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ABSTRACT  39 

 40 

Background  41 

Higher doses of intravenous rifampicin may improve outcomes in tuberculous meningitis but is 42 

impractical in high burden settings. We hypothesized that plasma rifampicin exposures would 43 

be similar between oral 35 mg/kg and intravenous 20 mg/kg, which has been proposed for 44 

efficacy trials in tuberculous meningitis. 45 

 46 

Materials and methods  47 

We performed a randomized parallel group pharmacokinetic study nested within a clinical trial 48 

of intensified antimicrobial therapy for tuberculous meningitis. HIV-positive participants with 49 

tuberculous meningitis were recruited from South African hospitals and randomized to one of 50 

three rifampicin dosing groups: standard (oral 10 mg/kg), high dose (oral 35 mg/kg), and 51 

intravenous (intravenous 20 mg/kg). Intensive pharmacokinetic sampling was done on day 3. 52 

Data were described using non-compartmental analysis and exposures compared by 53 

geometric mean ratio (GMR). 54 

 55 

Results  56 

Forty-six participants underwent pharmacokinetic sampling (standard dose, n = 17; high dose 57 

oral, n= 15; IV, n = 14). Median CD4 count was 130 cells/mm3 (IQR 66 - 253). Geometric 58 

mean AUC0-∞ was 47.7 µg·h/mL (90% CI, 33.2 – 68.5) for standard dose; 322.3 µg·h/mL (90% 59 

CI,234.6 – 442.7) for high dose; and 214.6 µg·h/mL (90% CI, 176.2 – 261.2) for intravenous. 60 

High dose oral dosing achieved higher rifampicin exposure than intravenous: AUC0-∞ GMR 61 

0.67 (90% CI, 0.46 - 1.0); however, Cmax GMR was 1.11 (90% CI, 0.81 – 1.59), suggesting 62 

equivalence. 63 

 64 

Conclusions 65 
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Plasma rifampicin exposure was similar with high dose oral and intravenous administration. 66 

Findings support oral rifampicin dosing in future tuberculous meningitis trials.   67 

  68 
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INTRODUCTION 69 

Tuberculous meningitis (TBM) in HIV-positive people carries a mortality approaching 60% (1, 70 

2), and despite antituberculosis therapy, half of all survivors suffer significant neurological 71 

sequelae (3). One strategy to potentially improve outcomes is enhanced bacterial killing 72 

through optimized antibiotic therapy (4).  73 

 74 

Rifampicin is the key agent in TBM therapy; its exclusion from treatment worsens outcomes, 75 

and there is high mortality from rifampicin-resistant TBM (5). However, rifampicin is highly 76 

protein-bound (6) and the cerebrospinal (CSF) penetration of total drug is poor (7). Standard 77 

doses (10 mg/kg) achieve concentrations at only 10-20% of plasma, rarely exceeding the 78 

minimum inhibitory concentration of M. tuberculosis (8-10). Studies in pulmonary TB have 79 

shown that bactericidal activity is related to rifampicin exposure (11, 12) and that 80 

microbiological outcomes are improved at higher doses, up to 35 mg/kg (13, 14). A small 81 

randomized controlled trial showed survival benefit with the use of intravenous rifampicin 13 82 

mg/kg for Indonesian adults with TBM (15), which had equivalent plasma exposures to oral 83 

rifampicin 20 mg/kg (16), A modestly increased oral rifampicin dose of 15 mg/kg did not 84 

improve survival in a phase 3 trial (2), however, higher doses may be required to improve 85 

outcomes.  86 

 87 

Several clinical trials (NCT04145258, ISRCTN42218549, NCT03537495) are currently 88 

investigating the safety and efficacy of oral rifampicin doses up to 35 mg/kg for TBM. Because 89 

rifampicin has dose-dependent bioavailability (17), and exhibits nonlinear increases in 90 

exposure with higher doses (12, 18, 19) 35 mg/kg orally may attain or even exceed 91 

intravenous plasma exposures at doses higher than 13 mg/kg. Existing population 92 

pharmacokinetic (PK) models can predict plasma rifampicin concentrations at doses up to 93 

40mg/kg orally (20), but this has not been done for intravenous administration where exposure 94 

is unaffected by the pre-hepatic first-pass effect (20). This knowledge gap has important 95 

implications for TBM trials and the ultimate deployment of intensified antimicrobial therapy for 96 
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TBM in resource limited settings as intravenous rifampicin has limited availability and use will 97 

be associated with increased cost, hospitalization, and complications relating to peripheral 98 

venous catherization.  99 

  100 

Based on existing PK models of rifampicin (18, 20) and data showing equivalent AUC 101 

between 13 mg/kg given intravenously and 20 mg/kg given orally (16), we hypothesized that 102 

plasma rifampicin exposures will be similar between oral 35 mg/kg and intravenous 20 mg/kg, 103 

which has been proposed for efficacy trials in TBM. To test this, we performed a randomized 104 

parallel group PK study nested within a clinical trial of high dose rifampicin for HIV-associated 105 

TBM.  106 

 107 

RESULTS 108 

Participants 109 

Forty-nine participants were enrolled into the parent trial, but 2 participants died and 1 was 110 

withdrawn due to late exclusion (eGFR > 20 ml/min) prior to receiving investigational product: 111 

46 participants underwent intensive PK sampling and were included in this analysis (Figure 1). 112 

 113 

Baseline characteristics were well-balanced across rifampicin dosing groups (Table 1). A third 114 

of participants had definite TBM, the majority (61%) with MRC Grade 1 disease. Median 115 

duration of antituberculosis therapy before the PK visit was 5 days (IQR 4 - 6) and was similar 116 

across arms (although the PK visit occurred on study Day 2 or 3, up to five days’ standard TB 117 

treatment was allowed prior to enrolment). Rifampicin was crushed and administered by 118 

syringe for 6 participants (2 high dose group, 4 standard dose group). The duration of 119 

intravenous infusion was 60 minutes for all participants except two (15 minutes and 68 120 

minutes). 121 

 122 

PK data 123 
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There was a total of 304 PK observations, 40 of which were below the limit of quantification 124 

(BLQ). There were 31 full PK profiles after imputation: 10 in the standard dose group, 9 in the 125 

high dose oral group, and 12 in the IV group. Trough concentrations were imputed for 9 126 

participants, due to missing 24-hour concentrations in 8 and dosing prior to 24-hour 127 

concentration in 1. Pre-dose concentration was imputed for a single participant because of 128 

late dosing the day before the PK visit. 129 

 130 

Concentration-time profiles in Figure 2 demonstrate much higher concentrations in high dose 131 

and IV groups compared with standard dosing. There was high inter-individual variability in 132 

plasma concentrations, particularly in the oral dosing groups (standard dose Cmax %CV 52; 133 

high dose oral %CV 48; IV %CV 38), which also showed delayed peaks compared with 134 

intravenous administration. 135 

 136 

Table 2 summarizes the estimated PK parameters from observed rifampicin concentrations, 137 

by dosing groups. Geometric mean AUC0-∞ was 6.8-fold higher for high dose compared with 138 

standard dose rifampicin group (ANOVA p < 0.001) but was not significantly different between 139 

high dose oral and IV administration (p = 0.96). The lowest AUC0-∞ in the high dose oral group 140 

(151.9 µg·h/mL) was 2.5-fold higher than the geometric mean AUC in the standard dose group 141 

(47.7 µg·h/mL). Geometric mean Cmax was 4.8-fold higher for high dose oral compared with 142 

standard dose rifampicin groups (ANOVA p < 0.001), but similar between high dose oral and 143 

IV (p = 0.28). Comparison of exposures across dosing groups is shown in Figure 3. Tmax was 144 

shorter in among those in the IV group: median 1 hour (range 0.5 - 2) versus 3 hours (range 2 145 

- 8) for high dose oral and 2 hours (range 1 - 6) for standard dose. Clearance was significantly 146 

higher in the standard dose group (geometric mean 12.6 L/h; range, 4.9 – 53.2) compared 147 

with high dose oral (geometric mean 6.8 L/h; range, 2.2 – 16.6) and IV (geometric mean 6.3 148 

L/h; range, 3.9 – 10.7).  149 

 150 
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In a bioequivalence analysis comparing plasma exposures of high dose oral and IV rifampicin, 151 

AUC0-∞ GMR was 0.67 (90% CI, 0.46 - 1.0), suggesting inequivalence favoring oral dosing; 152 

Cmax GMR was 1.11 (90% CI, 0.81 – 1.59), suggesting equivalence (Figure 4). 153 

 154 

Exposures, measured by AUC0-∞, were not significantly different across weight bands for the 155 

high oral dose (ANOVA p = 0.44), although this had poor precision because the number of 156 

participants in each band was small (Figure 5). In an exploratory analysis, exposures were 157 

similar after administration of crushed rifampicin via syringe for both the high dose (geometric 158 

mean AUC0-∞ 383.2 µg·h/mL; n = 2) and standard dose (geometric mean AUC0-∞ 38.9 159 

µg·h/mL; n = 4) compared with those who swallowed whole tablets (supplement Figure S2).  160 

 161 

DISCUSSION 162 

In our randomized controlled trial of South African adults with HIV-associated TBM, plasma 163 

rifampicin exposures were similar after an oral 35 mg/kg dose or an intravenous 20 mg/kg 164 

dose over the first few days of TB treatment. Consistent with previous studies in both TBM 165 

(21) and pulmonary TB (11, 12, 18), there was a non-linear dose-exposure relationship, with 166 

higher oral doses achieving supra-proportional increases in exposures compared with 167 

standard oral dosing at 10 mg/kg. 168 

 169 

The PK efficacy target for rifampicin in TBM is unknown, but it is plausible that dose 170 

optimization may lead to improved outcomes. Two small trials conducted in Indonesia 171 

suggested a survival benefit with the use of higher oral rifampicin doses up to 30 mg/kg 172 

(equivalent to 1,350 mg in that population), and a significant and large effect with the use of 173 

intravenous dosing at 13 mg/kg (600 mg) (15, 21). A model-based meta-analysis of those data 174 

showed that rifampicin 20 mg/kg given orally resulted in similar exposures to 13 mg/kg given 175 

intravenously, and that this translated into a similar effect on TBM survival (22). That same 176 

analysis demonstrated an exposure-response relationship and that effect was driven by 177 

plasma AUC, similar to the microbiological response in phase 2b pulmonary TB studies (11, 178 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.21250624doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.11.21250624
http://creativecommons.org/licenses/by/4.0/


9

12). Taken together, these findings suggest outcomes in TBM can be improved with use of 179 

higher rifampicin doses, and that this is related to overall exposure, irrespective of route of 180 

administration. 181 

 182 

In our study, geometric mean AUC and Cmax in the high dose oral and intravenous groups 183 

were similar to those reported in other populations (11, 18) and exceeded putative efficacy 184 

targets for TBM mortality (estimated AUC 203 µg·h/mL(22) and Cmax 22 µg/mL (23)). 185 

Rifampicin exposures predictably decline at steady-state due to autoinduction and enhanced 186 

clearance with repeated dosing (18). Our study was designed to characterize rifampicin PK 187 

during the early phase of treatment with the assumption that optimizing exposures would be 188 

most critical for anti-mycobacterial effect in this period. Although PK sampling occurred within 189 

the first three days of enrolment, median time on rifampicin was 5 days at the time of the PK 190 

visit, when substantial autoinduction is expected to have occurred (20). Oral 35 mg/kg dosing 191 

would achieve even higher exposures at the start of therapy. In our bioequivalence analysis 192 

geometric mean AUC was ~30% lower with intravenous 20 mg/kg versus oral 35 mg/kg 193 

administration, which could be explained by saturation of a first-pass effect at higher oral 194 

doses that would not apply to intravenous administration, resulting in a larger reduction in 195 

clearance and resultant non-linear dose-exposure relationship with oral dosing, particularly 196 

early in therapy. Higher clearance observed in the standard oral dose group supports this, as 197 

there is a much lower AUC relative to dose (CL ∝ dose/AUC). As expected, time to maximal 198 

concentration was shorter with intravenous administration, but Cmax was similar to oral dosing 199 

at 35 mg/kg. An association between plasma rifampicin Cmax and survival was found in a small 200 

Indonesian TBM study (23) but was not reproduced in a larger Vietnamese trial (24) or in the 201 

pooled model-based analysis (22). More rapid intravenous infusion could result in higher 202 

Cmax,(25) but the safety and efficacy of this is not established and does not currently justify 203 

risks associated with venous catheterisation. 204 

 205 
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We found large interindividual variability in rifampicin exposure, most pronounced in oral 206 

dosing groups. This is a feature of rifampicin PK and relates to effect of absorption delays on 207 

bioavailability and saturable kinetics (18, 20, 26). Although AUC was on average significantly 208 

higher with 35 mg/kg oral dosing compared with standard dose, certain patients may not attain 209 

optimal exposures even at these higher doses. It was somewhat reassuring that, in our study 210 

population, the lowest rifampicin exposure in the 35 mg/kg group still exceeded the geometric 211 

mean AUC (and equaled the highest AUC) of the standard dose group, suggesting potential 212 

benefit from higher dose rifampicin even in the context of highly variable bioavailability. Weight 213 

is an important source of rifampicin PK variability; patients with lower weights have relatively 214 

lower exposures for a given dose due to allometric scaling on clearance (27). We attempted to 215 

compensate for this by implementing a dosing strategy based on simulations using 216 

characteristics of a similar population that predicted equitable exposures for the high dose oral 217 

group across modified weight bands. Notwithstanding the low number of participants receiving 218 

high dose oral rifampicin in each weight band, exploratory analysis suggested no significant 219 

difference in observed exposures, providing partial validation of this approach. Another 220 

potential source of PK variability is administration of crushed rifampicin tablets, which may 221 

affect dissolution characteristics and absorption (26). This is relevant in TBM where patients 222 

frequently have reduced levels of consciousness. Reassuringly, the small group of 223 

participants (n = 6) who received crushed rifampicin in our study achieved similar exposures 224 

to those swallowing whole tablets in their respective dosing groups; this is corroborated by 225 

findings from an Indonesian TBM cohort where 60% of participants were administered 226 

rifampicin via nasogastric tube but achieved expected increases in exposure at higher doses 227 

(21). 228 

 229 

There are important limitations to consider when interpreting our findings. The sample size for 230 

evaluation of the primary outcome measure (AUC GMR between high dose oral and 231 

intravenous rifampicin, n = 29) was smaller than planned due to slow recruitment in the parent 232 

trial. However, in a post hoc power calculation using the original assumptions, this sample 233 
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size would provide ~80% power to detect a difference in AUC of at least 30%, supporting the 234 

reliability of our main finding. It is unlikely that the direction of effect would reverse to favor 235 

intravenous dosing, even with a larger sample size. The study was not powered to evaluate 236 

the impact of physiological or disease characteristics on PK variability; these analyses were 237 

not performed but are well-known for rifampicin in similar populations. We did not measure 238 

CSF rifampicin concentrations for this analysis because the primary objective was to compare 239 

plasma exposure of intravenous versus oral rifampicin. Several studies have shown 240 

correlation between plasma and CSF rifampicin exposure with oral dosing in TBM (15, 21, 241 

24), and it is unlikely that CSF PK would be influenced with intravenous administration. 242 

Furthermore, plasma rifampicin exposure may be a better predictor of survival than CSF 243 

concentrations in TBM (22). 244 

 245 

In summary, we have shown that in a population of African patients with HIV-associated TBM, 246 

plasma rifampicin exposure was similar when dosed orally at 35 mg/kg or intravenously at 20 247 

mg/kg. We also developed an empiric weight-based dosing strategy for high dose oral 248 

rifampicin, which requires validation in a larger cohort. Our findings support high dose oral 249 

rifampicin in future TBM trials.  250 

 251 

MATERIALS AND METHODS 252 

Parent trial and study population  253 

The parent study, called LASER-TBM, is a parallel group, randomized, multi-arm, open label 254 

Phase 2a trial evaluating the safety of enhanced antimicrobial therapy with or without host 255 

directed therapy for the treatment of HIV-associated TBM. Adults with confirmed HIV and 256 

newly diagnosed TBM (based on consensus definitions (28)) were recruited from four 257 

hospitals in Cape Town and Port Elizabeth, South Africa. Exclusion criteria included: receipt of 258 

more than 5 days antituberculosis medication; evidence of bacterial or cryptococcal 259 

meningitis; severe concurrent uncontrolled opportunistic disease; estimated glomerular 260 

filtration rate (eGFR) < 20 ml/min (using the Cockcroft-Gault equation); international 261 
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normalised ratio (INR) > 1.4; clinical evidence of liver failure or decompensated cirrhosis; 262 

haemoglobin < 8.0 g/dL; platelets < 50 x109 /L; neutrophils < 0.5 x 109 cells/L; and grade 3 or 263 

more peripheral neuropathy on the Brief Peripheral Neuropathy Score. Pregnancy was 264 

allowed if gestational age was less than 17 weeks at enrolment. 265 

 266 

Eligible and consenting participants were randomized at a ratio of 1.4:1:1 to either a standard 267 

of care control group or one of two experimental arms (relatively more participants were 268 

allocated to the control group as higher mortality was anticipated with standard of care). 269 

Participants allocated to experimental arms 2 and 3 received additional rifampicin (total oral 270 

dose 35 mg/kg/day) plus oral linezolid 1,200 mg daily for the first 28 days, reduced to 600 mg 271 

daily for the next 28 days; those randomized to experimental arm 3 also received oral aspirin 272 

(1000 mg daily). Study treatment was provided in all arms for 56 days, after which participants 273 

were referred back to public sector facilities to complete standard therapy for HIV-associated 274 

TBM. All participants received antituberculosis chemotherapy as well as corticosteroids as per 275 

South African National TB management guidelines. The primary outcome for LASER-TBM 276 

was solicited adverse events and deaths in the experimental arms relative to the standard of 277 

care control arm at Month 2; efficacy was a secondary outcome, determined at Months 2 and 278 

6. 279 

 280 

Design of PK study 281 

A nested PK study was performed to compare plasma exposure (AUC and Cmax) of 282 

intravenous versus oral rifampicin. All consenting LASER-TBM participants allocated to 283 

experimental arms underwent a second randomization at the time of study entry, prior to 284 

receipt of study drug, to receive either high dose oral (35 mg/kg, according to weight bands 285 

described below) or intravenous (IV, 20 mg/kg) rifampicin for the first 3 days of treatment. 286 

After Day 3, all participants in experimental arms continued high dose oral rifampicin until Day 287 

56 (supplement figure S1).  288 

 289 
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Randomization was done in a 1:1 ratio using an electronic randomization tool, and fully 290 

integrated with parent trial procedures. A parallel rather than cross-over design was chosen to 291 

remove the influence of rifampicin autoinduction on exposure over time, which increases 292 

rapidly over the first days of therapy (20). Due to the nature of the intervention, and because 293 

the outcome measure is an objective PK endpoint, allocation of intravenous versus oral 294 

rifampicin was unblinded.  295 

 296 

Intensive plasma PK sampling took place during hospitalization on a single occasion within 297 

the first three days of enrolment. Serial venous blood samples were collected into K3EDTA 298 

Vacutainer tubes through a peripheral venous catheter pre-dose, and at 0.5, 1, 2, 3, 6, 8-10, 299 

and 24 hours after witnessed drug intake (or the start of IV infusion) and an overnight fast. 300 

Samples were centrifuged (1,500 x g for 10 minutes) within 1 hour of collection. At least 1.5 301 

mL of plasma was pipetted into polypropylene tubes and immediately frozen at -80°C. Sparse 302 

sampling was performed for participants who declined intensive sampling or in whom this 303 

failed. Plasma rifampicin concentrations were determined with a validated liquid 304 

chromatography tandem mass spectrometry assay developed at the Division of Clinical 305 

Pharmacology, University of Cape Town. The assay was validated over the concentration 306 

range of 0.117 to 30.0 μg/mL. The combined accuracy and precision statistics of the limit of 307 

quantification, low, medium and high-quality controls (three validation batches, n=18) were 308 

between 101% and 107%, and 2.7% and 3.7%, respectively. 309 

 310 

Demographic and clinical data were collected from participants at the time of LASER-TBM 311 

study entry and at the PK visit. Data included biometrics, CD4 count, ART status, TBM 312 

diagnosis (definite, possible, or probable by consensus definition (28)) severity (Grade 1 to 3 313 

by British Medical Research Council score) and functional status (modified Rankin score). 314 

 315 

Rifampicin dosing 316 
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Oral rifampicin was provided as part of a fixed dose combination tablet with isoniazid, 317 

pyrazinamide, and ethambutol (Rifafour, Sandoz) according to standard WHO weight bands 318 

for the standard dose group, with top up of single formulation tablets (Rimactane 150 mg, 319 

Sandoz; Eremfat 600 mg, Riemser) for the high dose oral group. For participants unable to 320 

swallow whole tablets, the rifampicin was crushed, mixed with sterile water, and administered 321 

via a syringe. To account for the effect of allometry on clearance at lower weights, we 322 

performed simulations to determine the dose of rifampicin required to achieve the most 323 

equitable drug exposures across the weight range 30 to 100 kg. Demographic data of a 324 

reference cohort of TB patients (n = 1,225), with or without HIV-1 coinfection, recruited in 325 

clinical studies conducted in West African countries and South Africa were used for the 326 

simulations (27, 29-31). An additional 12,250 virtual patients were generated using the weight 327 

and height distributions of the 1,225 patients to increase the number of patients with a weight 328 

close to the boundaries of the weight range. Parameter estimates of a population PK model 329 

for rifampicin were used to simulate (100 replicates) rifampicin exposures (18). Four dosing 330 

scenarios were evaluated using the weight-band based dosing with 4-drug fixed dose 331 

combination (FDC) tablets and extra rifampicin tablets, with each tablet containing 150 mg or 332 

600 mg rifampicin. The FDC tablets were assumed to have 20% reduced bioavailability based 333 

on data from a clinical trial where the same formulation was used (32). The weight bands with 334 

the most balanced distribution in predicted exposures were used to dose oral rifampicin in the 335 

trial (supplement table S1 and figure S2). Intravenous rifampicin (Eremfat 600 mg vials, 336 

Riemser) was administered according to weight bands (supplement table S2) as a 1-hour 337 

infusion, in accordance with instructions in the package insert, by nursing staff of the parent 338 

trial. 339 

 340 

Analysis  341 

The study was powered to detect a difference in exposure between oral and intravenous 342 

administration, defined as an AUC geometric mean ratio (GMR) < 0.8.(33) Assuming 343 

increased variability with oral dosing (coefficient of variance, %CV 34)(18) versus intravenous 344 
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dosing (%CV 20), a sample size of 50 participants was planned to provide 80% power to 345 

demonstrate this with 90% two-sided confidence.  346 

 347 

Demographic and clinical characteristics were summarized and compared using the Wilcoxon 348 

rank-sum test for continuous variables and χ2 test for dichotomous variables. Non-349 

compartmental analysis was used to estimate rifampicin PK parameters from observed 350 

concentrations. The area under the concentration-time curve, extended to infinity (AUC0-∞), 351 

was calculated as AUC0-tmax (using the trapezoid method) + AUCtmax-∞ (estimated by extending 352 

the curve with linear fit to the log of the concentration). Trough concentration (Cτ) was defined 353 

as the plasma concentration 24 hours after observed intake (actual or imputed, as described 354 

in the supplement). The elimination rate constant (ke) was assessed by linear regression 355 

analysis of the last three concentrations in the terminal log-linear period. The apparent 356 

clearance of the drug (CL/F) and the volume of distribution after oral administration (Vd/F) 357 

were calculated using standard equations. %CV was calculated as mean/standard deviation x 358 

100. Differences between log-transformed PK parameters across the three study groups were 359 

tested by one-way analysis of variance (ANOVA); the Kruskal–Wallis test was used for time to 360 

maximal concentration (Tmax) and half-life. The means of log-transformed values for exposure 361 

parameters (log-normally distributed) were back-transformed to obtain geometric means; 362 

GMR was calculated for AUC and Cτ, with oral administration as the reference (ûIV/ûoral). 363 

Fieller's method was used to estimate 90% confidence intervals for GMR. Statistical analysis 364 

was performed using Stata version 14.2 (StataCorp). 365 

 366 

Ethics 367 

This research was conducted in accordance with the Declaration of Helsinki and was 368 

approved by the University of Cape Town Human Research Ethics Committee (Ref 293/2018) 369 

and the Walter Sisulu University Human Research Committee (Ref 012/2019). The parent trial 370 

(LASER-TBM) is registered on clinicaltrials.gov (NCT03927313) and approved by the South 371 

African Health Products Regulatory Authority (Ref 20180622). 372 
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TABLES 530 

 531 

Table 1. Baseline characteristics 532 

 Oral 10 mg/kg Oral 35 mg/kg IV 20 mg/kg p-value 

 N = 17 N=15 N=14  

Age, yr 38 (34-47) 41 (36-45) 37 (30-43)  0.26 

Female 47% (8) 33% (5) 50% (7)  0.62 

Ethnicitya 

   African 

   Caucasian 

   Mixed race 

 

82% (14) 

12% (2) 

6% (1) 

 

80% (12) 

0 

20% (3) 

 

93% (13) 

0 

7% (1) 

 0.26 

Weight, kg 64 (54-77) 60 (53-80) 59 (54-62)  0.67 

BMI, kg/m2 25 (22-32) 22 (20-23) 22 (19-23)  0.08 

CD4 count, cells/µL 130 (64 – 253) 131 (45-204) 145 (96-333)   0.43 

ART status     0.42 

   On ART 29% (5) 27% (4) 36% (5)  

   ART Naive 53% (9) 27% (4) 36% (5)  

   Previous ART 18% (3) 47% (7) 29% (4)  

TBM diagnosis     0.65 

   Definite TBM 41% (7) 27% (4) 29% (4)  

   Possible TBM 29% (5) 53% (8) 36% (5)  

   Probable TBM 29% (5) 20% (3) 36% (5)  

MRC grade     0.59 

   Grade 1 59% (10) 53% (8) 71% (10)  

   Grade 2 41% (7) 47% (7) 29% (4)  

   Grade 3 0 0 0  

Modified Rankin score 3 (2) 3 (2) 3 (2)  0.95 
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Duration TB treatment 

before PK visitb 

 5 (4-6)  5 (3-6)  6 (4-7)   0.65 

Total rifampicin dose, mg 600 (450-750) 2100 (1800-

2700) 

1350 (1200-

1350) 

<0.001 

Rifampicin dose, mg/kg 9 (8-10) 34 (33-36) 22 (22-24) <0.001 

Data are median (IQR), % (n) 533 

ART, antiretroviral therapy; BMI, body mass index; MRC, British Medical Research Council 534 

a Self-reported 535 

b Participants were allowed to receive up to 5 days’ TB treatment prior to trial enrolment 536 

 537 

 538 

  539 
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Table 2. Summary of PK parameters 540 

 541 

Parameter Standard dose 

oral  

High dose oral (35 

mg/kg) 

IV (20 mg/kg) P-value  

AUC, µg·h/mL  

GM (90% CI) 

Range 

 

47.7 (33.2 – 68.5)* 

14.1 - 152.6 

 

322.3 (234.6 – 442.7) 

151.9 - 802.2 

 

214.6 (176.2 – 261.2) 

111.8 - 428.1 

< 0.001
a

 

Cmax, µg/mL 

GM (90% CI) 

Range 

 

6.9 (5.4 – 8.7)* 

2.4 - 18.1 

 

34.7 (26.6 – 45.2) 

7.7 - 66.0 

 

38.6 (32.4 – 45.8) 

20.2 - 74.0 

< 0.001
a

 

Tmax, h 

Median (range) 

 

2 (1 – 6) 

 

3 (2 – 8) 

 

1 (0.5 – 2)* 

< 0.001
b

 

Half-life, h 

Median (range) 

 

3.2 (2.6 – 6.7) 

 

3.3 (2.1 – 6.3) 

 

2.6 (2.2 – 5.4) 

0.19
b

 

CL, L/h 

GM (90% CI) 

Range 

%CV 

 

12.6 (8.8 - 18.0)* 

4.9 – 53.2 

83.6% 

 

6.8 (4.8 - 9.5) 

2.2 – 16.6 

54.4% 

 

6.3 (5.2 - 7.6) 

3.9 – 10.7 

37.6 

0.004a 

Vd, L 

GM (90% CI) 

Range 

%CV 

 

72.9 (42.1 - 126.3)* 

23.6 – 191.8 

184.2% 

 

55.2 (30.2 - 100.9) 

21.2 – 116.7 

150.9% 

 

27.8 (21.3 - 36.1) 

13 – 84.3 

59.8% 

0.01
a

 

 542 

GM, geometric mean; %CV, coefficient of variation  543 

a ANOVA after log transformation 544 

b Kruskal-Wallis  545 

* comparator 546 

  547 
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FIGURES 548 

 549 

Figure 1. Trial consort 550 

Arm 1, standard TB therapy; Arm 2, high dose rifampicin plus linezolid; Arm 3, high dose 551 

rifampicin plus linezolid, plus aspirin; IPK, intensive PK; SPK, sparse PK 552 

 553 

 554 

 555 

 556 

  557 
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Figure 2. Individual concentration-time profiles 558 

PK profiles for all participants by rifampicin dose allocation. Grey lines indicate individual 559 

profiles, coloured dashed lines indicate geometric means. 560 

 561 

 562 

 563 
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Figure 3. Comparison of exposures across dosing groups.  565 

Open circles are individual values for AUC (Figure 3A) and Cmax (Figure 3B), boxes indicate 566 

median and interquartile ranges, whiskers indicate upper adjacent value (1.5x IQR). 567 

 568 

Fig. 3A 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.21250624doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.11.21250624
http://creativecommons.org/licenses/by/4.0/


29

Fig. 3B 580 
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Figure 4. Bioequivalence plot 582 

Point estimates of geometric mean ratios (GMR) for AUC and Cmax, with 90% confidence 583 

intervals, with vertical lines indicting bioequivalence margins. The reference measure is 584 

intravenous administration (ûIV/ûoral), therefore a value > 1 favours intravenous dosing. 585 
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Figure 5. Simulated exposures across LASER-TBM weight bands for 35 mg/kg dosing, 589 

with observed exposures superimposed. 590 

Boxes indicate median and interquartile range and whiskers indicate range for simulated 591 

exposures derived from external cohorts, as described in the text. Red circles indicate 592 

observed exposures from the LASER-TBM cohort. 593 
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