genetic correlation matrix was 
computed using LD score regression (7). 

ii. The correlation matrix was passed through an 
“independent_tests” package within Python 
(https://github.com/hagax8/independent_tests) to compute the 
number of independent metabolites, given their correlation 
structure (Supplementary Information S3). 

iii. The number of independent tests (T) was computed as the 
number of independent metabolites plus additional tests for 
education and cognition. 

iv. A final Bonferroni corrected alpha was then computed by 
dividing T by 0.05. 
 
 

6. Sensitivity analyses 
 
A number of sensitivity analyses were conducted to scrutinise the validity of 
primary results: 
 

a. For univariable analyses: 
 

i. Robust methods: MR-Egger and weighted median 
 

ii. Cochran’s Q-statistic 
 

iii. Bayesian Model Averaging MR 
 
 

b. For multivariable analyses: 
 

i. MR-Egger 
 
 

7. Data presentation 
 
All MR output is provided either within the main manuscript or supplementary 
material for the scrutiny of readers. Results which are statistically significant 
as well as those which do not reach significance are reported across all 
analyses in order to provide complete transparency and avoid reporting bias. 
Charting visualisations for primary results as well as for sensitivity measures 
such as leave-one-out, Egger and weighted median are provided for 
maximum transparency and interpretability of results. All results are also 
available in tabular form for use in further analyses where required. 
 
Interpretation of results can be found within the results and discussion section 
of the main manuscript. 
 

  

https://github.com/hagax8/independent_tests
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Supplementary Information S3 
 

1. ADNI 
 
ADNI is a USA based longitudinal initiative, beginning in 2004 and following 
participants through multiple study phases. Currently in the 3rd iteration, 
genotype data was available for the first two, typed across three separate 
genotype chips: ADNI1 (Illumina Human610-Quad BeadChip), ADNI2 
(Illumina HumanOmniExpress BeadChip), and OMNI (a combination of phase 
1 and 2 participants typed on a high coverage Illumina chip - Omni 2.5M). 
ADNI2 and OMNI were aligned to the Genome Reference Consortium 
genome build 37 (GRCh37), whilst ADNI1 was aligned to an older build 
(GRCh36) requiring lifting over to GRCh37. Pre-QCd data across the three 
genotype chips (overlaps excluded) consisted of 1,674 AD, mildly cognitively 
impaired (MCI), and healthy individuals.  
 

2. ANM-DCR 
 
The AddNeuroMed and Dementia Case Register is a European based study, 
initiated in 2008 with the aim to establish biomarkers for early AD prediction. 
DCR is a follow-up of ANM, with UK subjects recruited from the Maudsley and 
King’s Healthcare Partners Dementia Case Register (8). In addition to full 
clinical and demographic data, genotype data were available for 1063 
samples pre-QC. Of these, 397=AD, 235=MCI, 414=Controls (17=Other or 
unknown). 442=males, 616=females, 5=unknown. Median age=79years 
(Q1=73, Q3=83). As with ADNI1, ANM was typed on the Illumina Human610-
Quad BeadChip. 
 
 

3. GERAD1 
 
Data used in the preparation of this article was obtained from the Genetic and 
Environmental Risk for Alzheimer’s disease (GERAD1) Consortium (Harold et 
al. 2009). A number of biological, psychosocial, and cognitive variables have 
been collected for this cohort, with our study having access to genotype, age, 
sex, and APOE information only. Samples were genotyped at the Sanger 
Institute on the Illumina 610-quad chip. These samples were recruited by the 
Medical Research Council (MRC) Genetic Resource for AD (Cardiff 
University; Kings College London; Cambridge University; Trinity College 
Dublin), the Alzheimer’s Research UK (ARUK) Collaboration (University of 
Nottingham; University of Manchester; University of Southampton; University 
of Bristol; Queen’s University Belfast; the Oxford Project to Investigate 
Memory and Ageing (OPTIMA), Oxford University); Washington University, St 
Louis, United States; MRC PRION Unit, University College London; London 
and the South East Region AD project (LASER-AD), University College 
London; Competence Network of Dementia (CND) and Department of 
Psychiatry, University of Bonn, Germany and the National Institute of Mental 
Health (NIMH) AD Genetics Initiative. All AD cases met criteria for either 
probable (NINCDS-ADRDA, DSM-IV) or definite (CERAD) AD. All elderly 
controls were screened for dementia using the MMSE or ADAS-cog, were 
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determined to be free from dementia at neuropathological examination or had 
a Braak score of 2.5 or lower. Prior to quality control, 3,292 cases and 1,223 
controls were available (1,645=males, 2,870=female). Median age across 
samples was 80 years (Q1=68,Q3=80). 

 

 
 
Supplementary Information S4 
 
Pseudo-R2 statistics for PRS analyses were retrospectively computed using meta-
analysed regression coefficients by computing the meta-analysed z-statistic, and 

applying the following equation: R2= (z/√(n − 2 + z2)) 2; where n = the sample size. 
 
 
 
Supplementary Information S5 
 
Aided by an “independent_tests” package in Python 
(https://github.com/hagax8/independent_tests), together with a squared genetic 
correlation matrix (computed using LD score regression (7)) for Kettunen et al. (2) 
metabolites analysed in PRS analyses, the number of independent tests and 
adjusted alpha were calculated as follows: 

1. The number of principal components explaining 99.5% of the variance(N) 
within the squared correlated matrix was computed (N=28). 

2. N of individual tests (T) within the squared correlation matrix was then 
calculated using formula: T=(N*N-N)/2 (T=378). 

3. The square root of T was then used to establish the final number of 

individual metabolites (m) to correct for (m=√𝑇  (m=19.4)). 
4. M multiplied by 10 to account for the number of p-value thresholds (pt) run 

for each metabolite in cross-trait PRS analyses against metabolites 
(f=m*pt)  (f=194). 

5. An adjusted alpha (𝛼) was then computed by dividing 0.05 by f 
(𝛼=0.0002). 

 
 
Computed alpha for MR analyses (aided by the “independent_tests” package in 
Python): 

1. N=11 
2. T=55 
3. m=7.42. 
4. m multiplied by two to reflect outcome phenotypes (1*AD, 1*cognitive). 

Note: education and intelligent counted as non-independent due to high rg. 
f=14. 

5. Adjusted 𝛼=0.004. 
 
 
 
Supplementary Information S6 
 

https://github.com/hagax8/independent_tests
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For both univariable and multivariable analyses, causal effects were re-estimated 
using MR-Egger. Egger methodology mirrors IVW but with the intercept constraint 
removed. As the IVW constraint reflects the assumption of no independent effect of 
G on Y, an intercept value which significantly deviates from 0 is indicative of 
pleiotropy (9). Large discrepancies between Egger and IVW estimates are also 
warning signs for pleiotropy, though wider confidence intervals for Egger are to be 
expected (1). For univariable analyses, causal estimates were also re-estimated 
using weighted median. Like Egger, this method provides an addition MR estimate in 
the presence of pleiotropy. Here, per-instrument estimates are ordered and weighted 
by their causal association, with the median then taken as the causal estimate (10). 
Influential points were investigated using leave-one-out. For this, per-SNP 
instruments are removed from models one at a time and causal effects re-estimated 
to identify single SNP instruments which may be driving causal estimates. Cochran’s 
Q also tested for heterogeneity amongst instruments, indicated by Q-p<0.05 (1).  
 
For metabolite-AD models only, Bayesian model averaging MR (MR-BMA) was also 
employed to re-assess causal estimates whilst accounting for known correlation 
amongst metabolites. Full details of MR-BMA can be found elsewhere (11). Briefly, 
metabolites genetically correlated (rg) up to a threshold of 0.95 (estimated using LD 
score regression (6,7) (Supplementary Dataset S6, Supplementary Information S6) 
were included within a single MR-BMA model. Marginal inclusion probabilities (MIP) 
for each metabolite were then computed, representing the posterior probability (pp) 
of metabolite j appearing within the true causal model given 10,000 iterations (prior 
probability=0.1, prior variance (σ2)=0.25). A model averaged causal effect (MACE) 
was also estimated, representing the estimated direct effect of metabolite j on 
outcome y, averaged across each of these pps. Metabolites showing the strongest 
evidence for causation in MR-BMA were expected to corroborate those metabolites 
identified within univariable analyses. 
 
 
 
Supplementary Information S7 
 
Bayesian Model Averaging MR (BMA-MR) adopts a multivariable framework, 
whereby multiple exposures can be included within the model, provided a) they are 
each robustly associated with a least one SNP-instrument used within the model, 
and b) they do not induce multi-collinearity. To meet criterion b), pairwise genetic 
correlations (rg) were computed for metabolites using LD Score regressions (LDSC) 
(7). Metabolites with rg>0.95 were then pruned according to the following procedure: 
 

i) For metabolite pairs with rg>0.95, if one metabolite demonstrated a greater 
number of rg>0.95 with other metabolites, that metabolite was removed. 

ii) For metabolite pairs with rg>0.95 and an equal number of rg>0.95 with other 
metabolites, the metabolite with the greater number of correlations at adjusted 
significance was removed. 

iii) For metabolite pairs with rg>0.95 and which also had an equal number of 
metabolite pairwise rg>0.95 at adjusted significance, the metabolite with the 
greatest number of nominally significant rgs (p<0.05) was removed. 
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Supplementary Information S8 
 
Post-hoc analyses: APOE related polygenic association 
 
For all primary analyses, SNPs within the APOE genomic region were removed. For 
PRS, APOE was removed due to its unusually large effect size for both Alzheimer’s 
Disease (3) and lipid-related metabolites (2), risking dominating and drowning out 
wider polygenic signal. For lipid-related metabolites associated with AD at p<0.05 in 
PRS analyses however, results were in the unexpected direction, with positive AD-
associations observed for HDLs, and negative AD-associations observed for LDLs, 
IDLs, and VLDLs (Figure 3 (main manuscript), Supplementary Dataset S7). This 
result runs counter to the direction of associations observed for these lipid 
subfractions within the wider literature (6,12–15). To investigate whether this 
reflected APOE removal, PRS meta-analyses were thus re-computed for all lipid-
related metabolites significantly associated with AD at p<0.05 in primary analyses, 
but with SNPs restricted to the APOE genomic region only (chr19, bp 45786555-
45037368). The QC pipeline followed that outlined for primary analyses in Fig. 1 of 
the main manuscript, with the exception of “APOE region SNPs removed”. PRS 
analyses were then re-computed, restricting p-value thresholds to those identified as 
each metabolite’s best threshold within primary analyses to ensure a like-for like 
comparison of results (Supplementary Dataset S7).  
 
Across all post-hoc APOE-region PRS analyses, the direction of association 
between each metabolite and AD matched that which would be expected for these 
metabolites based on wider literature, with a negative association observed for 
XL.HDL.FC, and positive associations for LDLs, VLDLs, and IDLs. Associations were 
also highly significant, ranging from p=0.001 (XL.HDL.FC) to p=2x10-59 (S.VLDL.FC) 
(Supplementary Dataset S24). This indicates that primary PRS results may in-part 
reflect the removal of APOE related SNPs. This removal was necessary due to the 
risk of APOE dominating and drowning out wider polygenic signal as a result of the 
unusually large effect size that this genetic region has. However, these post-hoc 
analyses highlight the importance of consideration for how such removal may impact 
conclusions made from the data if not carefully thought through. Evidence from our 
results here suggest that because the genetic signal from APOE largely dominates 
the genetic relationship between lipid-subfractions and AD, its removal in polygenic 
score analyses may bring to bear counterintuitive associations which work in the 
opposite direction to that expected based on wider associations which do not 
consider the effect of APOE. This may be particularly pertinent for impacting 
polygenic score analyses, as opposed to MR, due to the explicit assumptions of 
polygenic scores relating to polygenicity which can result in signal bias when these 
assumptions do not hold due to the presence of unconventionally large effects (see 
(16). Indeed, this may explain why this phenomenon appeared to impact PRS 
results, whilst MR maintained consistency despite APOE removal. Whilst outside the 
scope of the current study, it will be interesting to expand on the genetic associations 
observed here and further investigate the polygenic relationship between these 
metabolites and AD on the basis of, and interactions with, APOE status. 
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Supplementary Information S9 
 
MR-Egger 
Both univariable and multivariable models were re-estimated using MR-Egger – a 
conservative estimate which is sensitive to pleiotropy. The causal effect of both 
glutamine and XL.HDL.FC on AD retained consistent directionality. However, lower 
precision of the Egger estimate resulted in wider confidence intervals equating to a 
loss of significance for both of these metabolites (Supplementary Dataset S9. Fig. 
4a). This was also the case for all education-metabolite and cognition-metabolite 
estimates of at least nominal significance (Supplementary Dataset S11,S13), and for 
the causal effect of both education and cognition on AD (Supplementary Dataset 
S15). Direction of effects did, however, corroborate across primary and Egger 
estimates for both education and cognition on AD, and for all but one (FAw3) of the 
causal associations between education and metabolites (Supplementary Dataset 
S13, S15). The effect of cognition on metabolites was more problematic however, 
with non-corroborated directionality for seventeen of the eighteen nominally 
significant metabolites (Supplementary Dataset S11). The Egger intercept – an 
additional test of pleiotropy – indicated no significant deviations from 0, however, 
indicating no substantial pleiotropy. 
 
Weighted Median 
Weighted median was conducted as an additional measure robust to pleiotropy. As 
with MR-egger, estimates for nominally significant results were attenuated for 
weighted median, though all estimates remained in the agreed direction 
(Supplementary Dataset S9,S11,S13-S15). For the effects of glutamine, XL.HDL.FC, 
and education on AD, adjusted significance was also retained (Supplementary 
Dataset S9, S15. Fig. 4a.). This was also the case for bidirectional estimates 
between education and cognition (Supplementary Dataset S17). 
 
Cochran’s Q and Leave-one-out 
Significant evidence of heterogeneity was observed in bi-directional tests between 
education and cognition (Q-pval<0.05. Supplementary Dataset S17). Heterogeneity 
was also observed for the effect of education on FAw3 (Q-pval=0.013), and for a 
number causal estimates for cognition on metabolites (Supplementary Dataset S11). 
No heterogeneity was evident for either Glutamine or XL.HDL.FC on AD 
(Supplementary Dataset S9), nor for education on AD (Supplementary Dataset S15). 
There was, however, significant heterogeneity when investigating the effect of 
cognition on AD (Q-pval=0.01) (Supplementary Dataset S15). 
 
Leave-one-out identified one influential instrument for glutamine (rs2657879). 
Instrument removal resulted in attenuation of the causal estimate though 
directionality remained consistent (OR=0.82, 95% CI=0.62-1.10. Supplementary 
Figure S12). Removal of rs1532085 resulted in the largest attenuation for 
XL.HDL.FC on AD (Supplementary Figure S13), though nominal significance was 
retained (OR=0.87, 95% CI=0.76-0.98). No notable outliers were observed for either 
education of cognition (Supplementary Figure S14-S17). 
 
Bayesian Model Averaging 
Following the pruning of metabolites with genetic correlations >95%, nineteen 
metabolites were jointly analyzed (Supplementary Dataset S6). Results corroborated 



Supplement. Lord et al. 
 

 14 

primary analyses, with XL.HDL.FC and glutamine ranked with the highest MIP; 
indicative of being the strongest “true causal” candidates of those analysed 
(Supplementary Dataset S19). MACE, reflecting the average direct causal effect was 
also in agreement with primary analyses, with a negative (protective) relationship 
estimated for both metabolites (XL.HDL.FC: MACE=-0.043, Glutamine: MACE=-
0.045). When metabolite combinations were assessed, glutamine and XL.HDL.FC 
were also the most frequent metabolites to appear within the top causal models 
(Supplementary Dataset S20). 
 
 
 
Supplementary Information S10 
 
A number of causal associations significant at p<0.05 were observed when 
investigating causal relationships between blood metabolites and either education or 
cognition. Whilst caution should be taken in the interpretation of such results due to 
their failure to retain significance when accounting for multiple testing, they 
nonetheless warrant brief discussion as they may represent relationships which hold 
promise in future replications. Firstly, a bidirectional causal relationship in the 
positive direction was observed between Omega3 fatty acids (FAw3) and education. 
This was stronger in the direction of education increasing levels of FAw3, rather than 
the other way around. However, directionality of point estimates for sensitivity 
measures were more consistent in the direction of FAw3 increasing education, with 
less heterogeneity amongst instruments also present. A positive association 
between FAw3 and education aligns with some of the wider literature, though results 
from randomised control trials remain conflicting or inconclusive (7,17–20). It has 
also been implicated in lower inflammation (21–23), increased HDL levels (24,25), 
and decreased triglyceride levels (25–28); all of which consistently associate with 
neurocognitive protective outcomes. A negative causal effect of education on eight 
additional lipid-related metabolites was also observed, indicating that higher 
education leads to reduced levels of these metabolites. These all belonged to the 
IDL or LDL family of metabolites which are consistently implicated in poor vascular 
outcomes (29–32), though their specific role in neurocognitive outcomes remains 
conflicting (33–37). Similarly, levels of eighteen LDL, IDL, and cholesterol-related 
metabolite sub-fractions also demonstrated a reduction when cognition levels 
increased. As with IDL.TG, however, there was no convincing evidence that effects 
translated through to AD. Extra caution is also warranted in the interpretation 
associations observed between cognition and these metabolites, as seventeen of the 
eighteen did not show consistency in effect direction when estimated using MR-
Egger, and in many cases, significant instrument heterogeneity was evident, casting 
further doubt on the validity of these causal estimates. With the exception of FAw3, 
all associated metabolites heavily associate with APOE (2) and with only five 
instruments available for FAw3, attenuated signal remains a very real possibility. As 
with IDL.TG, larger replications, when available, will be an important future exercise. 
However, on the basis of results observed here, no metabolites were observed to 
underly the relationship between either education or cognition and AD.  
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Supplementary Figure S1. Illustrative overview of PRS analytical pipeline. 1 metabolomic GWAS dataset at a time: (i) data is 
cut at the first of the ten pre-defined p-value thresholds. Any SNP with a p-value lower than the pre-defined threshold is included 
within the scoring model for metabolite[n] at threshold[k]. (ii) Genotype data from AD dataset 1 is then regressed against the 
scoring model for metabolite[n] at threshold[k]. (iii) AD dataset 2 is then regressed against the same scoring model, and then (iv) 
AD dataset 3. Coefficients and standard errors across the three regressed datasets for metabolite[n] at threshold[k] are (v) meta-
analysed (and back-generated R2 computed) to obtain a single cross-trait meta-analysed polygenic estimate for metabolite[n] on 
AD, when the data is cut at p-value threshold[k]. This pipeline is then repeated for the same metabolite at threshold[k+1] to obtain a 
meta-analysed estimate at the next pre-defined pvalue threshold at which the metabolomic genomic data is cut. This is repeated 
across 10 cycles for metabolite[n] to obtain 10 meta-analysed cross-trait prs estimates, each representing a differing level of SNP 
inclusiveness. (vii) The 10 models are then ranked by the most significant threshold descending, and the highest ranked estimate is 
taken as the representative “best” cross-trait polygenic scoring model for metabolite[n] and AD. This pipeline is then repeated 
across all 106 metabolomic datasets to obtain 106 meta-analysed cross-trait PRS estimates. 
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Supplementary Figure S2. Locus zoom plot for Glutamine influential point rs2657879. Plot demonstrates LD block which spans 
the GLS2 genomic region (bordered in red). 
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Supplementary Figure S3 - Image obtained from Stobart & Anderson (38) and 
further annotated. Diagrammatic illustration of the glutamine-glutamate cycle. 
During neurotransmission, glutamate (Glu) is released from the pre-synaptic cell into 
the synaptic cleft (a). Astrocytes re-uptake any Glue remaining within the cleft (b) 
and convert it to glutamine (Gln) via glutamine synthase(c). Gln is then released 
back into the extracellular space where it is re-uptaken by pre-synaptic cells (d) 
which then metabolize Gln back into Glu (e) and package  into synaptic vesicles 
ready for the next round of neurotransmission. This cycle is critical for regulating 
appropriate neurotransmission within the central nervous system. 
  

Fig 12. The glutamate-glutamine cycle. During neurotransmission, glutamate(Glu) is released from the 
pre-synaptic cell into the synaptic cleft(a). Astrocytes re-uptake any remaining Glu remaining in the 
cleft(b) and convert it to to glutamine (Gln) via glutamine via glutamine synthase(c). Gln is then 
released back into extracellular space where it is re-up-taken by pre-synaptic cells(d), which then 
metabolize Gln back into Glu(e) and package into synaptic vesicles ready for the next round of 
neurotransmission. This cycle is critical for regulating appropriate neurotransmission within the CNS 
(image adapted from Stobart & Anderson., 2013).

a.

b.

c.

d.

e.
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Supplementary Figure S4(a-ag). Scatter plot illustrating primary (IVW) and secondary (Egger and weighted median) causal slope 
estimates when each metabolite is set as exposure and AD set as outcome. 
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Supplementary Figure S5(a-ah). Scatter plot illustrating primary (IVW) and secondary (Egger and weighted median) causal slope 
estimates when AD is set as exposure and each metabolite set as outcome. 
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Supplementary Figure S6. Univariable effects of cognition on 18 lipid-related 
metabolites, significant at p<0.05. 
 
 
 
 
 

 
Supplementary Figure S7. Univariable effects of education nine metabolites, 
significant at p<0.05. 
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Supplementary Figure S8. Scatter plot illustrating primary (IVW) and secondary 
(Egger and weighted median) causal slope estimates when education set as 
exposure and AD set as outcome. 
 
 

 
Supplementary Figure S9. Scatter plot illustrating primary (IVW) and secondary 
(Egger and weighted median) causal slope estimates when cognition set as 
exposure and AD set as outcome. 
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Supplementary Figure S10. Scatter plot illustrating primary (IVW) and secondary 
(Egger and weighted median) causal slope estimates when AD set as exposure and 
education as outcome. 
 
 

 
 
Supplementary Figure S11. Scatter plot illustrating primary (IVW) and secondary 
(Egger and weighted median) causal slope estimates when AD set as exposure and 
cognition as outcome. 
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Supplementary Figure S12. Forest plot for leave-one-out analyses when Glutamine 
set as exposure and AD as outcome. The plot illustrates that removal of rs2657879 
results in causal estimates crossing the null (vertical dotted line). 
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Supplementary Figure S13. Forest plot for leave-one-out analyses when 
XL.HDL.FC set as exposure and AD as outcome. The plot illustrates that no single-
SNP removal results in estimates crossing the null. The greatest attenuation is 
observed with SNP rs1532085 (top).  
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Supplementary Figure S14. Forest plot for leave-one-out analyses when education 
set as exposure and AD as outcome.  
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Supplementary Figure S15. Forest plot for leave-one-out analyses when cognition 
set as exposure and AD as outcome.  
 



Supplement. Lord et al. 
 

 59 

 
 
Supplementary Figure S16. Forest plot for leave-one-out analyses when education 
set as exposure and cognition as outcome.  
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Supplementary Figure S16. Forest plot for leave-one-out analyses when cognition 
set as exposure and education as outcome.  
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