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1. Methods 28 
1.1. Data 29 
Eswatini is a low-transmission setting in sub-Saharan Africa believed to have high rates of 30 

malaria importation1. A rigorous surveillance system was established to support the country in 31 

making decisions about how to target and tailor interventions for malaria elimination.  32 

 Between January 1st, 2013 and December 31st, 2016, 775 cases were identified through 33 

active case investigation (ACI, following up on symptomatic malaria cases presenting to health 34 

facilities) and reactive case detection (ACD, actively screening neighbors of symptomatic 35 

malaria cases) by the National Malaria Elimination Programme (Fig S1A, S1B). ACI were 36 

identified using rapid diagnostic test (RDT) in patients presenting with fever to health facilities. 37 

Infection status was confirmed with loop-mediated isothermal amplification (LAMP) using a 38 

dried blood spot (DBS) which per national policy, was to be collected in all RDT-positives using 39 

a second finger prick at the time of presentation and before antimalarial treatment. When DBS 40 

was not collected at presentation, a team aimed to visit the patient within 48 hours and collected 41 

a DBS at that time. In the analysis, we included all ACIs with a positive LAMP result as well as 42 

ACIs with a negative LAMP result if the DBS was collected following treatment, due to the 43 

rapid decline of parasitemia after treatment. ACD refers to largely asymptomatic RDT and 44 

LAMP-positive individuals identified through reactive case detection (malaria testing using RDT 45 

for household members and neighbors of passive detected index cases). We included ACDs with 46 

a positive LAMP result as well as ACDs with a positive RDT result and no LAMP result. Two 47 

LAMP-positive cases with missing RDT results were excluded from the final dataset.  48 

 For the inference algorithm, we assumed that each ACI was symptomatic and received 49 

treatment, in keeping with local procedures. We further assumed that each ACD was 50 

asymptomatic and received treatment upon identification if a positive RDT result was obtained, 51 
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in keeping with local procedures. Otherwise, the ACD was assumed to be untreated. In total, 676 52 

cases were symptomatic and treated, 42 cases were asymptomatic and treated, and 57 cases were 53 

asymptomatic and untreated (Fig S1C). The timing of detection was recorded for each case, and 54 

the spatial coordinates of the location of detection was available for 762 cases and missing for 13 55 

cases. At the time of the case investigation, which generally took place within 48 hours of 56 

diagnosis, patients were asked to provide a detailed travel history of all travel outside of their 57 

village within the 8 weeks prior to presentation. The travel locations (country, region, town) and 58 

dates of travel for up to 5 trips were also collected. Due to the at least one week incubation 59 

period needed for P. falciparum, only travel in the 1 to 8 weeks prior to presentation was 60 

considered as a potential source for the infection. Local versus imported classification was 61 

determined by the National Malaria Elimination Programme. If a case classification was not 62 

available, we assigned a positive travel history to cases reporting travel outside Eswatini during 63 

the 1 to 8 weeks prior to detection. In total, 55% of cases (n=423) had positive travel histories, 64 

41% (n=316) had negative travel histories, and 4% (n=36) had unknown travel histories (Fig 65 

S1D). 66 

  67 

 68 
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 69 

S1 Fig. Summary of P. falciparum cases in Eswatini. (A) The time series of cases during 2013-70 

2016 is shown with the regions color-coded according to the corresponding transmission season. 71 
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The transmission season for each year begins on June 1st and ends on May 31st of the following 72 

year, and case data was available for the 2012-2013 (purple), 2013-2014 (blue), 2014-2015 73 

(green), 2015-2016 (orange), and 2016-2017 (maroon) transmission seasons. (B) Cases are 74 

mapped according to the location of detection and color-coded by the transmission season 75 

during which they were detected. (C) The number of cases that were asymptomatic and 76 

untreated, asymptomatic and untreated, and symptomatic and treated is reported. (D) The 77 

number of cases that a positive travel history (Yes), a negative travel history (No), or unknown 78 

travel history (Unknown) is reported. 79 

 80 

1.2. Analysis 81 
1.2.1. Validation using a simple test case  82 
To demonstrate the validity of our algorithm in a basic sense, we constructed three idealized test 83 

cases. Each represented a best-case scenario in which we believed that our algorithm should 84 

perform properly if implemented correctly. These involved networks consisting of 20 cases, 85 

where the proportion of imported cases was 5%, 50%, or 90%. To further simplify the inference 86 

exercise, we simulated under a perfectly accurate travel history (i.e., ts = 1 and tl = 0). The serial 87 

interval between cases involved in each local transmission event was fixed at the mean value of 88 

49 days. Furthermore, the spatial arrangement of cases, both within and between outbreaks, was 89 

chosen to represent an ideal transmission network. Specifically, imported cases were distributed 90 

according to a Poisson process within a disk with radius of 100 km, ensuring that outbreaks were 91 

spatially isolated. Moreover, the spatial distribution of nodes within each outbreak was selected 92 

using the Kamada-Kawai algorithm2 to ensure sufficient spatial separation between cases not 93 

linked by transmission. Finally, we assigned the coordinates of each node such that the spatial 94 

distribution of the nodes was maintained and the distance separating a transmission event was 95 
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2.5 km. This distance is the mean of a half-normal distribution with variance given a serial 96 

interval of 49 days and a diffusion coefficient of 0.2 (taken as the geometric mean of the upper 97 

and lower bounds of diffusion coefficients considered by Reiner et al.3).  98 

 We performed inference on the three simulated data sets under five different 99 

combinations of data types and assumptions about the travel history (S1 Table). These inference 100 

settings used: (1) spatial and temporal data while estimating the accuracy of the travel history 101 

(default setting); (2) spatial and temporal data while believing the travel history (as in Reiner et 102 

al.3 and Routledge et al.4); (3) spatial and temporal data alone; (4) temporal data while 103 

estimating the accuracy of the travel history; and (5) temporal data while believing the travel 104 

history (as in Routledge et al.5). We then measured the accuracies of case classification as 105 

imported or locally acquired, identifying a transmission linkage, identifying the correct outbreak 106 

of each locally acquired case, and estimating Rc.  107 

 108 

  109 
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S1 Table. Summary of inference settings used.  110 

Inference Setting  Spatial Data Temporal Data Travel-History Data 
Estimate Accuracy Believe Ignore 

1 (Default) X X X   
2 X X  X  
3 X X   X 
4  X X   
5  X  X  

The choice of data types and assumptions about the travel history are provided for each of the 111 

five inference settings considered. For each setting, an “X” indicates that corresponding data 112 

type was included or assumption about the travel history was made. 113 

 114 

1.2.2. Application to Eswatini surveillance data  115 
After validating our algorithm using a simple test case, we applied it to malaria surveillance data 116 

from Eswatini. These data consist of household location, timing of clinical presentation, the 117 

presence or absence of symptoms, treatment status, and self-reported travel histories of 775 cases 118 

investigated by the National Malaria Elimination Programme of Eswatini during 2013-2017.  119 

 To determine how transmission network inferences depended on the inclusion of various 120 

data types and assumptions about travel-history accuracy, we applied our algorithm to the 121 

Eswatini surveillance data under the five different inference settings outlined in S1 Table. After 122 

assessing convergence, we examined the sensitivity of parameter estimates and the inferred 123 

spatial and temporal scales of transmission to these inference settings. Additionally, we 124 

considered how estimates of epidemiologically relevant quantities, including Rc and the 125 

proportion of cases that were imported, depended on these inference settings. We mapped the 126 

latter two quantities across Eswatini using a generalized additive model with a Gaussian process 127 

basis function setting using the mgcv package in R6,7. To ensure that the responses variables were 128 

approximately Gaussian-distributed, we took the natural logarithm of the individual-level mean 129 
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Rc estimates for each node, padded by 10-5 to account for zeros. Similarly, we transformed the 130 

probability that each case was imported using the approach of Smithson and Verkuilen8.  131 

 132 

1.2.3. Validation of inferences from Eswatini 133 
To validate our inferences on Eswatini surveillance data, we applied our algorithm to simulated 134 

data generated using the median posterior parameter estimates inferred from the surveillance data 135 

and evaluated our ability to recover known networks and parameter values. We did this by 136 

simulating under and inferring under the same inference setting, for all five inference settings. 137 

The goal of these exercises was to understand the potential limits of the accuracy of our 138 

inferences on the Eswatini surveillance data, where the true network and parameters were 139 

unknown. As with the simple test case, we measured the accuracy of classifying cases as 140 

imported or locally acquired, inferring transmission linkages, identifying the correct outbreak for 141 

each locally acquired case, and estimating Rc.  142 

 For this exercise, we simulated transmission networks and corresponding epidemiological 143 

data (e.g., household location, timing of clinical presentation, etc.) using a branching process 144 

model for which generative processes for spatial, temporal, and travel-history data mirrored the 145 

assumptions used in the formulation of our likelihood. To simulate data using the branching 146 

process, the maximum number of cases (i.e., treated P. falciparum infections) and Rc were first 147 

specified. We then calculated the maximum number of infections based on the probability of 148 

treatment given symptoms (1.0), the probability of treatment given no symptoms (0.42), and the 149 

probability of symptoms (0.87). Each probability was calculated empirically from the Eswatini 150 

data set. The number of imported infections was equal to the product of the maximum number of 151 

infections and the importation proportion (i.e., 1 – Rc). We uniformly distributed the imported 152 

infections over a temporal window consistent with that of the Eswatini data set (1361 days), and 153 
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we randomly sampled the spatial coordinates of these imported infections according to 154 

population density estimates from WorldPop9. While the number of treated P. falciparum 155 

infections was less than the specified maximum number of cases, we sampled the number of 156 

offspring from each node according to a Poisson distribution with a mean of Rc. For each 157 

offspring, the timing and location of detection were sampled relative to the timing and location 158 

of detection of the parent using the spatial and temporal kernels formulated in the likelihood. 159 

Travel histories for imported and locally acquired cases were Bernoulli trials with probabilities 160 

of 𝜏! and 𝜏", respectively, the symptom status of each case was a Bernoulli trial with the 161 

probability of symptoms, and the treatment status of each was a Bernoulli trial with either the 162 

probability of treatment given symptoms or the probability of treatment given no symptoms.  163 

Each simulated data set was generated to approximate characteristics of the Eswatini 164 

surveillance data along with inferred parameters from the model. Specifically, the number of 165 

nodes in the simulated data approximated the total number of cases in the Eswatini surveillance 166 

data, and we set the proportion of imported cases (pi), the diffusion coefficient (D), and the 167 

parameters that govern the accuracies of the travel history (ts and tl) to their median values from 168 

the posterior distribution. Similarly, under inference settings where the accuracy of the travel 169 

history was not estimated, we assigned ts = 1 and tl = 0, implying perfectly accurate travel 170 

histories. To match the observation from surveillance data that individuals who reported travel 171 

tended to be located in metropolitan areas, we distributed the imported cases spatially 172 

proportional to gridded population density estimates from WorldPop10.  173 

   174 

 175 
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1.2.4. Simulation Sweep  176 
To identify the epidemiological parameters that affect the accuracy of reconstructing 177 

transmission networks using routinely collected surveillance data, we performed a simulation 178 

sweep in which we varied the following epidemiological parameters: (1) the diffusion 179 

coefficient, (2) the proportion of imported infections, (3) the temporal window over which 180 

imported infections were distributed, (4) the degree of spatial clustering among imported 181 

infections11, (5) ts, and (6) tl. We sampled 2,000 values for each epidemiological parameter 182 

using a Sobol design (S2 Table)12. We then parameterized a branching process model with each 183 

parameter set to generate a total of 2,000 simulated data sets, each comprising a transmission 184 

network of 200 nodes. The number of nodes in each simulated data set was less than the number 185 

of nodes in the Eswatini surveillance data and was selected to reduce computational burden. 186 

Nevertheless, the relative epidemiological features of the transmission network should affect the 187 

accuracy of network reconstruction more so than the size of the network itself. Therefore, we 188 

expect that the results of this simulation sweep should generalize to networks of various sizes.  189 

 190 

S2 Table. Parameter ranges for the simulation sweep.  191 

Parameter  Range 
Diffusion Coefficient (0,30] 
Proportion of cases that are imported  (0,1] 
Maximum date of an imported case (days) (0, 9125] 
Degree of clustering of imported cases (0,1] 
𝜏! [0,1] 
𝜏" [0,1] 

The parameters and their respective ranges are reported. A Sobol design was used to sample 192 

2,000 parameter values from the respective range and generate simulated data sets12. 193 

 194 
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 We applied our inference algorithm under three inference settings to each simulated data 195 

set and measured the accuracy of reconstructing transmission networks. The three inference 196 

settings used: (1) spatial and temporal data while estimating the accuracy of the travel history 197 

(default setting); (2) spatial and temporal data while believing the travel history; and (3) spatial 198 

and temporal data alone (S1 Table). We chose to use those inference settings, because they 199 

included each of the three assumptions about travel-history data. As with previous validation 200 

exercises, we measured the accuracy of classifying cases as imported or locally acquired, 201 

inferring transmission linkages, identifying the correct outbreak of each locally acquired case, 202 

and estimating Rc. We then examined how each of these accuracy metrics varied as a function of 203 

the epidemiological parameters. 204 

 205 

2. Results 206 
2.1. Validation using a simple test case  207 
We first validated our approach on three small, simulated networks of twenty nodes. Although 208 

these networks varied in their proportion of imported cases, the local transmission chains were 209 

arranged to ensure that there was sufficient spatiotemporal separation between transmission 210 

chains, and we simulated perfect travel histories and complete observation of cases, providing 211 

idealized test cases to validate our inference algorithm. We measured the performance of our 212 

inference algorithm in terms of its ability to reconstruct different features of the transmission 213 

network and correctly estimate Rc. As the proportion of imported cases decreased from 85% to 214 

5%, we found that the ability of the algorithm to correctly classify cases as imported or locally 215 

acquired improved (Fig S2). For example, when we used the default inference setting, 216 

classification accuracy improved from 85.7% (95% Credible Interval: 85.7 – 85.7%) to 100% 217 

(100 – 100%). As classification accuracy improved, our estimates of Rc also improved, with all 218 
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five inference settings yielding accurate estimates when imported cases comprised only 5% of 219 

total cases (Fig S2C). Similarly, the ability to identify the correct parent of each locally acquired 220 

case and assign it to the correct outbreak depended on the extent of local transmission in the 221 

network. When 85% of the cases were imported, performance was variable across inference 222 

settings (Fig S2A). Using spatial data and either estimating or ignoring the travel histories, the 223 

algorithm identified a local optimum in the likelihood and consequently classified all locally 224 

acquired cases as imported, leading to highly inaccurate transmission network inferences. 225 

Believing the travel history, regardless of whether spatial data was included, enabled us to 226 

perfectly reconstruct the transmission network, because the travel-history data was simulated to 227 

be perfectly accurate, allowing for correct classification of cases as imported or locally acquired. 228 

However, as the proportion of imported cases decreased, the benefit of believing the travel 229 

history diminished, and using all data types resulted in the greatest accuracy. For example, in the 230 

most extreme case in which only 5% of cases were imported, the accuracy of identifying the true 231 

parent ranged from 84.2% (68.4 – 94.7%) under the default inference settings to 63.2% (47.4 – 232 

78.9%) using temporal data and estimating the accuracy of the travel history (Fig S2C). In terms 233 

of identifying the outbreak to which a case belongs, the algorithm was accurate under all 234 

inference settings, since there was only one outbreak (Fig S2C).  235 

 236 
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 237 

S2 Fig. Inference accuracies for three simulated transmission networks with (A) 85%, (B) 238 

50%, and (C) 5% of cases as imported. Case classification refers to proportion of cases that are 239 

correctly classified as imported vs. locally acquired. Transmission linkage denotes the 240 

proportion of locally acquired cases for which the true parent is correctly identified, Outbreak is 241 

the proportion of locally acquired cases for which the inferred parent belongs to the correct 242 

outbreak, and Rc is the estimated reproduction number under control. Square points signify the 243 

median posterior value, and bars are the 95% credible intervals. The gray line indicates the true 244 

value of Rc. 245 

 246 
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2.2. Likelihood Profile of the Diffusion Coefficient 247 

 248 

S3 Fig. Likelihood profile of the diffusion coefficient conditioning on the true network. The 249 

likelihood profile for two inference settings that incorporate spatial data are shown as a function 250 

of the diffusion coefficient. The green line corresponds to the default inference setting, the purple 251 

line corresponds to the setting in which spatial and temporal data are used and the travel history 252 

is believed, and the blue line corresponds to the setting in which spatial and temporal data are 253 

used and the travel history was ignored. Black bars denote the true value of the diffusion 254 

coefficient, dark grey shapes denote the region with the maximum likelihood, and light grey 255 

shapes denote the region within 10 log likelihood units of the maximum likelihood.  256 

 257 
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2.3. Convergence of Posterior Transmission Network Inferences  258 



 17 

 259 

S4 Fig. Comparison of individual-level importation probabilities on Eswatini data under 260 

default settings. Pairwise scatter plots of importation probabilities are shown for each pairing 261 

of the 5 independent replicates to assess convergence. The correlation between importation 262 

probabilities for each pair of replicates is reported in red.  263 

  264 
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 265 

S5 Fig. Comparison of transmission linkage probabilities on Eswatini data under default 266 

settings. Pairwise scatter plots of the probability of each transmission linkage are shown for 267 

each pairing of the 5 independent replicates to assess convergence. The correlation between 268 

transmission linkage probabilities for each pair of replicates is reported in red.   269 

  270 
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 271 

S6 Fig. Comparison of individual-level Rc estimates on Eswatini data under default settings. 272 

Pairwise scatter plots of individual-level Rc are show for each pairing of the five independent 273 

replicates to assess convergence. The correlation between individual-level Rc values is reported 274 

in red.  275 

  276 
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2.4. Analytical Solution for the Posterior Distribution of ts and tl 277 
We specified a Bernoulli likelihood and a beta-distributed prior on ts and tl. Therefore, the 278 

posterior distributions of ts and tl satisfy a conjugate-prior relationship and can be solved 279 

analytically as beta distributions.  280 

 The prior distribution for ts is a beta distribution with hyperparameters as = 12 and bs = 281 

3, and the prior distribution for tl is a beta distribution with hyperparameters al = 3 and bl = 12. 282 

Following the conjugate-prior relationship, the posterior distribution for ts is calculated as a beta 283 

distribution with hyperparameters, 284 

 285 

𝛼#! = 𝛼! + & 𝕀(𝑟𝑒𝑝𝑜𝑟𝑡	𝑡𝑟𝑎𝑣𝑒𝑙)
#!"#$%&'(

					(𝑆1) 286 

 287 

𝛽6! = 𝛽! + 7𝑛$%&#'()! − & 𝕀(𝑟𝑒𝑝𝑜𝑟𝑡	𝑡𝑟𝑎𝑣𝑒𝑙)
#!"#$%&'(

:.					(𝑆2) 288 

 289 

The summation in eq. (S1) is the number of cases that reported travel and are inferred by the 290 

algorithm to be imported cases. Similarly, the second term in eq. (S2) is the number of cases 291 

inferred by the algorithm to be imported cases that did not report travel. The posterior 292 

distribution for tl is similarly described by a beta distribution with hyperparameters, 293 

 294 

𝛼#" = 𝛼" + & 𝕀(𝑟𝑒𝑝𝑜𝑟𝑡	𝑡𝑟𝑎𝑣𝑒𝑙)
#)"*+)

					(𝑆3) 295 

 296 
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𝛽6" = 𝛽" + 7𝑛"%*+" − & 𝕀(𝑟𝑒𝑝𝑜𝑟𝑡	𝑡𝑟𝑎𝑣𝑒𝑙)
#)"*+)

:.					(𝑆4) 297 

 298 

In eq. (S3), the summation is the number of cases that reported travel and were inferred by the 299 

algorithm to be locally acquired. Similarly, the second term in eq. (S4) is the number of cases 300 

inferred by the algorithm to be locally acquired that did not report travel.  301 

 We then compared the prior distributions, the posterior distributions obtained from the 302 

MC3 sampling algorithm, and the posterior distribution obtained using the analytical solutions in 303 

eqs. (S1-S4) for ts and tl inferred from the Eswatini surveillance data. Because each case had a 304 

posterior probability of being imported or locally acquired but eqs. (S1-S4) required a binary 305 

classification, we classified a case as imported if the posterior probability of being imported 306 

exceeded 0.25. This threshold was arbitrarily defined, but the purpose of this exercise is purely 307 

illustrative.  308 

 Under both inference settings in which the accuracy of the travel histories was inferred, 309 

we observed good agreement between the analytical and numerical posterior distributions for ts 310 

and tl. Whether or not the posterior distribution deviated from the prior distribution depended 311 

upon the number of cases that were classified as imported or locally acquired. When there are 312 

more cases classified as imported, the strength of the data predominated in eqs. (S1-S2), and the 313 

posterior distribution of ts deviated from the prior distribution. By contrast, when most cases are 314 

locally acquired, the posterior distribution of ts resembled the prior distribution. This is 315 

consistent with the posterior distributions that we observed when we used spatial and temporal 316 

data and estimated the accuracy of the travel history versus when we used temporal data and 317 

estimated the accuracy of the travel history.  Using the former, we estimated 5.2% of the cases as 318 
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imported, which was sufficient to shift the posterior distribution of ts away from the prior 319 

distribution (S7 Fig). Using the latter, we only estimated 0.13% of cases as imported. This small 320 

number of imported cases implied that the posterior distribution of ts resembled the prior 321 

distribution (S8 Fig).  322 

 The derivation of the analytical solution of ts explains our inability to correctly estimate 323 

this parameter from simulated data (Fig 4B). Using the spatial and temporal data and estimating 324 

the accuracy of the travel history, the true value of ts was 0.61, and 5.2% of all cases in the 325 

simulated data set were imported. However, applying the MC3 algorithm to this simulated data 326 

set, we inferred only ~1% of all cases to be imported. Consequently, we do not estimate a 327 

sufficient number of imported cases to shift the posterior distribution of ts away from the prior 328 

distribution and correctly estimate this parameter (S9 Fig).  329 

  330 
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 331 

S7 Fig. Comparison of the prior and posteriors of ts and tl from the Eswatini surveillance data 332 

using spatial and temporal data and estimating the accuracy of the travel history. The prior 333 

(gray shape), the analytical posterior distribution (black line), and the numerical posterior 334 

distribution from MC3 (green histogram) are plotted for ts and tl. 335 

  336 
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 337 

S8 Fig. Comparison of the prior and posteriors of ts and tl from the Eswatini surveillance data 338 

using temporal data and estimating the accuracy of the travel history. The prior (gray shape), 339 

the analytical posterior distribution (black line), and the numerical posterior distribution from 340 

MC3 (pink histogram) are plotted for ts and tl. 341 

  342 
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 343 

S9 Fig. Comparison of the prior and posteriors of ts from simulated data using spatial and 344 

temporal data and estimating the accuracy of the travel history. The prior (gray shape), the 345 

analytical posterior distribution (black line), and the numerical posterior distribution from MC3 346 

(green histogram) are plotted for ts. 347 

 348 

2.5. Simulation Sweep  349 
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 350 

S10 Fig. Univariate relationships between accuracy metrics and simulation parameters using 351 

spatial and temporal data and estimating the accuracy of the travel history. Scatterplots of the 352 

relationship between five accuracy metrics and the simulation parameters are reported. 353 

Imported classification refers to the proportion of imported cases that are correct classified as 354 

imported, local classification refers to the proportion of locally acquired cases that are correctly 355 

classified as locally acquired, and case classification refers to the proportion of all cases that 356 
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are correctly classified as imported or locally acquired. Transmission linkage is the proportion 357 

of locally acquired cases for which the true parent is correctly identified, and outbreak is the 358 

proportion of locally acquired cases for which the inferred parent belongs to the same outbreak.  359 

  360 
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 361 

S11 Fig. Univariate relationships between accuracy metrics and simulation parameters using 362 

spatial and temporal data and believing the travel history. Scatterplots of the relationship 363 

between five accuracy metrics and the simulation parameters are reported. Imported 364 

classification refers to the proportion of imported cases that are correct classified as imported, 365 

local classification refers to the proportion of locally acquired cases that are correctly classified 366 

as locally acquired, and case classification refers to the proportion of all cases that are correctly 367 
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classified as imported or locally acquired. Transmission linkage is the proportion of locally 368 

acquired cases for which the true parent is correctly identified, and outbreak is the proportion of 369 

locally acquired cases for which the inferred parent belongs to the same outbreak.  370 

  371 
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 372 

S12 Fig. Univariate relationships between accuracy metrics and simulation parameters using 373 

spatial and temporal data only. Scatterplots of the relationship between five accuracy metrics 374 

and the simulation parameters are reported. Imported classification refers to the proportion of 375 

imported cases that are correct classified as imported, local classification refers to the 376 

proportion of locally acquired cases that are correctly classified as locally acquired, and case 377 

classification refers to the proportion of all cases that are correctly classified as imported or 378 
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locally acquired. Transmission linkage is the proportion of locally acquired cases for which the 379 

true parent is correctly identified, and outbreak is the proportion of locally acquired cases for 380 

which the inferred parent belongs to the same outbreak.  381 

 382 

2.6. Uncertainty in Higher-Order Summaries of the Network 383 
The credible intervals for higher-order summaries of the network, including case classification 384 

and Rc, are narrow, because the calculation of these higher-order summaries requires that we 385 

apply a binary condition to each node in the network (e.g., “Was the node inferred to be imported 386 

or locally acquired?”, “Was the inferred parent the true parent?”, etc.) In doing so, we 387 

compressed or reduced much of the uncertainty inherent to the inferred network. Because the 388 

estimates of Rc depend only upon the case classification, we obtained narrow credible intervals 389 

for Rc. 390 

 To consider this further, we took the posterior distributions from the “Validation of 391 

Inferences from Eswatini” analysis and compared the log-likelihoods that each case was 392 

imported or locally acquired. For each of the three inference settings examined (S13-S15 Figs), 393 

the log-likelihood that each case was locally acquired was generally higher, because, in each 394 

simulated network, there were 775 cases over 1361 days. This ensured that there was generally a 395 

plausible observed parent that occurred within one serial interval prior to each case. The log-396 

likelihood that a case was imported was higher for asymptomatic cases than symptomatic cases, 397 

because the serial interval distribution was more diffuse for asymptomatic cases13. Although this 398 

effect is sensitive to our assumption about the different serial interval distribution for 399 

symptomatic and asymptomatic cases, the calculation of the serial interval distributions was 400 

informed by empirical data collected in Zanzibar and modeled asexual parasite densities obtained 401 

from a validated, within-host model of P. falciparum infection.  402 
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 403 

 404 

S13 Fig. Likelihoods of case classification simulated nodes using spatial and temporal data 405 

and estimating the accuracy of the travel history. The log likelihoods that each node is locally 406 

acquired (navy) or imported (maroon) is calculated for each network from the posterior 407 

distribution. Points are the median estimate across the full posterior distribution, and segments 408 

are the 95% credible intervals. The gray line is the posterior probability that each node was 409 

imported, and the nodes are ordered by increasing posterior probability of importation.  410 

 411 
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 412 
S14 Fig. Likelihoods of case classification simulated nodes using spatial and temporal data 413 

only. The log likelihoods that each node is locally acquired (navy) or imported (maroon) is 414 

calculated for each network from the posterior distribution. Points are the median estimate 415 

across the full posterior distribution, and segments are the 95% credible intervals. The gray line 416 

is the posterior probability that each node was imported, and the nodes are ordered by 417 

increasing posterior probability of importation.  418 

 419 
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 420 

S13 Fig. Likelihoods of case classification simulated nodes using temporal data and 421 

estimating the accuracy of the travel history. The log likelihoods that each node is locally 422 

acquired (navy) or imported (maroon) is calculated for each network from the posterior 423 

distribution. Points are the median estimate across the full posterior distribution, and segments 424 

are the 95% credible intervals. The gray line is the posterior probability that each node was 425 

imported, and the nodes are ordered by increasing posterior probability of importation.  426 
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