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ABSTRACT 

Objective: Electronic health records (EHRs) can improve patient care by enabling systematic 

identification of patients for targeted decision support. But, this requires scalable learning of 

computable phenotypes. To this end, we developed the feature engineering automation tool 

(FEAT) and assessed it in targeting screening for the underdiagnosed, under-treated disease 

primary aldosteronism. 

Materials and Methods: We selected 1,199 subjects receiving longitudinal care in a large 

health system and classified them for hypertension (N=608), hypertension with unexplained 

hypokalemia (N=172), and apparent treatment-resistant hypertension (N=176) by chart review. 

We derived 331 features from EHR encounters, diagnoses, laboratories, medications, vitals, 

and notes. We modified FEAT to encourage model parsimony and compared its models’ 

performance and interpretability to those of expert-curated heuristics and conventional machine 

learning. 

Results: FEAT models trained to replicate expert-curated heuristics had higher area under the 

precision-recall curve (AUPRC) than all other models (p < 0.001) except random forests and 

were smaller than all other models (p < 1e-6) except decision trees. FEAT models trained to 

predict chart review phenotypes exhibited similar AUPRC to penalized logistic regression while 

being simpler than all other models (p < 1e-6). For treatment-resistant hypertension, FEAT 

learned a six-feature, clinically intuitive model that demonstrated a positive predictive value of 

0.70 and sensitivity of 0.62 in held-out testing data.  

Discussion: FEAT learns computable phenotypes that approach the performance of expert-

curated heuristics and conventional machine learning without sacrificing interpretability.  

Conclusion: By constructing accurate and interpretable computable phenotypes at scale, FEAT 

has the potential to facilitate systematic clinical decision support. 
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INTRODUCTION 

 The adoption of electronic health records (EHRs) is transforming medicine by aiding 

clinical decision making and facilitating translational research.[1,2] In order to leverage EHR 

data, practitioners must first define rules or algorithms known as computable phenotypes that 

identify patient cohorts with certain characteristics of interest.[3–5] While there have been 

significant advances in creating and standardizing computable phenotypes, developing accurate 

computable phenotypes remains a time-consuming and challenging process due to the 

heterogeneity, imprecision, and high dimensionality of EHR data.[1,2,6–9] 

Various rule-based and machine learning (ML) approaches have been developed for 

generating computable phenotypes.[7] Due to the high-dimensional, messy, noisy data that 

constitute EHRs, many studies have developed ensemble or deep learning methods to train 

accurate models.[10–17] Algorithms employed in these studies (e.g. random forests and neural 

networks) generally can perform well in classification but are often limited in their interpretability, 

a subjective concept defined as the extent to which a model can be understood and/or its 

behavior interpreted by a user.[18–22]  

Many have noted that interpretability is a key feature for EHR-based ML models.[23,24] 

For black-box ML methods, post-hoc approaches can estimate the impact of each feature.[25–

28] However, it is advantageous to be able to explicitly understand why a computable 

phenotype is positive or negative for an individual patient.[29,30] Such concise models are 

easier to robustly incorporate within existing decision-making frameworks because clinicians 

can corroborate or second-guess predictions, ultimately leading to trust and facilitating an 

overall higher quality of clinical decision making. In addition, interpretable models may be more 

predictably adjusted as clinical practices change over time or models are applied to new 

settings. For these reasons, the FDA’s proposed regulatory framework for the evaluation of 

automated clinical decision support systems incorporates whether clinicians can “independently 
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review the basis for [a model’s] recommendations” as critical to risk stratification of future ML 

deployments in medicine.[31] See Supplementary Materials for further background. 

In this paper, we improved and then applied the feature engineering automation tool 

(FEAT) to generate computable phenotypes that are both accurate and interpretable.[32–34] 

FEAT uses a genetic programming approach for symbolic regression.[35] It learns interpretable 

feature representations in tandem with fitting a classification model. The representations are 

evolved using a population-based Pareto optimization algorithm that jointly optimizes model 

discrimination and complexity.[36,37] To our knowledge, this is the first work to explore the 

application of symbolic regression with Pareto optimization to EHR phenotyping.  

We applied FEAT to EHR data targeting primary aldosteronism (PA), the most frequent 

cause of secondary hypertension.[38] Epidemiological studies suggest that PA affects ~1% of 

US adults, but recent literature demonstrates it is under-screened for and under-diagnosed.[39–

44] Using FEAT, we have developed preliminary computable phenotypes for identifying patients 

for whom guidelines recommend PA screening, patients with hypertension with unexplained 

hypokalemia (HTN-hk) or apparent treatment-resistant hypertension (aTRH).[39] PA is thought 

to be responsible for these phenotypes in up to 20% of these patients.[39–41,45] We expect 

that identifying such patients who should be screened for PA could drive improvements in their 

care.  

 

 
MATERIALS AND METHODS 

Benchmark Data 

To benchmark changes to FEAT, we applied variant methods to 20 classification tasks in the 

Penn Machine Learning Benchmark (PMLB; Supplementary Tables 1 & 2).[46] 
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Patients 

We studied 1,200 patients receiving longitudinal primary care in the University of Pennsylvania 

Healthcare System (UPHS). Subjects included had (1) at least five outpatient visits in at least 

three separate years between 2007 and 2017, (2) at least two encounters at one of 40 primary 

care practice sites, and (3) were 18 years or older in 2018. A set of 1,000 random subjects from 

this cohort were divided into 800 for model training and 200 for model testing. One subject in the 

random training set was excluded because of a mid-study change in enterprise master patient 

index (EMPI) identifier.  

A study physician (I.A.) reviewed clinical charts and classified subjects with respect to 

three phenotypes of increasing complexity for hypertension related to screening guidelines for 

PA: hypertension, HTN-hk, and aTRH. Classification was based on JNC7 Guidelines on 

Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.[47] Unclear cases 

were further reviewed by an additional study physician (D.S.H. or J.C.). See Supplementary 

Material for further details. 

Preliminary and final expert-curated heuristics for aTRH and HTN-hk (see below) were 

used to identify an additional 50 subjects each for model training and model testing, 

respectively. This yielded a total of 899 subjects for the training set and 300 subjects in the 

testing set. This study protocol was reviewed and approved by University of Pennsylvania 

Institutional Review Board (#827260). 

 

Clinical Data 

We extracted 331 features from the EHR clinical data repository Penn Data Store and EPIC 

Clarity reporting database (Supplementary Tables 3 - 8). Demographic and encounter features 

included age, race, sex, categorized distance from zip code 19104, weight, BMI, blood 

pressures, and number of elevated blood pressures. Longitudinal features were aggregated as 
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minimum, maximum, median, standard deviation, and skewness. The 34 most common 

laboratory test results (complete metabolic panel, complete blood count with differential, lipids, 

thyroid stimulating hormone, and hemoglobin A1c) with < 33% missingness were summarized 

as minimum, maximum, median, 1st quartile, and 3rd quartile. Diagnosis codes for hypertension, 

associated comorbidities, and other indications for anti-hypertensive medications were 

aggregated and summarized as median per year and sum. Medication prescriptions were 

summarized as the number of days prescribed for each antihypertensive class and the counts of 

encounters while prescribed 1, 2, 3, or 4 or more anti-hypertensive medications, summarized as 

sum, median, standard deviation, and skewness, as well as the sum of encounters with 

elevated blood pressures. Regular expressions, adapted with modifications from Teixeira et. 

al.,[48] were applied to clinical notes to identify mentions of ‘hypertension’ and variants thereof, 

summarized as counts. Features with values outside of physiologically reasonable ranges, less 

than 5% non-zero counts, or variance less than 0.05 were excluded. Missing values were 

median imputed.  

 

Construction of expert-curated heuristics 

Next, computable phenotypes (heuristics) were manually curated for the three target 

phenotypes by expert review of EHR data and several iterations of proposing, applying, and 

evaluating the heuristics. Heuristics were initially developed from the set of random training 

patients. A preliminary set of heuristics for HTN-hk and aTRH were used to identify 50 patients, 

and iteratively evaluated and updated. Thus, final heuristics were developed from the entire set 

of 799 random and 100 targeted training patients. Final heuristics were then used to identify an 

additional 100 patients for the held-out testing set. 

The heuristic designed for hypertension queried for a history of two or more diagnosis 

codes for hypertension (International Classification of Diseases [ICD]-9: 401.*, 405.*; ICD-10: 
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I10.*, I15.*). For HTN-hk, we labeled patients with at least two diagnosis codes for hypokalemia 

(ICD-9: 276.8; ICD-10: E87.6), or at least two outpatient encounters with low blood potassium (< 

3.6 mmol/L), or at least two prescriptions for an oral potassium supplement. For aTRH, we 

modified a previously reported heuristic[49] to label patients (1) with documentation of at least 2 

out of 5 consecutive outpatient encounters with elevated blood pressure (systolic blood 

pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg) while on antihypertensive 

medications from 3 distinct classes for at least 30 days prior to the elevated blood pressures or 

(2) prescribed four or more antihypertensive drug classes for at least 30 days. Exclusion criteria 

for aTRH included patients with a diagnosis code for heart failure or transplant (ICD-9: 428.*, 

V42.1; ICD-10: 150.*, Z94.1) or moderate to severe chronic kidney disease (estimated 

glomerular filtration rate [Modification of Diet in Renal Disease; MDRD]) < 45 mL/min/1.73 m2) 

prior to meeting the above criteria.  

 

Feature Engineering Automation Tool (FEAT) 

 We adapted a recent method for learning informative feature representations called 

FEAT (v0.4.2) for largely automated clinical phenotyping (Figure 1; 

https://lacava.github.io/feat).[32–34] For this task, we are interested in learning a classification 

model from a set of N paired samples, {(𝑦! ,  𝒙!),  i  =  1, 	… , 	N}, with binary labels 𝑦 ∈ {0,1} and 

attributes 𝒙 ∈ 𝑹". FEAT attempts to learn a set of features for a logistic regression model of the 

form  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑦 = 1|𝒙)) = 𝛃#𝚽(𝒙) 

where 𝛟(𝒙) is a p-dimensional vector of transformations of 𝒙	learned from FEAT’s optimization 

process. The coefficients 𝛃 = <β$, … , β%> are associated with each of these transformed 

features.    
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 For the purposes of learning interpretable models, we restricted the transformation 

operators to Boolean functions: <, >, AND, OR, NOT. This limits the search space to 

representations consisting of these operators and the input features. For inequalities, we 

included operators that use Gini impurity to choose the split threshold for each feature in an 

equivalent way to classification trees. Note that because the optimization process includes 

mutation to or insertion of new input features, it allows for non-greedy search to occur to find the 

best fit for the problem at hand, in contrast to decision trees.  

To encourage model parsimony, we modified FEAT in two distinct ways. First, to handle 

high-dimensional data, rather than fitting a multivariate linear model to all the data at the start of 

optimization, we sampled the input data based on univariate logistic regression coefficients. 

Second, we added a post-run simplification procedure to shrink the final feature representation 

without significantly altering its behavior. This post-run simplification procedure consists of 1) 

explicitly removing redundant serial logical operators, 2) adaptively pruning highly correlated 

components of representations, and 3) applying random deletion mutations to the features in a 

hill-climbing fashion. See the Supplementary Methods for further details. 

 

Comparator Methods 

To assess how FEAT models compare to conventional ML models, we applied five 

supervised classifiers: LASSO-penalized logistic regression (LR L1), ridge-penalized logistic 

regression (LR L2), decision tree (DT), random forest (RF), and Gaussian Naïve Bayes (GNB). 

Hyperparameters for each of the models were optimized using 5-fold nested cross-validation. All 

of the comparator methods were implemented using Scikit-learn.[50] We report the mean test 

area under the precision-recall curve (AUPRC) and area under the receiver-operating curve 

(AUROC) for all experiments. AUPRC is calculated as average precision (see 

sklearn.metrics.average_precision_score, scikit-learn version 0.23.2). We also compared the 
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size of the final models, defined for tree-based methods (FEAT, decision tree, and random 

forest) as the total number of nodes in the trees and defined for the linear methods and GNB as 

the number of predictors with non-zero coefficients. Models’ performance and size were 

compared using paired Wilcoxon rank-sum tests. Model thresholds were selected in the training 

set to achieve a positive-predictive value (PPV) in the longitudinal, primary care cohort of 0.70. 

Study code, including full environment specification, is available in the repository 

https://bitbucket.org/hermanlab/ehr_feat/.  

 

RESULTS 

Development of automated phenotyping method 

To automatically construct computable phenotypes whose outputs are interpretable by 

clinicians, we extended FEAT to better implement Boolean logic, added procedures to 

encourage model parsimony, and developed approaches for improving training robustness. To 

evaluate these modifications, we applied them to benchmark datasets[46] that were similar in 

shape to our EHR data. We found that restricting operators and simplifying models did not 

significantly impair classification performance but substantially decreased the size of resulting 

models (Supplementary Fig. 1; p = 7.2x10-9). Detailed results are available in the 

Supplementary Material. 

 

Learning expert-curated computable phenotypes 

We next applied our optimized FEAT method to a training set of 899 subjects to learn to 

recapitulate the expert-curated heuristics for hypertension, HTN-hk, and aTRH. We evaluated 

each heuristic in 50 trials of 5-fold cross-validation on shuffled training datasets and averaged 

test scores across folds (Figure 2, top row; Table 1). Across all three heuristics, FEAT models 
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achieved higher AUPRC (p < 0.001; Supplementary Fig. 2) than all other models except RF. 

FEAT models were smaller than all other models (p < 1x10-6) except decision trees. 

Table 1. Computable phenotype discrimination and size for each target phenotype in 
training cross-validation. 

Phenotype Method Median CV 
AUPRC (IQR) 

Median CV 
AUROC (IQR) 

Median Size (IQR) 

HTN Heuristic 

GNB 0.93 (0.01) 0.96 (0.00) 331.00 (0.00) 
DT 0.99 (0.00) 1.00 (0.00) 4.60 (0.00) 
LR L1 1.00 (0.00) 1.00 (0.00) 52.30 (5.90) 
LR L2 0.99 (0.00) 0.99 (0.00) 330.80 (0.00) 
RF 1.00 (0.00) 1.00 (0.00) 8760.40 (6278.30) 
FEAT 1.00 (0.00) 1.00 (0.00) 8.20 (0.95) 

HTN-
Hypokalemia 

Heuristic 

GNB 0.47 (0.02) 0.86 (0.00) 331.00 (0.00) 
DT 0.95 (0.02) 0.99 (0.01) 10.80 (1.60) 
LR L1 0.98 (0.01) 1.00 (0.00) 65.10 (18.05) 
LR L2 0.87 (0.02) 0.96 (0.01) 330.80 (0.00) 
RF 1.00 (0.00) 1.00 (0.00) 1855.80 (1640.80) 
FEAT 0.99 (0.01) 1.00 (0.00) 18.30 (2.55) 

Resistant HTN 
Heuristic 

GNB 0.58 (0.02) 0.92 (0.01) 331.00 (0.00) 
DT 0.67 (0.05) 0.89 (0.03) 27.00 (3.20) 
LR L1 0.84 (0.02) 0.95 (0.01) 70.50 (16.90) 
LR L2 0.81 (0.02) 0.94 (0.01) 330.80 (0.00) 
RF 0.91 (0.02) 0.99 (0.00) 27235.00 (13392.00) 
FEAT 0.91 (0.02) 0.98 (0.01) 14.20 (1.70) 

HTN Diagnosis 

GNB 0.93 (0.00) 0.95 (0.00) 331.00 (0.00) 
DT 0.91 (0.01) 0.94 (0.01) 51.00 (5.20) 
LR L1 0.98 (0.00) 0.98 (0.00) 23.20 (5.50) 
LR L2 0.97 (0.00) 0.98 (0.00) 330.80 (0.00) 
RF 0.98 (0.00) 0.99 (0.00) 20397.60 (19474.10) 
FEAT 0.98 (0.00) 0.98 (0.00) 13.90 (2.90) 

HTN-
Hypokalemia 

Diagnosis 

GNB 0.38 (0.01) 0.86 (0.02) 331.00 (0.00) 
DT 0.63 (0.06) 0.88 (0.04) 30.20 (2.40) 
LR L1 0.80 (0.02) 0.94 (0.02) 68.10 (15.30) 
LR L2 0.73 (0.02) 0.91 (0.02) 330.80 (0.00) 
RF 0.84 (0.02) 0.98 (0.01) 13443.40 (8241.30) 
FEAT 0.82 (0.03) 0.97 (0.01) 16.20 (2.70) 

Resistant HTN 
Diagnosis 

GNB 0.46 (0.02) 0.90 (0.02) 331.00 (0.00) 
DT 0.41 (0.06) 0.78 (0.04) 56.80 (7.40) 
LR L1 0.69 (0.04) 0.93 (0.02) 52.90 (17.95) 
LR L2 0.69 (0.04) 0.91 (0.01) 330.80 (0.00) 
RF 0.75 (0.02) 0.96 (0.00) 38835.00 (20521.10) 
FEAT 0.69 (0.05) 0.94 (0.01) 9.80 (1.80) 

 
Automated learning of computable phenotypes 
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Next, we compared the performance of models trained to predict the chart-review phenotypes 

(Figure 2, bottom; Table 1), which were present in 423 (47%), 93 (10%), and 103 (11%) 

subjects, respectively. Across all phenotypes, FEAT models achieved AUPRC scores that were 

higher than GNB, LR L2, and DT models (p < 0.001; Supplementary Fig. 2), comparable to LR 

L1 models (p > 0.99), and slightly lower than RF models (p < 1e-6). These relationships were 

consistent across phenotypes, except that FEAT models appeared to also outperform LR L1 for 

HTN-hk. FEAT models were smaller than all other models including decision tree models (p < 

1e-6); models were on average approximately 1800 times smaller than RF models and 2.9 

times smaller than LR L1 models. We next explored the trade-off between model performance 

and complexity for heuristic and chart-review trained models (Figure 3). The FEAT models 

clustered near the high-performance, low-complexity region (top left) of this tradeoff space, 

indicating that they achieved a relatively efficient trade-off between these two objectives.  

For the most complex phenotype, aTRH, FEAT models achieved a median AUPRC of 

0.69 (interquartile range [IQR]: 0.05) with a median size of 9.8 (IQR: 1.8). These models 

showed reasonable discrimination across all potential decision thresholds, as depicted by PRC 

and ROC (Figure 4). Of note, the expert-curated heuristic demonstrated superior discrimination 

to all ML models at its single operating point. 

 

Assessment of model generalization and clinical utility 

Next, we applied the methods refined by cross-validation to learn models from the entire training 

set and assessed their performance on a held-out test set of 300 subjects, including 185 (61%), 

79 (26%), and 73 (24%) subjects for each chart-review phenotype. Model performance and size 

(Table 2) were consistent with cross-validation estimates. Most appeared to have slightly better 

AUPRC than in cross-validation, likely due in part to the higher enrichment for cases in the 

testing cohort. For chart-reviewed hypertension, HTN-hk, and aTRH, the FEAT models 
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demonstrated AUPRC scores of 0.99, 0.96, and 0.80, and AUROC scores of 0.99, 0.98, and 

0.94, respectively. As compared to the expert curated heuristics, the FEAT models’ AUPRC was 

0.15 (18%) higher for HTN-hk and within 0.02 (2%) for hypertension and aTRH. 

Table 2: Final model discrimination in test set and size 
Phenotype Method Test AUPRC Test AUROC Size 

HTN Heuristic 

GNB 0.94 0.95 331 
DT 1.00 1.00 5 
LR L1 1.00 1.00 56 
LR L2 1.00 0.99 331 
RF 1.00 1.00 3106 
FEAT 1.00 1.00 12 

HTN-
Hypokalemia 
Heuristic 

GNB 0.73 0.85 331 
DT 1.00 1.00 13 
LR L1 1.00 1.00 76 
LR L2 0.98 0.98 331 
RF 1.00 1.00 1106 
FEAT 1.00 1.00 24 

Resistant HTN 
Heuristic 

GNB 0.66 0.89 331 
DT 0.82 0.92 27 
LR L1 0.92 0.96 101 
LR L2 0.93 0.97 331 
RF 0.96 0.99 2648 
FEAT 0.94 0.98 16 

HTN Diagnosis 

GNB 0.96 0.96 331 
DT 0.97 0.97 43 
LR L1 1.00 0.99 32 
LR L2 0.99 0.98 331 
RF 1.00 0.99 67276 
FEAT 0.99 0.99 18 
Expert Heuristic 0.97 0.97 - 

HTN-
Hypokalemia 
Diagnosis 

GNB 0.60 0.81 331 
DT 0.75 0.86 33 
LR L1 0.95 0.98 29 
LR L2 0.92 0.96 331 
RF 0.96 0.99 16256 
FEAT 0.96 0.98 8 
Expert Heuristic 0.81 0.96 - 

Resistant HTN 
Diagnosis 

GNB 0.57 0.86 331 
DT 0.23 0.47 67 
LR L1 0.74 0.87 130 
LR L2 0.78 0.91 331 
RF 0.89 0.96 119760 
FEAT 0.80 0.94 11 
Expert Heuristic 0.82 0.96 - 
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To further evaluate the utility of the resulting models, we selected diagnostic interpretive 

thresholds. For the goal of identifying patients that should be screened for PA using models 

predicting aTRH, we targeted a model PPV ≥ 0.70 amongst primary care patients. Assuming 

that 20% of aTRH patients have PA, we expect that approximately 1 in 7 aTRH model-positive 

patients would have PA. We also assumed an aTRH prevalence of 7.5%, based on the 

frequency observed in our training set and meta-analyses.[51] This resulted in the selection of a 

threshold of 0.40, which corresponded to a sensitivity of 0.82 in training. Among the 200 

randomly drawn test subjects, this FEAT model yielded an adjusted PPV of 0.70 and sensitivity 

of 0.62. In comparison, the heuristic showed an adjusted PPV of 0.87 and sensitivity of 0.92. To 

evaluate FEAT on a richer set of cases, we also assessed its performance on 100 test patients 

selected by the final aTRH or HTN-hk heuristics. In this set, the final FEAT model had a PPV of 

0.79 and the expert heuristic a PPV of 0.83.  

 

Model interpretability 

Finally, we evaluated the relative interpretability of the resulting models, focusing on the models 

for predicting aTRH. The final FEAT model was concise and interpretable (Figure 5). The FEAT 

model assigned risk according to the following factors, in order of absolute coefficient 

magnitudes: first, a history of more than one encounter while prescribed three or more anti-

hypertensive medications (β = 1.33); second, a mean systolic blood pressure above 128.6 

mmHg (β = 0.95); third, a history of low variability (standard deviation) in the number of 

encounters while prescribed two anti-hypertensive medications each year (β = -0.52); fourth, a 

history of a median of 1.25 or more encounters per year while prescribed four or more 

hypertension medications (β = 0.49); fifth, more than 40 mentions of hypertension in patient 

notes (β = 0.42); and sixth, a maximum total calcium greater than 10.1 mg/dL (β = 0.40). To 

investigate the factors underlying the maximum calcium feature, we explored its associations. 
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We found that subjects with aTRH were in fact more likely to have an elevated maximum 

calcium (OR=4.4, p=4x10-9) and that these elevations were in turn associated with the number 

of days prescribed thiazide diuretics (OR=1.5 per SD, p=3x10-6) or beta-blockers (OR=1.4, 

p=2x10-4). 

None of the other derived models can be described in such compact, clear language. 

So, to compare and contrast FEAT with other methods, we calculated SHAP values[28] for the 

test subjects. SHAP values summarize the impact of input variables on model outputs by 

generating an additive feature attribution model. Positive and negative SHAP values indicate a 

marginal increase and decrease in predictions, respectively. The summary plots for SHAP 

values (Figure 6A,C) depict the distribution of SHAP values relative to the magnitude of each 

input variable, with each dot representing a single test subject. The decision plots of SHAP 

values (Figure 6B,D) illustrate how each feature contributes to predictions for individual 

subjects.  

The FEAT summary plot (Figure 6C) reflects the simplicity of the FEAT model. For the 

five dichotomized features, each patient’s prediction is either increased or decreased by a fixed 

increment. The one continuous feature affects each patient distinctly, but has a clear 

directionality, i.e. high variability in the number of encounters on two anti-hypertensive 

medications decreases the prediction. These simple effects translate into intuitive interpretations 

for individual subjects as to why the model is calling them positive or negative (Figure 6D). The 

positive-slope increases in model output show that most patients predicted to be positive have 

had multiple encounters while prescribed three anti-hypertensive medications. They also either 

have elevated mean systolic blood pressure and many mentions of hypertension in notes or 

multiple encounters per year while prescribed four or more anti-hypertensive medications. 

In contrast, the LR L1 (Figure 6A,B) and RF (Supplementary Fig. 3) summary and 

decision plots reflect much more complicated models, in which many features contribute to the 
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prediction scores. The summary plots show the modest effect of each of the 20 displayed 

features, which demonstrated the highest model coefficients or variable importance. The 

decision plots demonstrate that each patient has a distinct reason for a positive or negative 

prediction, determined by a combination of many features. In addition, there is also considerable 

signal from the features not depicted, as evident in the variable, non-zero intercepts between 

each patient’s line and the model output value x-axis. Notably, for the LR L1 model many of the 

top features (e.g. minimum HDL cholesterol) are not intuitively linked to the phenotype, likely 

due to feature co-linearity. To address this, we also calculated LR L1 SHAP values after 

adjusting for feature covariance (Supplementary Fig. 4A,B). After adjustment, the top features 

(e.g. # enc 4+ meds, median) more closely matched clinical intuition. However, the relationships 

between features and SHAP values remained complex, including a large number of features 

with small individual effects. For the sake of comparison, we also accounted for co-linearity in 

the FEAT model (Supplementary Fig. 4C,D). These FEAT model explanations remained 

similarly concise.  

Of note, FEAT’s emphasis on small model size does have costs. For instance, some 

patients with heart failure or chronic kidney disease were misclassified as positive for aTRH by 

the FEAT model (Figure 6D). In contrast, the LR L1 model lowers prediction scores based on 

maximum creatinine or heart failure diagnosis codes (Supplementary Fig. 4A). Such features 

were commonly observed in FEAT models along the Pareto-optimal front during training, but 

these models were ultimately not selected because of their higher overall complexity. 

 

DISCUSSION 

We developed a method to automate the construction of EHR computable phenotypes and 

applied this method to find patients that should be screened for PA. Conventional approaches 

for manually building computable phenotypes cannot scale to the expanse of clinical use cases. 
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However, it may be possible to automate their construction by embedding the design goals for 

such heuristics into ML approaches. In the manual training of computable phenotypes, experts 

incorporate clinical knowledge to develop intuitive sets of rules. Our goal in developing and 

applying FEAT is to automate this process by generating symbolic models that are both highly 

accurate and interpretable by clinicians.  

We compared FEAT’s ability to learn computable phenotypes to that of expert heuristic 

curation and conventional ML approaches. The models FEAT constructed were more concise 

and interpretable than those of other ML approaches that achieved similar discrimination. In 

fact, the FEAT models matched the discriminative performance of other models across various 

tasks, except for the RF model for the most complicated phenotype, aTRH. In this case, the 

FEAT model showed slightly lower discrimination than the RF model but was much more 

interpretable. 

In comparison to expert-curated heuristics, the FEAT models showed better 

discrimination for hypertension and HTN-hk. Notably, FEAT’s model for HTN-hk performed on 

par with other ML models and better than the heuristic while only consisting of 8 components. 

However, FEAT models showed lower discrimination for aTRH. This underperformance was 

expected for several reasons. First, the comparison between FEAT and the expert heuristic was 

biased because the heuristic was constructed and refined using the entire training set and was 

used to identify many of the affected test subjects, likely inflating its observed performance in 

training cross-validation and testing. Second, the FEAT method was not empowered to learn the 

temporal relationships between features that enabled the expert heuristic to achieve high 

specificity, such as the minimum time interval between meeting hypertensive medication criteria 

and assessment for persistently elevated blood pressure. We expect that future improvements 

to this feature representation learning method may enable native identification of such temporal 

relationships from longitudinal EHR data.  
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The model that FEAT learned to identify patients with aTRH was both accurate and 

understandable. Its components largely matched those of the expert heuristic and were 

consistent with clinical intuition. FEAT learned to combine complementary sources of 

information, including medication, vitals, laboratory results, and concepts from notes. Finally, it 

learned an unexpected but clinically intuitive and valuable rule related to maximum blood 

calcium levels. Anti-hypertensive medications, particularly diuretics, can dysregulate calcium 

homeostasis. In addition, hyperparathyroidism, which causes elevated blood calcium, is 

associated with hypertension. We suspect this rule enabled the model to identify a few affected 

subjects, on intensive anti-hypertensive regimens and/or with underlying hyperparathyroidism, 

who were missed by the conventional heuristics that considered only medication prescriptions 

and blood pressure. 

There are several possible directions for further improving FEAT. For one, the ability of 

FEAT to recapitulate expert-curated heuristics suggests that simpler expert heuristics, such as 

anchor variables,[52] may be leveraged as teachers in a semi-supervised approach. One 

limitation of this work is the non-trivial, manual feature engineering upstream of FEAT. Future 

work could reduce this manual feature engineering by enabling FEAT to directly incorporate 

longitudinal data. Although application to raw input features would increase the search space 

considerably, this would enable learning of temporal relationships essential for prediction of 

phenotypes like aTRH. Finally, this approach could benefit considerably from learning on top of 

standard frameworks for representing and querying both clinical data and expert clinical 

knowledge.[53,54] The incorporation of expert knowledge would improve search efficiency while 

maintaining interpretability. 

 

CONCLUSION 
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In summary, FEAT can effectively learn highly accurate and interpretable computable 

phenotypes. We expect that this approach will ultimately empower experts to much more 

efficiently construct computable phenotypes, facilitating widespread implementation of 

computable phenotype-triggered clinical decision support and translational research. 
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Figure 1. How FEAT works. (A) Steps in the genetic programming process. Candidate models 

are initialized in a population; the best models (parents) are selected via epsilon-lexicase 

selection; offspring are created by applying variation operations to the parents; and then parents 

and offspring compete in a survival step using NSGA-II [22]. The process then repeats. (B) The 

evaluation of a candidate models’ complexity and performance in Pareto Optimization 

framework in the Survival step. (C) Example model in which input features are transformed by 

logical functions with or without threshold operators. 
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Figure 2. Estimating model discrimination by cross-validation. AUPRC scores for 

phenotyping models trained in 5-fold cross-validation over 50 iterations, each averaged across 

testing folds. Each subplot represents a different training outcome; heuristics are shown in the 

top row, and chart-review diagnoses are shown in the bottom row. 

  

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A8
53

5C
, 7

Hs
t

H71 HHuULstLF

0.5

0.6

0.7

0.8

0.9

1.0

H71-HypRNDlHPLD HHuULstLF

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
5HsLstDnt H71 HHuULstLF

G1B D7 L5 L2 L5 L1 5F FEA7

0.88

0.90

0.92

0.94

0.96

0.98

A8
53

5C
, 7

Hs
t

H71 DLDgnRsLs

G1B D7 L5 L2 L5 L1 5F FEA7

0.4

0.5

0.6

0.7

0.8

0.9
H71-HypRNDlHPLD DLDgnRsLs

G1B D7 L5 L2 L5 L1 5F FEA7

0.4

0.5

0.6

0.7

0.8
5HsLstDnt H71 DLDgnRsLs

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2020.12.12.20248005doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.12.20248005


 

Figure 3. The tradeoff between model discrimination and complexity. Each point shows the 

cross-validation testing AUPRC (y-axis) and size (x-axis) for models trained in 50 repeat trials 

for each method. Each subplot represents a different expert-curated heuristic (top row) or chart 

review phenotype (bottom). The ideal model is discriminative and simple, meaning it is near the 

top left corner.  
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Figure 4. Model precision-recall and receiver-operating curves. Precision-recall curves (left)  

and receiver-operating curves (right) for phenotyping models trained to predict chart review 

classifications for aTRH. Values shown are means of test performance in 5-fold cross-validation 

iterated 50 times.  
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Figure 5. FEAT model trained to predict apparent treatment-resistant hypertension. The 

input features are shown on the left followed by the learned operations, the multiplication 

coefficients, and the summation. Note, the subsequent logit transformation and interpretive 

threshold is not depicted.   
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Figure 6. SHAP plots for explaining models.  SHAP summary (A) and decision (B) plots for 

the LR L1 and summary (C) and decision (D) plots for the FEAT models. The summary plots 

(A,C) describe the most important features, ranked by the mean absolute SHAP value in the 

test data. Each point represents a subject; its color reflects the relative feature value and the 

location along x-axis its impact on the subject’s model output. The lines in the decision plots 

(B,D) show model predictions for a sample of 10 positive and 10 negative predictions, with 
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dash-dotted lines indicating misclassifications. The summary and decision plots are aligned 

vertically, such that the feature labels in the summary plots correspond to the incremental 

changes in the adjacent decision plot lines, indicating the feature responsible for the change in 

the model score at each level.   
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