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INTERPRETING PREDICTION MODELS 

There are two overarching approaches to interpretable modeling. The first is to apply a 

post-hoc analysis tool to a black box model that determines which factors are relevant to the 

model’s predictions.1 Examples of post-hoc methods include permutation importance2,3, LIME4, 

and SHAP5. SHAP values in particular can be very useful for describing how a black-box model 

behaves under specific input conditions.6 However, these approaches do not describe the 

mechanism by which factors result in the predictions. Furthermore, since these tools cannot 

describe the behavior of the model over all input conditions, it is challenging to predict model 

behavior as inputs change.7  

The second approach to interpretable modeling is to focus on learning concise models 

that are self-explanatory. As Lundberg et al. put it, “the best explanation of a simple model is the 

model itself.”5 The most commonly used method in this category is logistic regression, often 

employed with regularization approaches, such as the least absolute shrinkage and selection 

operator (LASSO) and ridge regression.8,9 Decision trees and Bayesian rule lists can generate 

interpretable models when constrained to small tree depths and low rule count, respectively. Yet 

these approaches are limited in that smaller models may not adequately represent complex 

data relationships and larger models are not practically interpretable.10 In regularized regression 



and pruned decision trees, the trade-off between simplicity and explanatory power is left to be 

tuned by the user. More sophisticated strategies can characterize the trade-off between model 

complexity and model accuracy, such as Pareto optimization with symbolic regression.11 

Symbolic regression is a method of learning the functional form and parameters of a model 

using a randomized, heuristic search process such as evolutionary computation.12 Pareto 

optimization refers to a multi-objective optimization process in which preference relations 

between models are determined by their closeness to the “Pareto front”, which is a set of points 

that represent the best observed trade-offs between objectives. Symbolic regression with Pareto 

optimization has been used to develop simple models in other domains, such as physics,13 

biology,14 engineering.15 To our knowledge, this is the first work to explore the application of 

symbolic regression with Pareto optimization to EHR phenotyping.  

 

EXTENDED MATERIALS AND METHODS 

In this section, we detail the methodological changes made to FEAT in order to promote 

conciseness in the models it generates. We also describe a benchmark comparison of FEAT 

variants used to validate the proposed changes.  

 To encourage model parsimony, we modified FEAT to explicitly simplify serial logical 

operators, prune highly correlated feature branches, adaptively prune components of 

representations, and sample features based on univariate logistic regression coefficients. In this 

section, we give detailed descriptions of these implementations.  

 

Initial feature weighting 

The original FEAT algorithm initialized weights of input features according to the 

magnitude of their coefficient in a multivariate linear model.16 In addition, the initial population 



was seeded with the multivariate linear model that was generated. Since we are interested in 

learning a low dimensional representation of high-dimensional data to enable interpretation, this 

approach was not suitable. Instead, we modified FEAT to specify initial weights of input features 

according to the magnitude of each feature’s coefficient in a univariate logistic regression 

model. The initial population of linear models was constructed by sampling features according to 

these magnitudes and fitting a low-dimensional multivariate model. 

 

Correlation Deletion Mutation  

In previous work, operators for variation were introduced to make use of information about the 

features encoded by the representations.17 Here, we propose an operator designed to prune 

representations by removing the most redundant feature. Algorithm 1 describes the process. In 

short, it consists of computing pairwise correlations of each feature, and among the pair that is 

most correlated, deleting the feature that is less correlated with the outcome variable. Algorithm 

1 is used as a component of post-run simplification, described next. 

Algorithm 1: Correlation Deletion Mutation 

CorrelationDeletionMutation(	𝒚#(𝚽(𝒙))): 

1 for 𝝓𝒊, 𝝓𝒋 in 𝚽(𝒙), 𝒊	 ≠ 𝒋: 

2 corr = 𝑹𝟐-𝝓𝒊, 𝝓𝒋/ 

3 max_r2 = 0.0 

4 if corr > max_r2: 

5 max_r2 = corr 

6 f1 = i 

7 f2 = j 

8 corr_f1 = 𝑹𝟐(𝝓𝒊, 𝒚) 

9 corr_f2 = 𝑹𝟐-𝝓𝒋, 𝒚/ 



10 Remove 𝝓 from 𝚽(𝒙) with lower corr with 𝒚 

11 RETURN (𝒚#𝒏𝒆𝒘(𝚽(𝒙)), max_r2) 

 

Post-run Simplification  

 Genetic programming suffers from a phenomenon known as bloat, in which final 

equations that are produced tend to be larger than necessary for capturing their semantics.18 

Many methods exist to combat bloat,19,20 including various pruning mutations such as Algorithm 

1. A simple but effective way to reduce bloat is post-run simplification,21 in which simplification 

operations are applied to the final model in a hill climbing manner. In order to avoid over-fitting, 

changes are only accepted if their cumulative effect on the model output is on average within a 

user-specified tolerance.  

We introduced an automated method for simplifying final representations produced by 

FEAT that includes three steps. First, redundant operations, such as NOT(NOT(.)), are 

removed. Second, correlation deletion mutation is applied iteratively. Finally, a uniform subtree 

deletion operator is applied iteratively. Each iteration succeeds only if the impact on the final 

model is minimal, or, in the case of correlation deletions, if the features were perfectly 

correlated.  Post-run simplification is shown concretely in Algorithm 2.  

Algorithm 2: Post-run Simplification 

PostRunSimplification(	𝒚#(𝚽(𝒙)), tol): 

1 	𝒚#(𝚽(𝒙)) – final model 

2 tol – tolerance for changes to output 

3 	𝒚#𝒏𝒆𝒘	= RemoveRedundantOperators(𝒚#) 

4 for |𝚽(𝒙)| iterations i:  

5 𝒚#𝒕𝒎𝒑, max_r2 = CorrelationDeletionMutation(𝒚#𝒏𝒆𝒘) 

6 if (1𝒚#𝒕𝒎𝒑 − 𝒚#1 ‖𝒚#‖⁄ 	< tol OR max_r2 == 	𝟏): 
 



7 𝒚#𝒏𝒆𝒘 	= 	𝒚#𝒕𝒎𝒑 

8 else: break 

9 for 1000 iterations: 

10 𝒚#𝒕𝒎𝒑= SubtreeDeletionMutation(𝒚#𝒏𝒆𝒘) 

11 if (1𝒚#𝒕𝒎𝒑 − 𝒚#1 ‖𝒚#‖⁄ 	< tol): 
 

12 𝒚#𝒏𝒆𝒘 	= 	𝒚#𝒕𝒎𝒑 

13 RETURN 𝒚#𝒏𝒆𝒘(𝚽(𝒙)) 

 

Model Selection 

Due to its nature as a population-based method, FEAT’s optimization process produces several 

candidate final models along the Pareto-optimal front. In order to choose a single final model, 

models are trained on 80% of available training samples and 20% of training samples are held-

out for internal model validation. Then from the population of models along the Pareto front, the 

model with the lowest balanced log-loss in the held-out 20% of samples is selected as the final 

model. Due to its nature as a probabilistic algorithm, FEAT is sensitive to the random seed used 

in training. In order to encourage a robust final model was selected, we designed a heuristic 

procedure. FEAT was rerun 10 times in training, thereby yielding 10 models. Of these final 

models, we excluded those in the lowest quartile of validation AUPRC and then chose the 

smallest model. In our preliminary cross-validation analyses, we found this to result in relatively 

stable, discriminative, and interpretable models over 50 realizations of our experiment. 

However, this procedure is ad hoc and a better approach may exist.  

 

Benchmark Models for Comparison 

Supplementary Table 1 describes 5 variants of FEAT that we benchmarked in order to validate 

the algorithmic changes proposed above. We conducted this experiment to test the following 



hypotheses: 1) restricting FEAT to boolean operators would produce simpler models; 2) the 

post-run simplification operator would produce simpler models; 3) post-run simplification would 

produce models with derived features that were more orthogonal; 4) the multi-dimensional 

architecture FEAT uses would perform better than an even simpler “single model” approach 

frequently used in genetic programming.  

In order to test these changes generally, we chose a set of 20 benchmark classification 

problems from the Penn ML Benchmark (PMLB).22 These datasets are widely available, real-

world and simulated problems. We chose 20 datasets whose shape (number of samples and 

features) was closest to that of the hypertension problems (Supplementary Table 2). For the 

PMLB comparisons, we ran 10 trials of shuffled 75/25 train/test splits. 

 

Association between laboratory results and medications 

To understand the maximum calcium feature that FEAT learned to classify apparent treatment-

resistant hypertension, we performed multivariate logistic regression considering all anti-

hypertensive medication features using backwards selection, optimizing for Bayesian 

Information Content. 

 

EXTENDED RESULTS 

FEAT Method Benchmark  

Supplementary Figure 1 displays performance comparisons of the FEAT variants (listed in 

Supplementary Table 1) on the 20 PMLB benchmark tasks. As shown in Supplementary Figure 

1 (left), there were insignificant differences in AUPRC between methods except for Feat_1dim, 

which showed lower discrimination (p <= 1e-3). However, the modifications to FEAT 

(simplification, Boolean operators and single dimensionality) all resulted in successively smaller 



model sizes (Supplementary Fig. 1, right). FEAT_boolean_simplify produced the smallest 

models across FEAT variants without clear drop in predictive performance. We considered 

restricting FEAT to produce models with only a single derived feature (Feat_1dim), but found 

that while it further decreased median model size by 71% (p=1.4x10-18) it also decreased 

average precision by 4.1% (p=1.5x10-4). Therefore Feat_boolean_simplify was used as the 

FEAT configuration for subsequent applications for computable phenotyping. 

 

Model Interpretability  

Supplementary Figure 3 shows the SHAP values generated for the random forest model for 

aTRH. Supplementary Figure 3A shows that expected risk factors for aTRH were important 

predictions in the RF model. For example, the most important feature, low skewness in the 

number of encounters per year while prescribed three or more hypertension medications (“# enc 

on 3 meds, skewness”), has a large positive impact on the model output. In other words, 

patients with a high number of such encounters in most years and a low number of such 

encounters in a minority of years (i.e. negatively skewed distribution) were more likely to be 

predicted as aTRH. A similar analysis can be extended to all 331 features incorporated in the 

model, although doing so is difficult given how many features conferred a non-negligible impact 

on the model.  

The random forest model decision plot (Supplementary Fig. 3B) illustrates the impact of 

individual features on individual predictions; the top 20 most important features are shown. This 

plot depicts similar complexity to that of the LR L1 model (Figure 6), with a slow decay in 

importance across features. Thus, one cannot simply identify specific factors that explain 

classifications. For example, there are many features that appear to have had small, positive 

impacts resulting in misclassification of the single depicted false-positive subject 

(Supplementary Fig 3B, dot-dashed line with model output probability greater than 0.5). The 



mechanism by which each feature contributes to the misclassification cannot be deduced 

without fully considering the interactions between features in the ensemble. In contrast, since 

FEAT performs logistic regression on the transformed features (Figure 6), the derived predictors 

have linear and additive impacts on model output that can explain misclassifications. 

For the regression models LR L1 and FEAT, two sets of SHAP values are estimated. 

The alternative approach of SHAP value estimation for aTRH models is provided in 

Supplementary Figure 4. In contrast to Figure 6, the SHAP values in Supplementary Figure 4 

consider interactions amongst input data when estimating importance. In this case, SHAP 

values do not explicitly represent linear model coefficients. Instead, SHAP values are 

transformed by applying a linear projection to the input data and model coefficients. Put simply, 

whereas Figure 6 is faithful to the models and its coefficients, Supplementary Figure 4 shows 

feature importance estimates that are more faithful to the correlation structure of the input data. 

We note that considering such correlations gives a much more intuitive interpretation of the LR 

L1 model’s important predictors, including small positive effects on aTRH predictions from 

encounter counts while prescribed multiple medications, systolic blood pressure 

summarizations, and counts of days on hypertension medications. It is worth noting that to 

correctly identify the relationships between such features and the LR L1 model predictions 

requires a close inspection of the data, and is not apparent from simple inspection of the model 

coefficients themselves (i.e. Figure 6). In contrast, in accounting for data collinearity in 

interpreting the FEAT model, while we do observe some smearing of the features’ apparent 

impact the overall interpretability and interpretation of the model does not fundamentally change 

(Supplementary Fig. 4C). 

 

Clinical Chart Review 



Patients were deemed to have hypertension if they had multiple documented elevated blood 

pressure measurements (SBP >= 140 mmHg or DBP >= 90), were being treated with an anti-

hypertensive medication for blood pressure control, or had documented hypertension in 

diagnosis codes or notes. Elevated blood pressures were considered not indicative of 

hypertension if there was no clinical diagnosis and the elevation was potentially explained by 

clinical context, such as acute illness or pain, or interpreted as situational (e.g. white coat 

hypertension) and not treated as hypertension.  

Patients were considered to have hypokalemia if there was documented evidence of an 

outpatient laboratory test result with low potassium or were prescribed outpatient oral potassium 

supplementation. Hypokalemia was considered explained if the measurements coincided with a 

dilutional explanation (e.g. saline infusion, chemo-infusion), acute illness potentially explaining 

(e.g. gastroenteritis with vomiting and diarrhea), dietary restriction, medication with known side 

effect (e.g. Bortezomib, amphotericin B), or hypomagnesemia. 

Patients were considered to have apparent treatment-resistant hypertension (aTRH) if 

they were on anti-hypertension medications from 4 distinct classes for at least a month or from 3 

distinct classes for over a month and had multiple elevated blood pressure measurements that 

did not appear to be explained by identifiable factors (e.g. medication adherence, insufficient 

dosing, acute illness). Patients with evidence of heart failure or chronic kidney disease prior to 

meeting aTRH criteria were considered negative. 
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Supplementary Figure 1: Evaluation of FEAT modifications. (Left) Test AUPRC and (Right) 

model sizes of FEAT variants on 20 PMLB benchmark classification problems. Boxplots 

represent distribution of the mean 5-fold cross-validation test scores over 50 repeat realizations 

of the experiment. p values according to a Wilcoxon rank-sum test. 

  



 

Supplementary Figure 2: Comparison of discrimination and size of models trained to 

learn heuristics and chart-reviewed phenotypes. Top plots indicate the rankings of methods 

according to AUPRC (left) and model size (right), when tasked with predicting the three expert 

heuristics. On the bottom, equivalent plots are shown for predicting the chart-reviewed 

phenotypes. Performance is ranked according to mean 5-fold CV performance and error bars 
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indicate the standard error over 50 realizations of the experiment. p values are calculated 

according to pairwise Wilcoxon rank-sum tests, with α = 0.001.  

  



 

Supplementary Figure 3: SHAP Plots for Random Forest Model Trained to Predict aTRH.  

SHAP summary plots (left) and decision plots (right). The left plot indicates the most important 

features, ranked by the mean absolute SHAP value calculated on test data. The decision plot 

shows a sample of 10 positive and 10 negative point predictions by the models, with dotted lines 

indicating misclassifications. 

  



 

Supplementary Figure 4: SHAP plots for LR L1 and FEAT Models Trained to Predict 

aTRH.  SHAP summary plots (A, C) and decision plots (B,D) according to the learned features 

of the LR L1 and FEAT models. In this case, SHAP values do not explicitly represent linear 

model coefficients. Instead, SHAP values are transformed by applying a linear projection to the 

input data and model coefficients, leading to feature importance estimates that are more faithful 

to the data than the model. The left plot indicates the most important features, ranked by the 

mean absolute SHAP value calculated on test data. The decision plot shows a sample of 10 



positive and 10 negative point predictions by the models, with dotted lines indicating 

misclassifications. 

  



Supplementary Table 1: FEAT method variants tested in benchmark experiment. 
 

Common settings population size = 500, generations = 200, max_time = 1 hour 
Feat_base FEAT with default arguments 
Feat_simplify* FEAT with post-run simplification 
Feat_boolean FEAT restricted to Boolean operators 
Feat_boolean_simplify FEAT restricted to Boolean operators with post-run simplification 
Feat_1dim FEAT restricted to producing a single feature (one dimensional) 

  

 

Supplementary Table 2: Datasets from PMLB22 used for benchmark comparisons. 

Dataset Name Number of Features Number of Instances 
Hill_Valley_with_noise 100 1212 
Hill_Valley_without_noise 100 1212 
backache 32 180 
breast-cancer-wisconsin 30 569 
chess 36 3196 
clean1 168 476 
clean2 168 6598 
coil2000 85 9822 
colic 22 368 
dis 29 3772 
horse-colic 22 368 
hypothyroid 25 3163 
ionosphere 34 351 
kr-vs-kp 36 3196 
molecular-biology_promoters 58 106 
sonar 60 208 
spambase 57 4601 
spectf  44 349 
tokyo1 44 959 
wdbc 30 569 

 



Supplementary Table 3: EHR features considered as potential predictors 

Group VARIABLE VARIABLE DESCRIPTION 

Identifiers UNI_ID the unique study-generated identifier for Patient 

Demo 

age patient's age at right-censoring date 

Male patient's indicated Sex (1 = male, 0 = female) 

BLACK 1 = black, 0 = non-black 

OTHER 1 = asian, other, mixed,native american,pacific islander, 0 = black or white 

WHITE 1 = white, 0 = non-white 

ZIP_CAT distance from patient's home to 19104, in category 

Encounter 
MASTER_LOCATION_CODE 

code for healthcare site (not one hot encoded), common service for all source systems. This is used to 
map UPHS's various versions of the same or similar codes into a matched list of services. This data will 
persist to the MDM level. 

GENERAL_INTERNAL_MEDICINE 1 = IM practice, 0 = FM practice 

BMI/Weight 
weight_min/max/median/sd/skewness min/max/median/sd/skewness of weights 

bmi_min/max/sd/skewness min/max/sd/skewness of BMI 

BP 

bp_n total number of bp measurements 

min_systolic minimum of systolic blood pressure measured 

min_diastolic minimum of diastolic blood pressure measured 

max_systolic maximum of systolic blood pressure measured 

max_systolic maximum of diastolic blood pressure measured 

mean_systolic mean of systolic blood pressure measured 

mean_diastolic mean of diastolic blood pressure measured 

median_systolic median of systolic blood pressure measured 

median_diastolic median of diastolic blood pressure measured 

sd_systolic standard deviation of systolic blood pressure measured 

sd_diastolic standard deviation of diastolic blood pressure measured 

skew_systolic skewness of systolic blood pressure measured 

skew_diastolic skewness of diastolic blood pressure measured 

high_bp_n number of high blood pressure, SBP >= 140 or DBP >= 90 

mean_high_bp_systolic mean systolic bp of all high blood pressure measurements (SBP >=140 or DBP >=90) 

mean_high_bp_diastolic mean diastolic bp of all high blood pressure measurements (SBP >=140 or DBP >=90) 

median_high_bp_systolic median systolic bp of all high blood pressure measurements (SBP >=140 or DBP >=90) 

median_high_bp_diastolic median diastolic bp of all high blood pressure measurements (SBP >=140 or DBP >=90) 

sd_high_bp_systolic standard deviation of systolic bp of all high blood pressure measurements (SBP >=140 or DBP >=90) 

sd_high_bp_diastolic standard deviation of diastolic bp of all high blood pressure measurements (SBP >=140 or DBP >=90) 

skew_high_bp_systolic skewness of systolic bp of all high blood pressure measurements (SBP >=140 or DBP >=90) 

skew_high_bp_diastolic skewness of diastolic bp of all high blood pressure measurements (SBP >=140 or DBP >=90) 

median/sd/skew_high_bp_n_yr median/sd/skewness of high blood pressure measurements (SBP >=140 or DBP >=90) per year 

Labs 
max.lab_XXX maximum of XXX lab test 

min.lab_XXX minimum of XXX lab test 



median.lab_XXX median of XXX lab test 

q1.lab_XXX 1st quantile of XXX lab test 

q3.lab_XXX 3rd quantile of XXX lab test 

Dx 

median_ICD_XXX (Dx) median XXX ICD-9 and ICD-10 codes, by year 

sum_ICD_XXX (Dx) sum XXX ICD-9 and ICD-10 codes, by year 

median_XXX (disease name) median XXX disease name, by year 

sum_XXX (disease name) sum XXX disease name, year 

Dx_N number of total ICD-9 and ICD-10 codes (PK_DX_ID) 

enc_N number of OUTPATIENT (including INFUSION VISIT) encounters 

dx_days_x days from 1st Dx to last Dx in system 

Medication 

HTN_MED_days_XXX days on med XXX (including anti-HTN and Potassium Supplement) 

MED_N number of medication prescriptions total 

high_BP_during_htn_meds_1/2/3/4_plus number of high BP measurements during 1/2/3/4+ anti-HTN meds 

sum_enc_during_htn_meds_1/2/3/4_plus number of OUTPATIENT encounters during 1/2/3/4+ meds 

median_enc_during_htn_meds_1/2/3/4_plus median number (by year) of OUTPATIENT encounters during 1/2/3/4+ meds 

sd_enc_during_htn_meds_1/2/3/4_plus sd of number (by year) of OUTPATIENT encounters during 1/2/3/4+ meds 

skewness_enc_during_htn_meds_1/2/3/4_plus skewness of number (by year) of OUTPATIENT encounters during 1/2/3/4+ meds 

N_med_K_chlo_enc number of encounters on POTASSIUM_CHLORIDE/POTASSIUM_GLUCONATE 

sd_med_K_chlo_enc sd of number (by year) of encounters on POTASSIUM_CHLORIDE/POTASSIUM_GLUCONATE 

skewness_med_K_chlo_enc skewness of number (by year) of encounters on POTASSIUM_CHLORIDE/POTASSIUM_GLUCONATE 

Heuristic 
Features 

low_K_N # of low potassium test results 

test_K_N # of potassium test results 

Med_Potassium_N # of potassium supplement medication subscriptions 

Dx_HypoK_N # of Hypokalemia Dx 

HTN Score 
Features 

ICD_hyp_sum HTN ICD codes 

MED_HTN_N anti-HTN med prescriptions 

bp_hyp_norm high_bp_n/bp_n 

ICD_hyp_sum_norm ICD_hyp_sum/Dx_N 

MED_HTN_N_norm MED_HTN_N/MED_N 

re_hyp_spe_norm re_htn_spec/words_n 

Regex 

re_htn_sum sum of regex counts in clinical notes for hypertension 

re_htn_spec_sum sum of regex counts in clinical notes for hypertension (specific, excluding preliminary negations) 

re_htn_teixera_sum sum of regex counts in clinical notes for hypertension (regex used in Teixeira paper) 

re_word_count_sum sum word counts in clinical notes 

re_htn_max maximum of regex counts in clinical notes for hypertension  

re_htn_spec_max maximum of regex counts in clinical notes for hypertension (specific, excluding preliminary negations) 

re_htn_teixera_max maximum of regex counts in clinical notes for hypertension (regex used in Teixeira paper) 

re_word_count_max maximum word counts in clinical notes 

re_htn_mean mean of regex counts in clinical notes for hypertension 



re_htn_spec_mean mean of regex counts in clinical notes for hypertension (specific, excluding preliminary negations) 

re_htn_teixera_mean mean of regex counts in clinical notes for hypertension (regex used in Teixeira paper) 

re_word_count_mean mean word counts in clinical notes 

re_htn_median median of regex counts in clinical notes for hypertension  

re_htn_spec_median median of regex counts in clinical notes for hypertension (specific, excluding preliminary negations) 

re_htn_teixera_median median of regex counts in clinical notes for hypertension (regex used in Teixeira paper) 

re_word_count_median median word counts in clinical notes 

re_htn_sd standard deviation of regex counts in clinical notes for hypertension 

re_htn_spec_sd standard deviation of regex counts in clinical notes for hypertension (specific, excluding preliminary 
negations) 

re_htn_teixera_sd standard deviation of regex counts in clinical notes for hypertension (regex used in Teixeira paper) 

re_word_count_sd standard deviation of word counts in clinical notes 

re_htn_skewness skewness of regex counts in clinical notes for hypertension 

re_htn_spec_skewness skewness of regex counts in clinical notes for hypertension (specific, excluding preliminary negations) 

re_htn_teixera_skewness skewness of regex counts in clinical notes for hypertension (regex used in Teixeira paper) 

re_word_count_skewness skewness of word counts in clinical notes 

 

  



Supplementary Table 4: EHR laboratory results considered as predictors 

Labs 
Pct.BASOPHILS 
Pct.EOSINOPHILS 
Pct.LYMPHOCYTES 
Pct.MONOCYTES 
Pct.NEUTROPHILS 
ALBUMIN 
ALKALINE.PHOSPHATASE 
ALT 
AST 
BILIRUBIN.TOTAL 
CALCIUM 
CARBON.DIOXIDE 
CHLORIDE 
CHOLESTEROL 
CHOLESTEROL.CALCULATED.LOW.DENSITY.LIPOPROTEIN 
CHOLESTEROL.CALCULATED.HIGH.DENSITY.LIPOPROTEIN 
CREATININE 
HEMATOCRIT 
HEMOGLOBIN 
MEAN.CELLULAR.HEMOGLOBIN 
MEAN.CELLULAR.HEMOGLOBIN.CONCENTRATION 
MEAN.CELLULAR.VOLUME 
PLATELETS 
POTASSIUM 
PROTEIN.TOTAL 
RDW 
RED.BLOOD.CELLS 
SODIUM 
THYROID.STIMULATING.HORMONE 
TRIGLYCERIDES 
UREA.NITROGEN 
WBC 

 

  



Supplementary Table 5: EHR diagnosis codes considered as predictors, encoded as median count per 
year 

median_ICD_XXX (Dx) 
median_E03_9 
median_E11_9 
median_E78_00 
median_E78_01 
median_E78_2 
median_E78_5 
median_I10 
median_I16_0 
median_I16_1 
median_I16_9  

median_XXX (disease name) 
median_Diabetes_type_1 
median_Dyslipidemias 
median_Essential_HTN 
median_HTN_Emergency 
median_Hypothyroidism 

 

  



Supplementary Table 6: EHR diagnosis codes considered as predictors, encoded as total count 

sum_ICD_XXX (Dx) 
sum_E03_8 
sum_E03_9 
sum_E11_65 
sum_E11_9 
sum_E66_01 
sum_E66_09 
sum_E66_1 
sum_E66_8 
sum_E66_9 
sum_E78_00 
sum_E78_01 
sum_E78_2 
sum_E78_5 
sum_E87_6 
sum_G47_30 
sum_G47_33 
sum_I10 
sum_I16_0 
sum_I16_1 
sum_I16_9 
sum_I25_10 
sum_I48_0 
sum_I48_1 
sum_I48_2 
sum_I48_91 
sum_L70_8 
sum_N18_3  

sum_XXX (disease name) 
sum_ACNE 
sum_Arrythmias 
sum_Atrial_fibrillation 
sum_CAD_native 
sum_CKD 
sum_Diabetes_type_2 
sum_Dyslipidemias 



sum_Essential_HTN 
sum_Heart_Failure 
sum_HTN_Emergency 
sum_Hypokalemia 
sum_Hypothyroidism 
sum_Obesity 
sum_Obstructive_Sleep_Apnea 

 

  



Supplementary Table 7: Anti-hypertensive medication features considered, encoded as number of days 
prescribed 

HTN_MED_days_XXX 
HTN_MED_days_ACEI_ARB 
HTN_MED_days_ALDOSTERONE_ANTAGONIST 
HTN_MED_days_ALDOSTERONE_ANTAGONISTS 
HTN_MED_days_ALPHA_ANTAGONISTS 
HTN_MED_days_BETA_BLOCKERS 
HTN_MED_days_CENTRAL_ALPHA_AGONISTS 
HTN_MED_days_DIHYDRO_CCBS 
HTN_MED_days_HYDRALAZINE 
HTN_MED_days_K_SPARING_DIURETICS 
HTN_MED_days_LOOP_DIURETICS   
HTN_MED_days_MINOXIDIL 
HTN_MED_days_NON_DIHYDRO_CCBS 
HTN_MED_days_RENIN_ANTAGONIST 
HTN_MED_days_THIAZIDE 
HTN_MED_days_POTASSIUM_CHLORIDE 

 

  



Supplementary Table 8: EHR features included in trained computable phenotypes 

Full Name Short Name 

Days between 1st dx to last dx code Data interval, days 

Number of high BP measurements while on 3 anti-
HTN meds 

# high BPs on 3 meds 

Number of high BP measurements while on 4+ anti-
HTN meds 

# high BPs on 4+ meds 

Days prescribed ACE inhibitors Days on ACEi 

Days prescribed beta blockers Days on BB 

Days prescribed dihydropyridine calcium channel 
blockers 

Days on dCCB 

Days prescribed potassium sparing diuretics Days on k-sparing diuretic 

Days prescribed thiazides Days on thiazide 

Sum of HTN ICD codes HTN dx codes, sum 

Sum of HTN ICD codes divided by the total number of 
ICD codes 

HTN dx codes, sum, norm 

Maximum of systolic blood pressure measured SBP, max 

Maximum of calcium measured Calcium, max 

Maximum of creatinine measured Creatinine, max 

Mean of systolic blood pressure measured SBP, mean 

Number of anti-hypertension medication 
prescriptions 

HTN meds, count 

Number of anti-hypertension medication 
prescriptions divided by the total number of 
prescribed medications 

HTN meds, count, norm 

Median number (by year) of OUTPATIENT encounters 
during 4+ anti-hypertension medications 

# enc 4+ meds, median 

Count of I10 (hypertension) ICD codes, median per 
year 

HTN dx codes, median 

Median of systolic blood pressure measured SBP, median 

Median of potassium measured K, median 

Minimum of potassium measured K, min 

Sum of regex counts in clinical notes for 
hypertension 

# HTN mentions, sum 

Standard deviation of number (by year) of 
OUTPATIENT encounters during 2 anti-hypertension 
medications 

# enc on 2 meds, SD 

Standard deviation of number (by year) of 
OUTPATIENT encounters during 3 anti-hypertension 
medications 

# enc on 3 meds, SD 

Standard deviation of number (by year) of 
OUTPATIENT encounters during 4+ anti-
hypertension medications 

# enc on 4+ meds, SD 

Standard deviation of systolic blood pressure 
measured 

SBP, SD 

Skewness of number (by year) of OUTPATIENT 
encounters during 2 anti-hypertension medications 

# enc on 2 meds, skewness 



Skewness of number (by year) of OUTPATIENT 
encounters during 3 anti-hypertension medications 

# enc on 3 meds, skewness 

Skewness of number (by year) of OUTPATIENT 
encounters during 4+ anti-hypertension medications 

# enc on 4+ meds, skewness 

Sum of number (by year) of OUTPATIENT encounters 
during 3 anti-hypertension medications 

# enc on 3 meds, sum 

Sum of number (by year) of OUTPATIENT encounters 
during 4+ anti-hypertension medications 

# enc on 4+ meds, sum 

Sum of I10 (hypertension) ICD codes HTN dx codes, sum 

Sum of I10 (hypertension) ICD codes HTN dx codes, sum 

High Density Lipoprotein (HDL) cholesterol, min HDLc, min 

High Density Lipoprotein (HDL) cholesterol, max HDLc, max 

Chloride, 1st quartile Chloride, min 

Carbon dioxide, min CO2, min 

Mean cellular hemoglobin concentration (MCHC), 3rd 
quartile 

MCHC, 3rd quartile 

Platelets, max Platelets, max 

Mean cellular hemoglobin concentration (MCHC), 1st 
quartile 

MCHC, 1st quartile 

Low Density Lipoprotein (LDL) cholesterol, 
calculated, median 

LDLc, median 

Regex counts in clinical notes for hypertension, 
median per year 

# of HTN mentions, median 

Albumin, min Albumin, min 

Calcium, 1st quartile Calcium, 1st quartile 

Chloride, median Chloride, median 

Thyroid stimulating hormone (TSH), 1st quartile TSH, 1st quartile 

  

 


