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 2

Abstract  27 

End-stage kidney disease (ESKD) patients are at high risk of severe COVID-19. We 28 

measured 436 circulating proteins in serial blood samples from hospitalised and non-29 

hospitalised ESKD patients with COVID-19 (n=256 samples from 55 patients). Comparison 30 

to 51 non-infected patients revealed 221 differentially expressed proteins, with consistent 31 

results in a separate subcohort of 46 COVID-19 patients. 203 proteins were associated with 32 

clinical severity, including IL6, markers of monocyte recruitment (e.g. CCL2, CCL7), 33 

neutrophil activation (e.g. proteinase-3) and epithelial injury (e.g. KRT19). Machine learning 34 

identified predictors of severity including IL18BP, CTSD, GDF15, and KRT19. Survival 35 

analysis with joint models revealed 69 predictors of death. Longitudinal modelling with linear 36 

mixed models uncovered 32 proteins displaying different temporal profiles in severe versus 37 

non-severe disease, including integrins and adhesion molecules. These data implicate 38 

epithelial damage, innate immune activation, and leucocyte-endothelial interactions in the 39 

pathology of severe COVID-19 and provide a resource for identifying drug targets. 40 

 41 

Introduction 42 

Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus, displays wide clinical 43 

heterogeneity from asymptomatic to fatal disease. Patients with severe disease exhibit 44 

marked inflammatory responses and immunopathology. The mechanisms underlying this 45 

remain incompletely characterised and the key molecular mediators are yet to be 46 

determined. The first treatment shown to reduce mortality from COVID-19 in randomised 47 

trials was dexamethasone [1], a corticosteroid which has broad non-specific effects on the 48 

immune system. Even with corticosteroid treatment, mortality in severe COVID-19 remains 49 

significant. There is a wide armamentarium of existing drugs that target inflammation more 50 

selectively, providing potential repurposing opportunities for the treatment of COVID-19. 51 

Recently, the REMAP-CAP trial has demonstrated efficacy of anti-IL6 receptor blockade in 52 

patients admitted to intensive care units with severe disease [2]. In order to select the most 53 

promising agents for future trials, we urgently need to better understand the molecular 54 

drivers of severe disease. Proteins are the effector molecules of biology and the targets of 55 

most drugs. Therefore, proteomic profiling to identify the key mediators of severe disease 56 

provides a valuable tool for identifying and prioritising potential drug targets [3]. 57 

 58 

Risk factors for severe or fatal COVID-19 include age, male sex, non-European ancestry, 59 

obesity, diabetes mellitus, cardiovascular disease, and immunosuppression [4]. End-stage 60 

kidney disease (ESKD) is one of the strongest risk factors for severe COVID-19 (estimated 61 

hazard ratio for death 3.69) [4], and ESKD patients hospitalised with COVID-19 have a 62 

mortality of approximately 30% [5–8]. ESKD patients have a high prevalence of vascular and 63 
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cardiometabolic disease (e.g. hypertension, ischaemic heart disease, diabetes), either as a 64 

result of the underlying cause of their renal disease or as a consequence of renal failure. In 65 

addition, ESKD results in both relative immunosuppression and chronic low-grade 66 

inflammation, which may impact viral defence and the host inflammatory response. 67 

 68 

Here we performed proteomic profiling of serial blood samples of ESKD patients with 69 

COVID-19, leveraging the unique opportunity for longitudinal sampling in both the outpatient 70 

and inpatient settings afforded by a large multi-ethnic haemodialysis cohort (Figure 1a). 71 

These data revealed 221 proteins that are dysregulated in COVID-19 versus matched non-72 

infected ESKD patients. Using linear mixed models, joint models and machine learning, we 73 

identified proteins that are markers of COVID-19 severity and risk of death. Finally, we 74 

characterised the temporal dynamics of the blood proteomic response during COVID-19 75 

infection in ESKD patients, uncovering 32 proteins that display altered trajectories in patients 76 

with severe versus non-severe disease. 77 

 78 

Results 79 

We recruited 55 ESKD patients with COVID-19 (subcohort A; Table 1). All patients were 80 

receiving haemodialysis prior to acquiring COVID-19. Blood samples were taken as soon as 81 

feasible following COVID-19 diagnosis. At time of initial sample, 30 patients were outpatients 82 

attending haemodialysis sessions and 25 were hospitalised inpatients (Methods, Figure 1). 83 

Following the initial blood sample, serial sampling was performed for 51/55 patients. We also 84 

recruited 51 non-infected haemodialysis patients as ESKD controls, mirroring the age, sex 85 

and ethnicity distribution of the COVID-19 cases (Figure 1 figure supplement 1a-c). We 86 

used the Olink proteomics platform to measure 436 proteins (Supplementary File 1a) in 87 

256 plasma samples from the COVID-19 patients and the 51 control samples. The proteins 88 

measured consisted of 5 multiplex ‘panels’ focussed on proteins relevant to immuno-89 

inflammation, cardiovascular and cardiometabolic disease. The 436 proteins assayed 90 

showed strong enrichment for immune-related proteins (Supplementary File 1b). 91 

 92 

In addition, we performed the Olink proteomic assays in 52 serum samples from a separate 93 

set of 46 COVID-19 positive ESKD patients (subcohort B), and 11 serum samples from 94 

ESKD COVID-19 negative controls (a subset of the controls described above). For the large 95 

majority of patients only a single timepoint was available. A higher proportion of these 96 

patients (41/46, 89%) were hospitalised and had severe disease (Table 2) than in subcohort 97 

A (Figure 1, Table 1). 98 

 99 

Proteomic differences between COVID-19 positive and negative ESKD patients  100 
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Principal components analysis (PCA) of proteomic data from subcohort A demonstrated 101 

differences between samples from COVID-19 positive cases and controls, although the two 102 

groups did not separate into discrete clusters (Figure 2a-b).  To examine the effects of 103 

COVID-19 on the plasma proteome, we performed a differential expression analysis in 104 

subcohort A between COVID-19 cases (n=256 samples passing quality control from 55 105 

patients) and non-infected ESKD controls (n=51) using linear mixed models, which account 106 

for serial samples from the same individual (Methods). This revealed 221 proteins 107 

associated with COVID-19 (5% false discovery rate, FDR); the vast majority were 108 

upregulated, with only 40 downregulated (Figure 3a, Supplementary File 1c). In order to 109 

provide a succinct and standardised nomenclature, we report proteins by the symbols of the 110 

genes encoding them (see Supplementary File 1a for a mapping of symbols to full protein 111 

names). The most strongly upregulated proteins (in terms of fold change) were DDX58, 112 

CCL7, IL6, CXCL11, KRT19 and CXCL10, and the most strongly downregulated were 113 

SERPINA5, CCL16, FABP2, PON3, ITGA11 and MMP12 (Figure 3 figure supplement 1). 114 

Notably, many of the upregulated proteins were chemotaxins. 115 

 116 

We observed that a high proportion of the measured proteins were associated with COVID-117 

19. Given the highly targeted nature of the Olink panels that we used (enriched for immune 118 

and inflammation-related proteins), this was not surprising. Nevertheless, to ensure that the 119 

Benjamini-Hochberg adjustment of p-values was controlling the false discovery rate at the 120 

5% level, we performed two additional analyses (Methods). First, we estimated the FDR 121 

using an alternative method (the plug-in method of Tibshirani [9]); this confirmed appropriate 122 

FDR control. Second, we used permutation to estimate the distribution of the number of 123 

proteins expected to be declared significant under the null hypothesis of no association 124 

between any proteins and COVID-19. This showed that the probability of observing the 125 

number of differentially abundant proteins we identified was highly unlikely under the null 126 

(empirical p < 1x10-5; Figure 3 figure supplement 2). 127 

 128 

Although our COVID-19 negative controls were well matched in terms of age, sex and 129 

ethnicity (Figure 1 figure supplement 1a-c), perfect matching of comorbidities was not 130 

feasible in the context of the healthcare emergency at the time of patient recruitment. There 131 

was a higher prevalence of diabetes in the COVID-19 cases compared to the controls (61.8 132 

% versus 47.1%, respectively; Table 1). To evaluate whether differing rates of diabetes had 133 

impacted the proteins identified as differentially abundant between cases and controls, we 134 

performed a sensitivity analysis adding diabetes as an additional covariate in the linear 135 

mixed model. This did not materially affect our findings; estimated effect sizes and -log10 p-136 

values from models with and without the inclusion of diabetes were highly correlated 137 
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(Pearson r > 0.99, and r = 0.95, respectively; Figure 3 figure supplement 3a-b). Full results 138 

from both models are shown in Supplementary File 1c. Similarly, there were also 139 

differences in the underlying cause of ESKD in cases compared controls (Table 1).  We 140 

therefore performed a further sensitivity analysis adjusting for underlying cause of renal 141 

failure. This did not make any meaningful difference to our results (Figure 3 figure 142 

supplement 3c-d, Supplementary File 1c). 143 

 144 

We also considered the possibility that timing of haemodialysis might affect the plasma 145 

proteome. To minimise the impact of this, all samples were taken prior to haemodialysis. For 146 

the large majority (86.6%) of samples, the most recent haemodialysis was between 48 and 147 

72 hours prior to blood draw. This consistency in timing of blood sampling reduces the 148 

potential for impact of this issue. Nevertheless, to evaluate whether timing of haemodialysis 149 

might have impacted our results, we performed a sensitivity analysis including time from last 150 

haemodialysis as a covariate. Our results were not materially affected by this, with -log10 p-151 

values and estimated effect sizes very highly correlated with those obtained without inclusion 152 

of this covariate (Pearson r >0.99 for effect size estimates and for -log10 p-values; Figure 3 153 

figure supplement 4a-b, Supplementary File 1c). 154 

 155 

We used the smaller subcohort B (n=52 serum samples from 46 patients with COVID-19; 156 

Methods) for validation. We first projected the data from subcohort B into the PCA space of 157 

subcohort A to examine how well the separation of cases and controls in the PCA space 158 

replicated (Methods). This revealed clearer separation of infected and non-infected patients 159 

than in subcohort A (Figure 2c-d), perhaps reflecting the higher proportion of hospitalised 160 

patients (41 of 46 patients) in subcohort B (Table 2). We next performed differential 161 

abundance analysis in subcohort B and found 201 proteins that were dysregulated in cases 162 

versus controls (5% FDR) (Supplementary File 1c). Of the 221 differentially abundant 163 

proteins from subcohort A, 150 (69.7%) were also identified in subcohort B at 5% FDR 164 

(Figure 4a). Effect sizes in each dataset showed a strong correlation (r=0.80, Figure 4b). 165 

This demonstrates that our findings are highly reproducible despite differences in sample 166 

sizes and blood materials (plasma versus serum in subcohort A and B, respectively). 167 

 168 

Proteins associated with COVID-19 severity 169 

Examination of the principal components plot labelling samples by clinical severity at the 170 

time of sampling (defined by WHO severity scores, graded as mild, moderate, severe or 171 

critical) demonstrated a gradient of COVID-19 severity, best captured by principal 172 

components 1 and 3 (Figure 2 figure supplement 1a). To determine the proteomic effects 173 
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of COVID-19 severity, we tested for associations between proteins and WHO severity score 174 

at the time of blood sampling, using linear mixed models with severity encoded as an ordinal 175 

predictor (Methods). This analysis revealed 203 proteins associated with severity (Figure 176 

3b, Supplementary File 1d). The majority of these were upregulated in more severe 177 

disease, with only 42 down-regulated. A sensitivity analysis adjusting for time since last 178 

haemodialysis, made no significant impact on our results (Figure 3 figure supplement 4c-179 

d, Supplementary File 1d). Consistent with previous reports, we found that severe COVID-180 

19 was characterised by elevated IL6. In addition, we observed a signature of upregulated 181 

monocyte chemokines (e.g. CCL2, CCL7, CXCL10), neutrophil activation and degranulation 182 

(e.g. PRTN3, MPO) and epithelial injury (e.g. KRT19, AREG, PSIP1, GRN). (Figure 3b,c, 183 

Figure 5). SERPINA5 and leptin showed the greatest downregulation as COVID-19 severity 184 

increased (Figure 3b,c). 185 

 186 

We next asked how does the COVID-19 severity protein signature relate to the proteins that 187 

are differentially abundant between cases and controls? The majority (140/203; 69%) of 188 

severity-associated proteins were also identified as differentially abundant in the COVID-19 189 

positive versus negative analysis (Figure 6a). Log fold changes for proteins in COVID-19 190 

versus non-infected patients were correlated with effect sizes in the severity analysis, such 191 

that the proteins most upregulated in cases versus controls also tended to show the greatest 192 

upregulation in severe disease (Figure 6b). However, there were some notable exceptions 193 

(eg CCL20, IL17C, OSM) that were strongly associated with severity but not differentially 194 

expressed in infected versus non-infected patients (Figure 6c). 195 

 196 

Supervised learning to predict COVID-19 severity 197 

Principal components analysis revealed that some samples from patients who had mild or 198 

moderate disease at the time of sampling clustered with samples from patients with severe 199 

disease (Figure 2 figure supplement 1a). Examination of the same PCA plot this time 200 

labelling samples according to the patient’s overall clinical course (measured by peak WHO 201 

severity score over the duration of the illness) (Figure 2 figure supplement 1b), revealed 202 

that these samples came from individuals who subsequently developed severe or critical 203 

disease. This suggested that molecular changes may predate clinical deterioration. To 204 

evaluate this further, we used supervised learning approaches to test if the proteomic 205 

signature of the first blood sample for each patient in our dataset could identify whether the 206 

patient either had clinically severe COVID-19 at the time of sampling or would develop 207 

severe disease in the future. Whereas differential expression analyses consider each protein 208 

marker separately, machine learning techniques allow examination of all proteins 209 

concurrently, thus capturing non-linear relationships in the dataset. Using Random Forests, 210 
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we trained a classifier on the first sample for each COVID-19 patient to predict the overall 211 

clinical course, defined by peak WHO severity. For the purposes of this analysis, we 212 

binarised clinical course into either WHO mild/moderate or severe/critical. 213 

 214 

The Random Forests method achieved 71% accuracy in predicting peak severity. By 215 

contrast, using only clinically available predictors (demographics, comorbidities and clinical 216 

laboratory results), the Random Forests method achieved 66% accuracy in predicting peak 217 

severity. Combining clinical parameters plus proteins did not improve accuracy (71%) 218 

compared to using proteomic predictors alone, suggesting that the information contained in 219 

the clinical predictors is captured at the proteomic level. While we do not believe that 220 

proteomic profiling is likely to enter clinical practice for risk stratification during this 221 

pandemic, the features selected by the classifier can highlight proteins of biological 222 

importance. We therefore interrogated the model to identify key proteins by calculating 223 

feature importance metrics (Methods, Supplementary File 1e). The most important 224 

proteins for indicating the presence of current or future severe disease were IL18BP, CTSD 225 

(Cathepsin D), GDF15, KRT19, TNFSF11 and IL1RL1 (ST2) (Figure 7a). It is notable that 226 

through this distinct analytical approach, KRT19 again emerged as a key biomarker of 227 

severe disease. 228 

 229 

Proteins associated with risk of death 230 

9/55 patients in subcohort A died. We therefore sought to identify proteins associated with 231 

risk of death. To leverage the dynamic nature of repeated protein measurements for 232 

prediction of death, we utilised joint models, which combine linear mixed models and Cox 233 

proportional hazards models [10,11] (Methods). This analysis identified 44 proteins for 234 

which increased concentration was associated with increased risk of death (Figure 7b, 235 

Supplementary File 1f), including CST3, IL22RA1, AZU1, CCL28 and SPON1, and 25 236 

proteins for which increased concentration was associated with reduced risk of death, 237 

including CD84, TNFSF12, TANK, PRKCQ and ADM. 238 

 239 

Associations with clinical laboratory tests 240 

A number of routine clinical laboratory tests have well characterised associations with 241 

COVID-19 (e.g. elevated inflammatory markers, d-dimer and reduced lymphocyte count) 242 

[12]. We therefore compared our proteomic data from COVID-19 patients at each timepoint 243 

to contemporaneous clinical laboratory measurements using linear mixed models 244 

(Methods). We found associations between plasma proteins and all clinical laboratory 245 

measurements except troponin (Figure 8, Supplementary File 1g). Many of these proteins 246 

were also markers of severity (e.g. IL6, KRT19, IFN-gamma and CXCL10 were strongly 247 
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associated with raised CRP and ferritin and reduced lymphocyte counts). Of note CCL7, a 248 

monocyte chemokine that was also identified as an important marker of severity by the 249 

Random Forests classifier, was associated with lower monocyte count and raised 250 

inflammatory markers. Elevated neutrophil count was associated with Oncostatin-M, which 251 

regulates IL6, GCSF and GMCSF production, and with the proteases MMP9 and defensin. 252 

 253 

Longitudinal analysis reveals proteins with distinct temporal profiles according to severity 254 

The immune response to infection is dynamic, and therefore snapshot measurements 255 

provide only partial insights. Leveraging the dense serial sampling in our dataset (Figure 1), 256 

we modelled the temporal trajectory of each protein and asked whether or not any protein 257 

trajectories differed in patients with a severe/critical versus mild/moderate overall clinical 258 

course. This was achieved using linear mixed models that included a term for time from first 259 

symptoms and a time x severity interaction term (Methods). 260 

 261 

178 proteins displayed a significant association with time from first symptoms (5% FDR), 262 

demonstrating the temporal variability in plasma proteins across the disease course 263 

(Supplementary File 1h). Moreover, we identified 32 proteins for which there was 264 

significant interaction between time and severity, i.e. proteins displaying differential temporal 265 

trajectories between mild/moderate and severe/critical infections (Supplementary File 1h, 266 

Figure 9). Among the proteins with the strongest temporal differences according to clinical 267 

course were the integrins ITGA11 and ITGB6, the adhesion molecule ICAM1, TNFRSF10B 268 

(a receptor for TRAIL) and PLAUR, the receptor for urokinase plasminogen activator. Most 269 

of these proteins exhibited rising profiles in the more severe patients but flat profiles in milder 270 

cases. ACE2, the receptor for SARS-CoV-2, also displayed this pattern (Figure 9). In 271 

contrast, abundance of ITGA11, which was also identified as reduced in the analysis of 272 

infected versus non-infected patients, fell over time in the severe group. 273 

 274 

Testing for proteins associated with ethnicity 275 

In the UK, individuals from ethnic minorities are at higher risk of severe disease and death 276 

from COVID-19 [4]. We therefore examined whether any of the proteins we measured 277 

exhibited differences across ethnicities, analysing COVID-19 positive cases and controls 278 

separately (Methods). In COVID-19 negative ESKD patients, no proteins were significantly 279 

associated with ethnicity in a multivariable model adjusting for age and sex. In COVID-19 280 

positive ESKD patients, there is the potential for protein associations with ethnicity to be 281 

confounded by disease severity. To account for this, we included severity as well as age and 282 

sex as covariates. A single protein, LY75, was associated with ethnicity in this multivariable 283 

model (nominal P 0.0001, Benjamini-Hochberg adjusted P 0.04, with higher levels in white 284 
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patients). Using the same within cases analysis strategy in subcohort B, we found no 285 

proteins were significantly associated with ethnicity after multiple testing correction, although 286 

the nominal P value for LY75 was 0.025. While these analyses failed to identify substantial 287 

ethnicity-related variation in the proteins we measured, an important caveat is that there 288 

were relatively modest numbers of individuals from each ethnic group, and so statistical 289 

power was limited. Larger multi-ethnic studies are needed to adequately address this 290 

question. 291 

 292 

Comparisons to other proteomic studies in COVID-19 293 

Other studies have used a variety of proteomic platforms to investigate COVID-19. We 294 

compared our findings to those of 3 published studies [13–15] and a preprint by Filbin et al 295 

[16]. Of the 221 proteins that were differentially abundant in our analysis of COVID-19 296 

positive versus negative ESKD patients, 116 associations had been previously reported 297 

(Supplementary File 1i). Of the 203 proteins associated with severity, 165 had previously 298 

been reported (Supplementary File 1j). 299 

 300 

We focussed in more detail on the study by Filbin et al [16] because of the large sample size 301 

and the breadth of proteomic assay used. This study comprised 384 patients with acute 302 

respiratory distress (306 COVID-19 positive and 79 COVID-19 negative), and measured 303 

1,472 proteins using the Olink Explore platform. 417 of these were also measured in our 304 

study. Of the 221 proteins differentially abundant in our case/control analysis, 210 were 305 

measured in their study. Of these 100 (47.6%) were significant in their analysis of COVID-19 306 

positive versus negative respiratory distress. In addition, we observed strong correlation 307 

(r=0.69) between the estimated log fold changes in our and their studies (Figure 4 figure 308 

supplement 1). Of the 203 proteins associated with severity in our study, 192 were 309 

measured in their study. 157 of these were significantly associated with severity, giving a 310 

concordance of 81.8%. Thus, despite the differences in study design and clinical 311 

populations, we observed notable similarities in our results and those reported by Filbin et al 312 

[16]. 313 

 314 

Discussion 315 

 316 

In this study we performed plasma proteomic profiling of haemodialysis patients with COVID-317 

19. A strength of our study was that we were able to perform serial blood sampling in both 318 

the outpatient and inpatient setting, including longitudinal samples from the same individual 319 

before and after hospitalisation. This was possible because haemodialysis patients are 320 

unable to fully isolate as they must continue to attend for regular dialysis sessions. 321 
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Moreover, haemodialysis patients represent an important group since ESKD is one of the 322 

strongest risk factors for death from COVID-19 [4,6–8]. Data from the UK Renal Registry 323 

shows that 7- and 14-day mortality for COVID-19 infected in-centre haemodialysis patients 324 

was 11% and 19%, respectively [17]. Data from the Scottish Renal Registry estimates 30-325 

day mortality following a positive COVID-19 test as 22%, and as of 31 May 2020, 28.2% of 326 

renal replacement therapy patients who had a positive COVID-19 test had died [18]. In our 327 

local population of 1,352 in-centre haemodialysis patients, 315 patients had tested positive 328 

for COVID-19 by the end of our study period (31 May 2020), of whom 53% required 329 

hospitalisation and 85 (27%) died. The OpenSAFELY study [4] examined ~17 million UK 330 

primary care records and linked these to the UK COVID-19 mortality register. Patients with 331 

estimated glomerular filtration rate (eGFR) <30ml/min/1.73m2 had a hazard ratio (HR) for 332 

death of 3.56 after adjustment for age and sex. 333 

 334 

In part, the high mortality from COVID-19 in ESKD patients likely reflects the fact that these 335 

patients are enriched for cardiometabolic traits that predispose to severe COVID-19. 336 

However, in multivariable analyses adjusting for these factors, impaired renal function 337 

remains an independent risk factor for severe COVID-19 [4]. Moreover, there is an inverse 338 

relationship between renal function and risk of death from COVID-19 across the spectrum of 339 

chronic kidney disease. These observations support the notion that the state of ESKD per se 340 

is an important determinant of outcome in COVID-19. ESKD is well recognised as an 341 

immunosuppressed state [19–21], with defects in both innate and adaptive immunity [22–342 

25]. Accordingly, ESKD confers increased vulnerability to viral infections including influenza 343 

and respiratory syncytial virus [26–29]. In addition, ESKD results in a chronic low-grade 344 

inflammatory state [30]. This tendency to a pro-inflammatory state, combined with reduced 345 

ability to respond to viruses, may contribute to the abnormal host response to SARS-CoV-2 346 

infection, producing the immunopathology that leads to severe COVID-19. 347 

 348 

Our comparison of COVID-19 positive and negative haemodialysis patient plasma samples 349 

revealed 221 proteins that were differentially abundant in COVID-19. The majority of these 350 

were upregulated, with strong representation of viral response proteins (e.g. DDX58, IFNG), 351 

cytokines/chemokines (e.g. IL6, CCL7, CXCL10 and CXCL11) and epithelial proteins (e.g. 352 

KRT19, PSIP1) (Figure 3a). The COVID-19 negative controls in this analysis were carefully 353 

matched to cases in terms of age, sex and ethnicity. However, complete matching of clinical 354 

characteristics was not feasible; there were differences in the prevalence of diabetes and the 355 

underlying causes of ESKD between COVID-19 positive cases and controls (Table 1). 356 

Sensitivity analyses adjusting for these covariates gave highly consistent results, indicating 357 
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that our findings are robust. In addition, we validated our findings when we analysed serum 358 

samples from a separate subcohort of COVID-19 positive ESKD patients. 359 

 360 

ESKD is itself likely to significantly impact the plasma proteome. Previous cross-sectional 361 

studies have shown that the levels of many circulating proteins have an inverse relationship 362 

with eGFR [31,32]. A longitudinal study using an Olink proteomics panel (although not one 363 

used in our study) found that for 74% of the 84 proteins measured, protein levels rose as 364 

eGFR fell [33]. For many proteins, it is unclear whether this inverse relationship with renal 365 

function reflects cause or effect. Some proteins may be increased in chronic kidney disease 366 

due to reduced renal clearance, some may be elevated secondary to tissue injury or chronic 367 

inflammation, and others may be drivers of renal injury. Regardless, this observation of 368 

widespread changes in the blood proteome of kidney disease patients emphasises the 369 

importance of using COVID-19 ESKD patients rather than healthy individuals as our control 370 

group. 371 

 372 

Analysis within COVID-19 cases revealed 203 proteins associated with disease severity, the 373 

strongest of which was IL6 (Figure 3b). Association of IL6 with severe disease is well-374 

established and has already received considerable attention [34,35]. Despite promising initial 375 

case reports of IL6R receptor blockade in COVID-19, convincing efficacy was not 376 

demonstrated in early randomised trials [36]. More recently, the REMAP-CAP trial has 377 

shown the benefit of anti-IL6R therapy when given to critically ill patients on admission to 378 

intensive care units [2], indicating that IL6 does contribute to critical illness from COVID-19. 379 

Our finding that IL6 was most strongly upregulated in severe disease demonstrates the 380 

value of plasma proteomic profiling in identifying putative drug targets. 381 

 382 

Members of the CCL and CXCL chemokine families (e.g. CCL2, CCL7, CCL20 and 383 

CXCL10) were strongly associated with severity. Likewise, higher levels of CCL2, CCL7, 384 

CCL20 and CXCL10 were associated with lower blood lymphocyte count and higher 385 

inflammatory markers (CRP and ferritin) (Supplementary File 1g), which are clinical 386 

markers of severe disease and poorer outcome in COVID-19 [37]. Of note, CCL20 is a 387 

chemoattractant for lymphocytes [38], and its negative association with lymphocyte count 388 

may reflect a direct effect on migration of lymphocytes from the blood into the tissues rather 389 

than simply marking severe disease. CCL2 (also known as MCP-1) and CCL7 (MCP-3), are 390 

both chemokines for monocytes, and CXCL10 has pleiotropic immunological effects 391 

including chemotaxis. These chemokines were also negatively correlated with blood 392 

monocyte count, suggesting recruitment of these innate immune cells into damaged tissues.  393 

 394 
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The neutrophil proteases PRTN3 (proteinase-3) and MPO (myeloperoxidase) (Figure 5) and 395 

the neutrophil-derived protein AZU1 were associated with severe disease (Supplementary 396 

File 1d), indicating that neutrophil activation and degranulation are features of severe 397 

COVID-19. Degranulation of neutrophils releasing PRTN3 and MPO could potentially 398 

contribute to oxidative damage in the lungs and thus more severe disease.  399 

 400 

A striking finding of our study was the association of disease severity with upregulation of 401 

epithelial proteins (e.g. KRT19) and epithelial tissue repair pathways (e.g. PSIP1, AREG, 402 

GRN (progranulin)), most likely reflecting lung and vascular damage. KRT19 was notably 403 

prominent in our analyses, as well as the study by Filbin et al. [16](Supplementary File 1j). 404 

KRT19 is an intermediate filament protein, important for the structural integrity of epithelial 405 

cells [39]. These data suggest that severe COVID-19 is characterised by destruction of the 406 

lung epithelium and vascular endothelium. Vascular injury might thus explain the high level 407 

of vascular thrombosis seen in patients in severe disease. In summary, our data reveal that 408 

severe COVID-19 is characterised proteomically by a signature of innate immune activation 409 

and epithelial injury.  410 

 411 

69% of proteins associated with severity were also differentially abundant in the case versus 412 

control analysis (Figure 6a), and for the large majority of proteins the within-cases severity 413 

analysis effect size was proportional to the fold change between cases and controls (Figure 414 

6b). This suggests that, in general, the distinction in the plasma proteome between severe 415 

and mild COVID-19 is a quantitative difference in the COVID-19 signature, rather than there 416 

being an orthogonal signature involving a different set of proteins. Consistent with this 417 

concept, examination of PCA plots coloured by severity revealed that while there was a 418 

gradient of COVID-19 severity, the samples from severe or critical patients did not form a 419 

discrete cluster distinct from those from patients with milder disease (Figure 2 figure 420 

supplement 1). However, there were a few exceptions where proteins that were associated 421 

with severity were not upregulated in the case-control analysis. These included OSM, IL17C, 422 

and CCL20 (Figure 6c). These proteins therefore reflect biological processes specifically of 423 

severe disease and may represent therapeutic targets.  424 

 425 

Survival analysis identified 44 proteins associated with increased risk of death (Figure 7b). 426 

As expected, many of these were also associated with disease severity, high CRP and lower 427 

lymphocyte count (Figure 7 figure supplement 1). In contrast, 25 proteins were associated 428 

with reduced risk of death (Figure 7b). One such protein is the multi-functional cytokine 429 

TNFSF12 (TWEAK). Although TWEAK can exert pro-inflammatory effects, it also can inhibit 430 

the innate immune response [40] and promote tissue repair and endothelial cell proliferation 431 
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and survival [41], which may be beneficial responses in COVID-19. This illustrates that 432 

although proteins associated with inflammation are often thought to be destructive, the 433 

inflammatory response also induces a programme for limiting injury and initiating tissue 434 

repair. Insufficient activation of such homeostatic mechanisms may contribute to why some 435 

individuals get severe COVID-19. 436 

 437 

The host immune response to COVID-19 is a dynamic process, and clinical deterioration 438 

typically occurs 7-10 days after first symptoms. Temporal information may therefore be 439 

important in determining optimum timing of therapeutic intervention (e.g. blockade of a 440 

particular cytokine). By taking serial samples and examining their patterns within individuals 441 

over time, we were able to model protein trajectories and found that many proteins display 442 

temporal variability during COVID-19. Longitudinal measurements also allow molecular 443 

comparison of severe versus mild disease trajectories. By modelling the interaction term 444 

between time from first symptoms and overall disease course, we found 32 proteins that 445 

displayed distinct temporal profiles in severe vs mild disease. These results point to 446 

enhanced leucocyte-endothelial cell interactions indicated by upregulation of cell adhesion 447 

molecules (e.g. ITGB6, ICAM1) in severe disease. This endothelial activation may contribute 448 

to COVID-19-associated thrombosis discussed above. Management of thrombosis in 449 

COVID-19 currently consists of anticoagulation. Our results suggest that disrupting 450 

leucocyte-endothelial interactions may be a complementary therapeutic strategy. 451 

 452 

Several proteins associated with either risk of death or clinical severity lie in pathways 453 

targeted by existing drugs. PARP1 was identified as an important marker of current or future 454 

severe COVID-19, and also was associated with risk of death. PARP1 is associated with 455 

inflammatory and vascular disease [42]. PARP1 inhibitors are in use for cancer [43], and our 456 

data suggest that re-purposing of PARP1 inhibition in COVID-19 should be explored further. 457 

IL33 was associated with both risk of death and clinical severity, and its receptor IL1RL1 458 

(ST2) was associated with clinical severity and identified as an important predictor of severe 459 

clinical course. Monoclonal antibodies against IL33 and its receptor are in late-stage 460 

development for asthma [44], and could also be explored in COVID-19. As discussed above, 461 

MPO was associated with clinical severity. MPO inhibitors [45] might have a role in reducing 462 

neutrophil-mediated tissue injury in COVID-19. Finally, inhibitors of monocyte chemokines 463 

(e.g. CCL2) and their receptors have been developed [46,47], although drugging these 464 

pathways is made more challenging by molecular cross-talk. An important caveat is that we 465 

cannot determine whether the associations we observed are drivers of pathology in COVID-466 

19 or simply reflect the downstream consequences of inflammation and tissue injury. Future 467 
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studies using Mendelian randomisation analysis will provide a useful tool for assessing 468 

causality and prioritizing drug targets. 469 

 470 

Other groups have studied the plasma or serum proteome in COVID-19 [13–16,48], using 471 

either mass spectrometry or immunoassays including the Olink platform. Mass spectrometry 472 

is less sensitive than immunoassays and so it likely to be unable to detect many of the 473 

cytokines measured here. Conversely, it can provide complementary information by 474 

measuring many proteins that our immunoassays did not target. A limitation of our study was 475 

that we used Olink panels that measured specific proteins selected on their relevance to 476 

inflammation, immunity, cardiovascular and metabolic disease. This bias precluded formal 477 

pathway enrichment analysis. In general, our results had greater similarities to studies that 478 

used immunoassays over mass spectrometry (Supplementary File 1i-j). 47.6% of proteins 479 

differentially expressed in COVID-19 positive versus negative ESKD patients in our study 480 

were differentially expressed in COVID-19 positive versus negative acute respiratory distress 481 

syndrome patients in the study of Filbin et al [16], who used a different Olink proteomics 482 

platform. Moreover, we observed consistent effect sizes (Figure 4 figure supplement 1). 483 

These similarities are striking given the difference in clinical populations and control groups; 484 

in Filbin et al’s report the controls included patients with non-COVID-19 respiratory infections 485 

whereas our control group did not have active infection. The concordance in proteins 486 

associated with COVID-19 severity within cases was even higher (81.8%). The similarities 487 

suggests a similar plasma proteomic signature of COVID-19 across different clinical 488 

populations, particularly the signature associated with severity. 489 

 490 

In summary, this study reveals proteins associated with COVID-19 infection and severity, 491 

and demonstrates altered dynamic profiles between patients with severe disease and those 492 

with a more indolent course. Our results emphasise the importance of studying and targeting 493 

mechanisms that reduce the lung epithelial and endothelial damage to both alleviate the 494 

severity of the infection and to reduce the chance of long-lasting complications. These data 495 

provide a valuable resource for therapeutic target prioritisation. 496 

 497 

Materials and Methods 498 

 499 

Subjects and samples 500 

Ethical approval: All participants (patients and controls) were recruited from the Imperial 501 

College Renal and Transplant Centre and its satellite dialysis units, London, and provided 502 

written informed consent prior to participation. Study ethics were reviewed by the UK 503 

National Health Service (NHS) Health Research Authority (HRA) and Health and Care 504 
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Research Wales (HCRW) Research Ethics Committee (reference 20/WA/0123: The impact 505 

of COVID-19 on patients with renal disease and immunosuppressed patients). Ethical 506 

approval was given. 507 

 508 

Subcohort A: We recruited 55 COVID-19 positive haemodialysis patients, either as 509 

outpatients or as inpatients (Table 1). All patients were receiving in-centre outpatient 510 

haemodialysis prior to COVID-19 diagnosis. COVID-19 was confirmed in all cases with 511 

positive nasal PCR for the SARS-CoV-2 virus. Patients were recruited during the first UK 512 

national lockdown, with recruitment from 8th April – 30th May 2020. Blood was collected in 513 

EDTA tubes and centrifuged to obtain plasma, and stored at –80oC.  Sample processing was 514 

performed within 4 hours of venepuncture. The initial sample was taken as an outpatient for 515 

30 patients and as an inpatient for 25. Where feasible, serial blood samples were taken. In 516 

total, 259 samples were taken (3 subsequently failed QC – see below). The median number 517 

of serial samples was 5 (range 1-10) (Figure 1 figure supplement 1d). 8 patients who were 518 

recruited as outpatients were subsequently admitted to hospital with COVID-19 over the 519 

course of the study. 27 of 55 (49.1%) patients had severe or critical disease (defined by 520 

peak WHO severity). 9 (16.4%) patients died. 521 

 522 

In addition, we recruited 51 COVID-19 negative haemodialysis controls. COVID-19 negative 523 

haemodialysis controls were selected to mirror the cases in terms of demographic features 524 

(age, sex, ethnicity) (Figure 1 figure supplement 1a-c). These control patients had no 525 

clinical features of any other infection. 526 

 527 

Subcohort B: We also recruited a separate set of 46 COVID-19 positive haemodialysis 528 

patients (Table 2). These patients were recruited from the same centre, but slightly earlier 529 

than subcohort A (recruitment commenced on 30th March 2020). For these patients, blood 530 

was collected in serum tubes and centrifuged to obtain serum. At this time, we had very 531 

limited access to laboratory facilities and so plasma was not collected from these patients. 5 532 

were outpatients and 41 were inpatients, reflecting the fact that UK policy was weighted 533 

towards inpatient testing at the time these patients were recruited. 33 of 46 patients (71.7%) 534 

had severe or critical disease (by peak WHO severity), and 9 (19.6%) patients died. For 40 535 

patients, only one sample from a single timepoint was collected, and for 6 patients, 2 536 

samples were collected. To provide controls for subcohort B, we used serum samples from 537 

11 non-infected haemodialysis patients (collected at the same time as plasma from a subset 538 

of the ESKD control group described above). 539 

 540 

Clinical severity scores 541 
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Severity scoring was performed based on WHO classifications (WHO clinical management 542 

of COVID-19: Interim guidance 27 May 2020) adapted for clinical data available from 543 

electronic medical records. ‘Mild’ was defined as COVID-19 symptoms but no evidence of 544 

pneumonia and no hypoxia. ‘Moderate’ was defined as symptoms of pneumonia or hypoxia 545 

with oxygen saturation (SaO2) greater than 92% on air, or an oxygen requirement no greater 546 

than 4L/min. ‘Severe’ was defined as SaO2 less than 92% on air, or respiratory rate more 547 

than 30 per minute, or oxygen requirement more than 4L/min. ‘Critical’ was defined as organ 548 

dysfunction or shock or need for high dependency or intensive care support (i.e. the need for 549 

non-invasive ventilation or intubation). Severity scores were charted throughout a patient’s 550 

illness. We defined the overall severity/clinical course for each patient as the peak severity 551 

score that occurred during the patient’s illness. 552 

 553 

Proteomic assays 554 

Plasma and serum proteomic measurements were performed using Olink proximity 555 

extension immunoassays (https://www.olink.com/products/). Five 92-protein multiplex Olink 556 

panels were run (‘inflammation’, ‘immune response’, ‘cardiometabolic’, ‘cardiovascular 2’ and 557 

‘cardiovascular 3’), resulting in 460 measurements per sample. Since a small number of 558 

proteins were measured on more than one panel, we measured a total of 436 unique 559 

proteins. The Olink assays were run using 88 samples/plate. All plates were run in a single 560 

batch. Plate layouts was carefully designed to avoid confounding of potential plate effects 561 

with biological or clinical variables of interest. To achieve this, we used an experimental 562 

design that combined ensuring case/control balance across plates with random selection of 563 

samples from each category and random ordering of allocation to wells. This is outlined in 564 

more detail as follows. We ensured that each plate contained a mixture of control and case 565 

samples. Specifically, a fixed proportion of each plate was designated for control samples. 566 

The allocation of specific control samples to each plate was performed using randomisation. 567 

For the case samples, we again used randomisation for plate assignment, with the constraint 568 

that once one sample from a given patient was allocated to a plate, all other longitudinal 569 

samples from that patient were assigned to same plate. Finally, once all the samples had 570 

been allocated to plates, the layout of samples within each plate was determined through a 571 

further randomisation step for well allocation. 572 

 573 

Protein annotation 574 

We used the Human Protein Atlas version 20.0 [49] for protein annotation (Figure 1 figure 575 

supplement 2). We performed enrichment analysis of the 436 proteins that we measured 576 

using string-db [50].  577 

 578 
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Normalisation and quality assessment and control 579 

The data was normalised using standard Olink workflows to produce relative protein 580 

abundance on a log2 scale (‘NPX’). Quality assessment was performed by a) examination of 581 

Olink internal controls, and b) inspection of boxplots, relative log expression (RLE) plots [51] 582 

and PCA. Following these steps, 3 poor quality samples were removed. In addition, 5 583 

samples failed quality control on a single proteomic panel only, with the remaining panels 584 

passing QC. For these samples, proteins on the panel that failed QC were set to missing, 585 

and the data for the remaining proteins was retained. 586 

 587 

Principal components analysis revealed no substantial impact of plate effects (Figure 2 588 

figure supplement 2). 13 proteins were assayed more than once due to their inclusion in 589 

multiple Olink panels. For plasma, the median correlation between the assays was 0.986 590 

with an IQR of 0.974-0.993 and a range of 0.925 to 0.998. For serum, the median correlation 591 

between the assays was 0.991 with an IQR of 0.952-0.995 and a range of 0.737-0.999. We 592 

removed duplicate assays at random prior to subsequent analyses. 593 

 594 

For 11 ESKD controls, we had contemporaneous plasma and serum samples. To assess the 595 

comparability of these two matrices, we calculated the Pearson’s correlation coefficient 596 

between the assays for each protein (Supplementary File 1k). 344/436 (78.9%) of proteins 597 

had a Pearson’s r > 0.5. We also report the variance of each protein in plasma and serum 598 

since low correlation may reflect low variance. The proteins with the lowest estimated 599 

Pearson correlation coefficient were AZU1, STK4 and TANK. We highlight that this 600 

comparison had small sample size (only 11 samples) and that the samples were from control 601 

patients without infection. Caution should be made in extrapolating these findings to the 602 

context of active infection where protein dynamic ranges may be different. 603 

 604 

Missing values 605 

Following QC, 0.22% data points were missing for the plasma dataset and 0.35% for the 606 

serum dataset. For analyses that required no missing values (PCA and supervised learning), 607 

we imputed missing values as follows. The dataset was first scaled and centred, and missing 608 

values imputed using caret’s k-nearest neighbours (kNN) method [52]. The 5 closest 609 

samples (by Euclidean distance) were used to estimate each missing value. 610 

 611 

Principal Components Analysis 612 

Singular value decomposition was used to perform PCA on the proteomic data from 613 

subcohort A (plasma samples). We then used the loadings from subcohort A together with 614 
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the proteomic data from subcohort B to calculate principal components scores. This enabled 615 

projection of subcohort B data into the PCA space of subcohort A. 616 

 617 

Differential protein abundance analysis: COVID-19 positive versus negative 618 

Differential protein abundance analyses between COVID-19 positive and negative samples 619 

were performed using linear mixed models, to account for the use of serial samples from the 620 

same individuals (R lme4 package [53]). This analysis compared 256 samples from 55 621 

COVID-19 patients with 51 non-infected patients (1 sample per non-infected patients). Age, 622 

sex and ethnicity were included as covariates. We used a random intercept term to estimate 623 

the variability between individuals in the study and account for repeated measures. The 624 

regression model in R notation was: 625 

NPX ~ covid_status + sex + age + ethnicity + (1 | individual) 626 

where NPX represents the protein abundance and covid_status was a categorical variable 627 

(infected/non-infected). Sex and ethnicity were also categorical variables. Age was a 628 

quantitative variable. We calculated P values using a type 3 F test in conjunction with 629 

Satterthwaite’s method for estimating the degrees of freedom for fixed effects [54]. The 630 

regression model was fitted for each of the 436 proteins individually. Multiple testing 631 

correction was performed using the Benjamini-Hochberg method and a 5% FDR used for the 632 

significance threshold. 633 

 634 

The same approach was used for subcohort B. This analysis comprised 52 serum samples 635 

from 46 COVID-19 positive patients versus 11 samples from non-infected patient samples (1 636 

sample per non-infected patient). 637 

 638 

As sensitivity analyses, we repeated the differential abundance analyses between case and 639 

controls for the subcohort A adjusting for additional covariates and comparing this to the 640 

basic model (i.e. using age, sex, and ethnicity alone). This was performed for each of the 641 

following parameters: diabetes status, cause of ESKD, and time to last haemodialysis. 642 

 643 

Testing for associations between proteins and clinical severity 644 

For testing the association of plasma proteins with the 4-level WHO severity rating (mild, 645 

moderate, severe and critical) within COVID-19 positive cases from subcohort A (n=256 646 

samples from 55 patients), we used a similar linear mixed modelling approach to the COVID-647 

19 positive versus negative differential abundance analysis; for this analysis, the 648 

covid_status term was replaced by a severity variable encoded using orthogonal polynomial 649 

contrasts to account for ordinal nature of severity levels. As before, age, sex and ethnicity 650 
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were included as covariates. As a sensitivity analysis, we repeated the analysis with time to 651 

last haemodialysis (days) as an additional covariate. 652 

 653 

Testing for associations between proteins and clinical laboratory tests 654 

The linear mixed modelling strategy was also employed for testing association of temporal 655 

clinical laboratory variables and protein levels, with the value of the clinical variable (as a 656 

quantitative trait) used in place of covid_status. Only COVID-19 positive patients were 657 

included in this analysis. Contemporaneous lab measurements were not available for all 658 

samples. This varied according to the clinical lab parameter. Some (eg troponin, d-dimer) 659 

were measured less frequently than full blood count and CRP. Details of the proportion of 660 

missing values for each lab parameter are included in (Supplementary File 1g). We also 661 

calculated correlations between clinical laboratory variables and protein levels using the R 662 

package rmcorr, which determines the overall within-individual relationship among paired 663 

measures that have been taken on two or more occasion [55].  664 

 665 

Testing for associations between proteins and ethnicity 666 

We performed testing of protein levels and ethnicity separately in COVID-19 negative ESKD 667 

patients and COVID-19 positive ESKD patients. These analyses were limited to individuals 668 

who were White, South Asian (Indian, Pakistani or Bangladeshi ancestry) or Black as there 669 

were too few individuals from other ethnic groups for meaningful interpretation. For COVID-670 

19 negative patients (1 sample per patient), we performed linear regression for each protein 671 

with ethnicity as the predictor variable, and age and sex as covariates. For COVID-19 672 

positive patients we used a linear mixed model to account for serial samples from the same 673 

individual, again with age, and sex as covariates. 674 

 675 

Multiple testing correction 676 

We used the Benjamini-Hochberg method to control the FDR at 5% for all statistical 677 

analyses. 678 

 679 

Alternative estimation of the FDR using the plug-in method 680 

To provide additional support that the Benjamini-Hochberg procedure was providing 681 

adequate control of the FDR, we also used the plug-in method of Tibshirani [9] as an 682 

alternative method to estimate the FDR, as described below. 683 

1. We defined R as the number of associations declared significant in the real data. 684 

2. We defined C as the test statistic used as the significance threshold used in the real data 685 

(i.e. that corresponding to an adjusted p-value of 0.05). 686 
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3. The expected number of proteins that we would find significant under the null hypothesis 687 

that no proteins are differentially abundant between COVID-19 positive versus negative 688 

patients (i.e. false positives) was estimated using a permutation strategy. We randomly 689 

permuted each individuals’ COVID-19 status label 100,000 times and, in each case, 690 

repeated the differential abundance analysis on the permuted data.  The estimated the 691 

number of false positives (��) was then estimated by the number of associations with test 692 

statistic > C in 100,000 permutations of the data, divided by the number of permutations.   693 

4. The estimated FDR was then calculated as �� /R. 694 

 695 

We implemented a similar approach for the testing the association of proteins with severity 696 

scores within cases. 697 

 698 

Using this method, the estimated FDR for the case versus control analysis was 0.062 and for 699 

the severity analysis 0.057, indicating that we had appropriately controlled the FDR. 700 

 701 

Empirical p-value calculation 702 

As a complementary analysis, based on the approach of Filbin et al. [16], we estimated the 703 

empirical P-value for the likelihood of observing as many significant proteins as we identified 704 

in the real data if the null hypothesis of no differentially abundant proteins in cases versus 705 

controls were true. We again used 100,000 permutations of the case control labels to 706 

estimate the null distribution. We performed Benjamini-Hochberg adjustment on the nominal 707 

p-values of each permutation, and counted the number of proteins that were significant 708 

(adjusted p-value <0.05) in each permutation. 709 

The distribution of the number of proteins declared significant is shown in Figure 3 figure 710 

supplement 2a; on no occasion in 100,000 permutations did we observe more proteins 711 

declared significant than in the real data. We can thus state that the empirical P-value (the 712 

fraction of permutation runs where we observed  ≥  the number of associations in the real 713 

data) is less than 1/100,000 = 1x10-5. 714 

 715 

We also applied this method to the association testing of proteins with severity scores within 716 

cases (Figure 3 figure supplement 2b). Again, on no occasion in 100,000 permutations did 717 

we observe more proteins declared significant than in the real data (empirical p-value <1x10-
718 

5). 719 

 720 

Supervised learning 721 
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Random forest models were fit using R’s randomForest and caret packages [52,56]. Data 722 

was centred, scaled and imputed as in Data Preparation with the caveat that, during cross-723 

validation, the pre-processing procedure was first applied on the resampled (training) data 724 

before the same method was applied without re-calculation to the holdout (test) set. To 725 

estimate model accuracy, we used 4-fold cross-validation. The cross-validation procedure 726 

was repeated 100 times. The model’s parameters were kept constant at 500 trees and an 727 

mtry value (number of proteins randomly sampled as candidates at each node) calculated as 728 

the square root of the number of features. After parameter estimation, we fit a final model 729 

trained using the entirety of the dataset. This model was used for subsequent feature 730 

extraction. Random forest feature extraction was carried out using the R 731 

randomForestExplainer package. We made use of the following importance measures: 732 

accuracy decrease (the average decrease in prediction accuracy upon swapping out a 733 

feature), number of trees (the number of trees with a node corresponding to a feature) and 734 

mean minimal depth (the average depth at which a node corresponding to a feature occurs). 735 

Three models were generated with different input features: i) proteomic data alone; ii) clinical 736 

parameters alone; iii) proteomic data and clinical parameters. Clinical parameters included 737 

sex, age, ethnicity, cause of ESKD, comorbidities, smoking status, radiological evidence of 738 

pulmonary infiltrates, and clinical laboratory tests. 739 

 740 

Survival analysis using joint modelling 741 

Following scaling and centering, we fit linear mixed models for each protein to capture the 742 

temporal trajectories of each individual. A polynomial spline of degree 2 was used to model 743 

protein concentration with respect to time (from symptom onset, measured in days); the 744 

spline was fitted for samples that were taken between 1 and 28 days from first symptoms, 745 

inclusive. Proteomic data after that point was censored. We estimated both random 746 

intercepts and random slopes for each individual, as per the following R formula notation: 747 

NPX ~ time + (time | individual) 748 

These were joined to a Cox regression model using the jointModel package [11] in order to 749 

estimate the association of each protein with risk for death. P values were calculated using a 750 

Wald test for the association between the linear mixed model and Cox regression. 751 

Benjamini-Hochberg adjustment was applied, with an adjusted p-value of 0.05 used as the 752 

significance threshold. 753 

 754 

Longitudinal analysis 755 

We also used linear mixed models to estimate the temporal profile of each protein. For this 756 

longitudinal analysis we explicitly modelled the time from first symptoms. We set up the 757 
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model to test for each protein a) whether the protein significantly change over time and b) 758 

whether the protein changes over time differently in individuals with a mild versus severe 759 

disease course. The latter was performed statistically by testing for an interaction effect 760 

between time and clinical course. For the purposes of this analysis, we binarised patients 761 

into severe or non-severe clinical course according to the peak WHO severity disease of 762 

their illness. Patients with a peak WHO score of mild or moderate were considered non-763 

severe and those with a peak score of severe or critical were considered severe. 764 

 765 

We then used R’s bs function to fit a polynomial spline of degree 2 to model protein 766 

concentration with respect time (from symptom onset, measured in days) [57]. The spline 767 

was fit for samples that were taken between 1 and 21 days from symptom onset, inclusive. 768 

We estimated random slopes with respect to time, in addition to random intercepts, to 769 

account for each individual’s unique disease course. For each protein, we fitted the following 770 

model (R notation): 771 

NPX ~ time * severity + sex + age + ethnicity + (time | individual) 772 

To identify proteins that changed significantly over time, we examined the P-values for the 773 

main effect of time. To identify proteins with distinct temporal profiles between severe and 774 

non-severe cases, we examined the P values for the time x severity interaction term. For 775 

each of these two research questions, P-values were adjusted for the multiple proteins 776 

tested using the Benjamini-Hochberg method and 5% FDR used as the significance 777 

threshold. 778 

 779 
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Figure Legends 854 

 855 

Figure 1 – Study design. 856 

a) Schematic representing a summary of the patient cohorts, sampling and the major 857 

analyses. Blue and red stick figures represent outpatients and hospitalised patients, 858 

respectively. b) Timing of serial blood sampling in relation to clinical course of COVID-19 859 

(subcohort A). Black asterisks indicate when samples were obtained. Three patients were 860 

already in hospital prior to COVID-19 diagnosis (indicated by red bars). 861 

 862 

Figure 1 figure supplement 1 – Baseline characteristics of subcohort A. 863 

The number of COVID-19 positive and negative patients in subcohort A (plasma), stratified 864 

by: a) sex, b) age, and c) ethnicity. d) Serial samples obtained for COVID-19 patients. 865 

 866 

Figure 2 – Principal components analysis. 867 

PC = principal component. Each point represents a sample. Colouring indicates COVID-19 868 

status. The directions and relative sizes of the 6 largest PC loadings are plotted as arrows 869 

(middle column). 870 

a-b) Subcohort A. Due to serial sampling, there are multiple samples for most patients. The 871 

proportion of variance explained in subcohort A by each PC is shown in parentheses on the 872 

axis labels. c-d) Subcohort B. Samples are projected into the PCA coordinates from 873 

subcohort A. 874 

 875 

Figure 2 figure supplement 1 – Principal components analysis in relation to clinical 876 

severity. 877 

a) Colouring indicates WHO severity at time of sampling. b) Colouring indicates overall 878 

clinical course (indicated by peak WHO severity) for the patient from which that sample was 879 

taken. 880 

 881 

Figure 2 figure supplement 2 – Principal components analysis in relation to assay 882 

plate. 883 

Principal components analysis of the subcohort A coloured by plate. 884 

 885 

Figure 3 – Identification of dysregulated proteins. 886 

a) Proteins up-regulated (red) or down-regulated (blue) in COVID-19 positive patients 887 

versus negative ESKD patients. n= 256 plasma samples from 55 COVID-19 positive 888 

patients, versus n= 51 ESKD controls (1 sample per control patient). 889 

b) Proteins associated with disease severity. Associations of protein levels against WHO 890 

severity score at the time of sampling. Linear gradient indicates the effect size. A positive 891 

effect size (red) indicates that an increase in protein level is associated with increasing 892 

disease severity and a negative gradient (blue) the opposite. n= 256 plasma samples from 893 

55 COVID-19 positive patients. For a) and b): P-values from linear mixed models after 894 

Benjamini-Hochberg adjustment; significance threshold= 5% FDR; dark-grey = non-895 

significant. 896 

c) Heatmap showing protein levels for selected proteins with strong associations with 897 

severity. Each column represents a sample (n=256 COVID-19 samples and 51 non-infected 898 

samples). Each row represents a protein. Proteins are annotated using the symbol of their 899 

encoding gene. For the purposes of legibility, not all significantly associated proteins are 900 

shown; the heatmap is limited to the 17% most up- or down-regulated proteins (by effect 901 

size) of those with a significant association. Proteins are ordered by hierarchical clustering. 902 

Samples are ordered by WHO severity at the time of blood sample (‘Severity’). ‘Overall 903 

course’ indicates the peak WHO severity over the course of the illness. 904 

 905 

Figure 3 figure supplement 1. Differential abundance analysis between ESKD patients 906 

with and without COVID-19. 907 
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Heatmap showing selected proteins with the largest fold changes in differential abundance 908 

analysis (subcohort A). As for Figure 3, the heatmap is limited to the 17% most up- or down-909 

regulated proteins (by fold change) of those with a significant association. 910 

 911 

Figure 3 figure supplement 2 – Permutation analysis to estimate the null distribution. 912 

Histogram showing the distribution of the number of associations declared significant (FDR 913 

5%) after random permutation of class labels (100,000 replications). a) the COVID-19 +ve 914 

versus -ve differential abundance analysis. b) the COVID-19 severity differential abundance 915 

analysis. The vertical red line denotes the number of proteins we found significant in the 916 

analysis with the true sample labels. 917 

 918 

Figure 3 figure supplement 3 – Sensitivity analyses adjusting for diabetes status and 919 

cause of ESKD. 920 

As sensitivity analyses, the COVID-19 positive versus negative differential abundance 921 

regressions were repeated adding diabetes status (a-b) and cause of ESKD (c-d) as 922 

additional covariates. The basic model included age, sex and ethnicity as covariates. Each 923 

point represents a protein. A comparison of -log10 p-values and effect sizes are shown for 924 

all 436 proteins. r indicates Pearson’s correlation coefficient.  925 

 926 

Figure 3 figure supplement 4 – Sensitivity analysis adjusting for time since last 927 

haemodialysis. 928 

Comparison of results obtained with and without adding time since last haemodialysis as an 929 

additional covariate to the regression models. a-b) COVID-19 positive versus negative 930 

differential expression analysis. c-d) Severity analysis. Each point represents a protein. r 931 

indicates Pearson’s correlation coefficient. 932 

 933 

Figure 4 – Validation. 934 

a) Overlap between the significant associations in the differential abundance analysis 935 

between ESKD patients with and without COVID-19 in subcohorts A and B. 5% FDR was 936 

used as the significance threshold in both analyses. 937 

b) Comparison of estimated effect sizes for all 436 proteins in the differential abundance 938 

analyses (COVID-19 positive versus negative) in subcohort A and B. Each point represents 939 

a protein. Pearson’s r is shown. 940 

Differential abundance analyses were performed using linear mixed models. Subcohort A 941 

analysis (plasma samples): 256 samples from 55 COVID-19 patients versus 51 non-infected 942 

patient samples (single time-point). Subcohort B (serum samples): 52 samples from 55 943 

COVID-19 patients and 11 non-infected patient samples (single time-point). 944 

 945 

Figure 4 figure supplement 1– Comparison with the report of Filbin et al. [16] 946 

Comparison of log2 fold change for COVID-19 positive versus negative ESKD patients in our 947 

study versus COVID-19 positive versus negative respiratory distress patients in the report by 948 

Filbin et al. [16]. Colours indicate whether a protein was significantly differentially abundant 949 

in each study. Pearson’s r is shown. 950 

 951 

Figure 5 - Selected proteins strongly associated with COVID-19 severity. 952 

Violin plots showing distribution of plasma protein levels according to COVID-19 status at the 953 

time of blood draw. Boxplots indicate median and interquartile range. n=256 samples from 954 

55 COVID-19 patients and 51 samples from non-infected patients. WHO severity indicates 955 

the clinical severity score of the patient at the time the sample was taken. Mild n=135 956 

samples; moderate n=77 samples; severe n=29 samples; critical n= 15 samples. Upper 957 

panel: monocyte chemokines. Middle panel: markers of epithelial injury. Lower panel: 2 958 

neutrophil proteases, and IL6. 959 

 960 

Figure 6 – comparison of proteins differentially expressed in COVID-19 with those 961 

associated with clinical severity. 962 
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a) Overlap between the proteins significantly differentially expressed in COVID-19 (n=256 963 

COVID-19 samples and 51 non-infected samples) versus those associated with severity 964 

(within cases analysis, n=256 samples) (subcohort A). 5% FDR was used as the significant 965 

cut-off in both analyses. 966 

b) Comparison of effect sizes for each protein in the COVID-19 positive versus negative 967 

analysis (x-axis) and severity analysis (y-axis). Each point represents a protein. Pearson’s r 968 

is shown. 969 

c) Examples of proteins specifically associated with severity but not significantly differentially 970 

abundant in the comparison of all cases versus controls. Violin plots showing distribution of 971 

plasma protein levels according to COVID-19 status at the time of blood draw. Boxplots 972 

indicate median and interquartile range. n=256 samples from 55 COVID-19 patients and 51 973 

samples from non-infected patients. WHO severity indicates the clinical severity score of the 974 

patient at the time the sample was taken. Mild n=135 samples; moderate n=77 samples; 975 

severe n=29 samples; critical n= 15 samples. 976 

 977 

Figure 7 – Prediction of severe COVID-19 and death. 978 

a) The 12 most important proteins for predicting overall clinical course (defined by peak 979 

COVID-19 WHO severity) using Random Forests supervised learning. If a variable is 980 

important for prediction, it is likely to appear in many decision trees (number of trees) and be 981 

close to the root node (i.e. have a low minimal depth). The mean minimal depth across all 982 

trees (white box) was used as the primary feature selection metric.  983 

b) Proteins that are significant predictors of death (Benjamini-Hochberg adjusted p <0.05). 984 

n=256 samples from 55 COVID-19 positive patients, of whom 9 died. Risk coefficient 985 

estimates are from a joint model. Bars indicate 95% confidence intervals. For proteins with a 986 

positive risk coefficient, a higher concentration corresponds to a high risk of death, and vice 987 

versa for proteins with negative coefficients. 988 

 989 

Figure 7 figure supplement 1 – proteins associated with risk of death: correlation to 990 

clinical severity and clinical laboratory measurements. 991 

Proteins significantly associated with risk of death (5% FDR) are shown. The estimated 992 

effect size from the linear mixed model testing association with severity are also shown. 993 

Correlations between protein levels and contemporaneous clinical laboratory marker values 994 

were calculated using rmcorr [55] for each of the proteins significant (5% FDR) in the joint 995 

model. The rows and columns of the clinical marker correlation matrix are ordered by 996 

hierarchical clustering.  997 

 998 

Figure 8 – Associations of clinical laboratory markers with plasma proteins. 999 

Proteins that are positively (red) or negatively (blue) associated with clinical laboratory 1000 

parameters (5% FDR). P-values from differential abundance analysis using linear mixed 1001 

models after Benjamini-Hochberg adjustment. Dark-grey = non-significant. Two associations 1002 

were found for d-dimer (not shown- see Supplementary File 1g). 1003 

 1004 

Figure 9 – Modelling of temporal protein trajectories. 1005 

The top 18 proteins displaying the most significantly (5% FDR) different longitudinal 1006 

trajectories between patients with a mild or moderate (n= 28) versus severe or critical (n= 1007 

27) overall clinical course (defined by peak WHO severity). Means and 95% confidence 1008 

intervals for each group, predicted using linear mixed models (Methods), are plotted. The 1009 

remainder of significant proteins are shown in Figure 9 figure supplement 1. Individual 1010 

data points are shown in Figure 9 figure supplement 2. 1011 

 1012 

Figure 9 figure supplement 1– display of modelled temporal trajectories for other 1013 

proteins with  a significant time x severity interaction. Proteins significant at 5% FDR but 1014 

not shown in Figure 9 are displayed here. 1015 

 1016 
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Figure 9 figure supplement 2– raw data points for modelling of temporal protein 1017 

trajectories. The 8 most significant proteins from Figure 9 are displayed. 1018 

 1019 

 1020 

 1021 

  1022 
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 1023 

 COVID-19 positive ESKD patients (n=55) ESKD controls (n=51) 

Overall Patients with peak 
severity mild or 

moderate 
(n=28) 

Patient with peak 
severity severe or 

critical 
(n=27) 

 

Age 
    Median 
    (Q1-Q3) 

 
72.2 
62.5-77.3 

 
73.4 
65.5-76.4 

 
68.5 
61.8-78.8 

 
70.1 
62.2-75.1 

Sex  
    M 
    F 

 
39 (70.9%) 
16 (29.1%) 

 
18 (64.3%) 
10 (35.7%) 

 
21 (77.8%) 
6 (22.2%) 

 
36 (70.6%) 
15 (29.4%) 

Ethnicity  
    White 
    Black 
    South Asian 
    Asian (other) 
    Other 

 
16 (29.1%) 
8 (14.5%) 
18 (32.7%) 
4 (7.3%) 
9 (16.4%) 

 
5 (17.9%) 
5 (17.9%) 
10 (35.7%) 
1 (3.6%) 
7 (25.0%) 

 
11 (40.7%) 
3 (11.1%) 
8 (29.6%) 
3 (11.1%) 
2 (7.4%) 

 
13 (25.5%) 
8 (15.7%) 
20 (39.2%) 
3 (5.9%) 
7 (13.7%) 

Diabetes 34 (61.8%) * 16 (57.1%) 18 (66.7%) 24 (47.1%) * 
Current Smoker 1 (1.8%) 1 (3.6%) 0 0 
ESKD Cause 
    DN 
    Genetic 
    GN 
    HTN/Vascular 
    Other 
    Unknown 

 
29 (52.7%) 
1 (1.8%) 
3 (5.5%) 
5 (9.1%) 
8 (14.5%) 
9 (16.4%) 

 
14 (50.0%) 
1 (3.6%) 
1 (3.6%) 
3 (5.5%) 
5 (17.9%) 
4 (14.3%) 

 
15 (55.6%) 
0 
2 (7.4%) 
2 (7.4%) 
3 (11.1%) 
5 (18.5%) 

 
20 (39.2%) 
1 (2.0%) 
9 (17.6%) 
7 (13.7%) 
4 (7.8%) 
10 (19.6%) 

Hospitalisation 
due to COVID-19† 

33 (60%) 6 (21.4%) 27 (100%) N/A 

Fatal COVID-19 9 (16.3%) 0 (0%) 9 (33.3%) N/A 

 1024 

Table 1 – Characteristics of subcohort A. 1025 

GN = Glomerulonephritis. HTN = Hypertension. IQR = inter-quartile range. ‘South Asian’ represents 1026 

individuals with Indian, Pakistani or Bangladeshi ancestry. Subsets defined according to peak WHO 1027 

severity over the course of the illness. N/A = not applicable. 1028 

*One patient had type 1 diabetes, the remainder type 2. 1029 

  1030 
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 1031 

 COVID-19 positive 
ESKD patients 

(n=46) 

COVID-19 negative 
ESKD controls  

(n=11)* 

Age 
    Median 
    (Q1-Q3) 

 
64.3 
60.3-73.0 

 
71.6 
(61.7-73.9) 

Sex  
    M 
    F 

 
32 (69.6%) 
14 (30.4%) 

 
8 (72.3%) 
3 (27.3%) 

Ethnicity  
    White 
    Black 
    South Asian 
    Asian (other) 
    Other 

 
11 (23.9%) 
8 (17.4%) 
12 (26.1%) 
7 (15.2%) 
8 (17.4%) 

 
3 (27.3%) 
3 (27.3%) 
3 (27.3%) 
0 
2 (18.2%) 

Diabetes 29 (63.0%) 6 (54.5%) 
Current Smoker 2 (4.3%) 0 (%) 
ESKD Cause 
    DN 
    Genetic 
    GN 
    HTN/Vascular 
    Other 
    Unknown 

 
19 (41.3%) 
1 (2.2%) 
7 (15.2%) 
3 (6.5%) 
3 (6.5%) 
13 (28.3%) 

 
5 (45.5%) 
0 
1 (9.1%) 
1 (9.1%) 
2 (18.2%) 
2 (18.2%) 

Hospitalisation due to 
COVID-19 

41 (89.1%) N/A 

Severe or critical COVID-19 33 (71.7%) N/A 

Fatal COVID-19 9 (19.6%) N/A 

 1032 

Table 2 – Characteristics of subcohort B. 1033 

GN = Glomerulonephritis. HTN = Hypertension. IQR = inter-quartile range. ‘South Asian’ represents 1034 

individuals with Indian, Pakistani or Bangladeshi ancestry. Subsets defined according to peak WHO 1035 

severity over the course of the illness. N/A = not applicable. *These 11 controls are a subset of the 1036 

control patients used in subcohort A. 1037 

 1038 
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Supplementary File 1 table legends. 1040 

 1041 

Supplementary File 1a. Protein Annotation. 1042 

List of the 436 proteins measured. GeneID = gene symbol of the gene encoding the protein (used as 1043 

the main identifier in the manuscript); UniProt = UniProt ID; Olink Assay Name = protein id used by 1044 

Olink; Protein Name = full protein name; Panel name = the name of the 92 protein multiplex Olink 1045 

panel on which the protein was measured. 1046 

 1047 

Supplementary File 1b. Enrichment of Reactome terms for the entire set of proteins measured. 1048 

The results of enrichment testing for genes corresponding to all 436 measured proteins against the 1049 

background of the genome. The analysis was performed against the Reactome pathways using 1050 

string-db. The list of Reactome terms is ordered by the number of proteins associated with the term.  1051 

 1052 

Supplementary File 1c. Differential abundance analysis for COVID-19 positive vs negative 1053 

ESKD patients in subcohort A and B. 1054 

Summary statistics for all 436 proteins are shown. Pvalue = nominal p-value from linear mixed model. 1055 

Adjusted Pvalue = p-values after Benjamini-Hochberg correction. Fold change = estimated fold 1056 

change from regression coefficient. Proteins are ordered based on results in subcohort A: first by 1057 

whether they are significant or not (at 5% FDR), then by fold change (from positive to negative). Note 1058 

the associations are not ordered by p-value so strong associations do not necessarily appear at the 1059 

top of the table. Significant adjusted p-values are coloured in green and non-significant in grey. 1060 

Estimated fold changes are coloured in a gradient from red to blue for up or downregulated in COVID-1061 

19 +ve versus –ve, respectively.  1062 

Sample size for subcohort A: n= 256 plasma samples from 55 COVID-19 positive ESKD patients, 1063 

versus n= 51 ESKD controls (1 sample per control patient). 1064 

Sample size for subcohort B: 52 samples from 55 COVID-19 patients and 11 non-infected patient 1065 

samples (single time-point). 1066 

 1067 

Supplementary File 1d Associations of proteins and COVID-19 severity (subcohort A). 1068 

Summary statistics for all 436 proteins are shown. Pvalue = nominal p-value from linear mixed model. 1069 

Adjusted Pvalue = p-values after Benjamini-Hochberg correction. Fold change = estimated fold 1070 

change from regression coefficient. Proteins are ordered first by whether they are significant or not (at 1071 

5% FDR), then by linear gradient (effect size) from positive to negative. Note the associations are not 1072 

ordered by p-value so strong associations do not necessarily appear at the top of the table. 1073 

 1074 

Supplementary File 1e. Predictors of clinical course from Random Forests. 1075 

Importance metrics for each protein for prediction according to a random forest model trained to 1076 

predict current or future severe/critical disease using the first sample of each patient. Proteins are 1077 

ordered by mean minimal depth across all trees – this was used as the primary importance metric. 1078 

 1079 

Supplementary File 1f. Proteomic predictors of fatal COVID-19. 1080 

Summary statistics from joint models for fatal disease. Results for all 436 proteins are shown. “Is 1081 

significant” indicates significance (green) or not (grey) at 5% FDR. The association coefficient for 1082 

each protein indicates the direction and magnitude of the estimated log relative risk for death (red 1083 

indicates higher protein levels increase risk of death, blue the opposite). 95% confidence intervals are 1084 

plotted.  1085 

 1086 

Supplementary File 1g. Associations of proteins and clinical laboratory measurements. 1087 

Clinical variable = clinical lab tests: white cell count, lymphocyte count, neutrophil count, monocyte 1088 

count, C-reactive protein, ferritin, d-dimer, troponin.  1089 

 1090 

Supplementary File 1h. Longitudinal proteomic profiling with linear mixed models.  1091 

Summary statistics from the linear mixed models used to identify proteins with differential temporal 1092 

trajectories between mild/moderate (n=28) and severe/critical COVID-19 patients (n=27). Summary 1093 

statistics for all 436 proteins are shown.  1094 

 1095 
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Pvalue = nominal p-value from linear mixed model for the interaction term between time from 1096 

symptom onset (days) and overall WHO severity (as a binary variable: mild-moderate or severe-1097 

critical).  1098 

 1099 

Adjusted Pvalue = p-values after Benjamini-Hochberg correction. “Is significant” indicates significance 1100 

(green) or not (grey) at 5% FDR. 1101 

 1102 

Supplementary File 1i. Comparison to other proteomic studies of COVID-19 positive vs 1103 

negative patients.  1104 

Proteins that were differentially abundant in COVID-19 +ve vs -ve patients in our data are listed (5% 1105 

FDR). TRUE indicates that the protein was reported as differentially abundant in the relevant previous 1106 

proteomic study. The final column summarises whether the association was previously reported in 1107 

any of the 4 studies. We have not harmonised significance thresholds between studies: we simply 1108 

report whether the authors declared the protein significant by the threshold of their study. 1109 

 1110 

Supplementary File 1j. Comparison to other proteomic studies of COVID-19 severity. 1111 

Proteins that were associated with severity in our data are listed (5% FDR). TRUE indicates that the 1112 

protein was reported as associated with severity in the relevant previous proteomic study. The final 1113 

column summarises whether the association was previously reported in any 1 or more of the 4 1114 

studies. We have not harmonised significance thresholds between studies: we simply report whether 1115 

the authors declared the protein significant by the threshold of their study.  1116 

 1117 

Results are shown for all 436 proteins against all 8 lab measurements.  1118 

 1119 

Adjusted p-value = p-value from linear mixed model after Benjamini-Hochberg correction.  1120 

 1121 

Gradient indicates effect size and direction. A positive gradient (red) indicates higher concentrations 1122 

of proteins are associated with higher clinical laboratory measurements. “Is significant” indicates 1123 

significance (green) or not (grey) at 5% FDR. 1124 

 1125 

Contemporaneous clinical laboratory tests were not available for all plasma samples. The proportion 1126 

of samples for which contemporaneous lab tests were available were: white cell count 66%, 1127 

neutrophils 66%, monocytes 66%, lymphocytes 66%, CRP 64%, ferritin 36%, troponin 35%, d-dimer 1128 

30%.  1129 

 1130 

Supplementary File 1k. Per protein correlations between plasma and serum levels derived 1131 

from the same blood sample in 11 COVID-19 negative ESKD patients. 1132 

Plasma and serum were taken from 11 non-infected ESKD patients that were measured in both 1133 

subcohort A (plasma) and B (serum). Pearson’s r was calculated for the 11 paired measurements for 1134 

each protein. Proteins are ordered by r value; this column is coloured from red to blue for positive and 1135 

negative r values, respectively. 95% confidence intervals are reported. We also report the variance of 1136 

the NPX levels for each protein in plasma and in serum. 1137 

 1138 
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