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Abstract 

Background 

Assessing safety and efficacy of Covid-19 vaccines in different populations is essential, as is 

investigation of efficacy against emerging SARS-CoV-2 variants of concern including the B.1.351 

(501Y.V2) variant first identified in South Africa.  

Methods 

We conducted a randomized multicentre, double blinded controlled trial on safety and efficacy of 

ChAdOx1-nCoV19 in HIV-uninfected people in South Africa. Participants age 18 to <65 years 

randomized (1:1) to two doses of vaccine containing 5x1010 viral particles or placebo (0.9%NaCl) 21-

35 days apart. Post 2nd-dose serum samples (n=25) were tested by pseudotyped (PSVNA) and live 

virus (LVNA) neutralization assays against the D614G and B.1.351 variants. Primary endpoints were 

safety and vaccine efficacy (VE) >14 days following second dose against laboratory confirmed 

symptomatic Covid-19.  

Results 

2026 HIV-uninfected adults were enrolled between June 24th and Nov 9th, 2020; 1010 and 1011 

received at least one dose of placebo or vaccine, respectively. Median age was 31 years. The B.1.351 

variant showed increased resistance to vaccinee sera using the PSVNA and LVNA. In the primary 

endpoint analysis, 23/717 (3.2%) placebo and 19/750 (2.5%) vaccine recipients developed mild-

moderate Covid-19; VE 21.9% (95%Confidence Interval: -49.9; 59.8). Of the primary endpoint cases, 

39/42 (92.9%) were the B.1.351 variant; against which VE was 10.4% (95%CI: -76.8; 54.8) analyzed as 

a secondary objective. The incidence of serious adverse events was balanced between the vaccine 

and placebo groups.  

Conclusions 

A two-dose regimen of ChAdOx1-nCoV19 did not show protection against mild-moderate Covid-19 

due to B.1.351 variant, however, VE against severe Covid-19 is undetermined. 
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Background 

There has been unprecedented speed in developing vaccines for Covid-19, which is caused by the 

severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), since being declared a pandemic by 

World Health Organization (WHO) on March 11, 2020.1-4 ChAdOx1-nCoV19, a replication-deficient 

chimpanzee adenoviral vector containing the SARS-CoV-2 structural surface glycoprotein antigen, is 

one of six COVID-19 vaccines based on different platforms that have been authorized for emergency 

use,5-11 with efficacy results of two further vaccines having recently been reported.12,13 Thus far, 

excluding the South African components of the Novavax12 and Jansen Covid-19 vaccine trials13 and 

the inactivated whole virus vaccines,10 preclinical and most clinical studies assessed protection 

against the prototype SARS-CoV-2 sequence (B.1) or the D614G variant.5,6,8,9   

Recently, the SARS-CoV-2 spike genome has accumulated mutations, including within the receptor 

binding domain (RBD) and N-terminal domains (NTD).14,15 These domains are major targets of the 

antibody response. The RBD mutations include the N501Y mutation which is associated with 

increased affinity for the angiotensin converting enzme-2 (ACE2).16 In contrast, E484K and K417N 

RBD mutations and mutations in the NTD have been associated with neutralizing antibody escape.17 

The B.1.1.7 lineage, first identified in the United Kingdom (UK), includes the N501Y mutation which 

has been associated with 53% increased transmissibly.18 Neutralizing antibody activity elicited by 

infection or mRNA vaccines against the B.1.1.7 variant are largely unaffected.19 The B.1.1.7 variant 

has, however, now evolved to include the E484K mutation in the UK.20 

The B.1.351 (N501Y.V2) lineage first identified in South Africa contains the three RBD mutations and 

five additional NTD mutations.14,15 The sensitivity of B.1.351 to neutralizing antibodies from 

convalescent donors infected with the prototype lineage virus using a spike-pseudotyped 

neutralization (PSVNA) assay demonstrated 48% of sera were unable to neutralize B.1.351, with the 

rest showing 3 to 86 fold reduction in neutralization titres.21 This was corroborated using a live virus 

neutralization assay (LVNA), with reduction in antibody activity ranging from 6-fold to complete 
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knockout for the B.1.351 variant.14 Another independent lineage of SARS-CoV-2 (P.1) also containing 

the E484K, K417N and some B.1.351 NTD mutations has been identified in Brazil.22,23 

An interim pooled analysis of ChAdOx1-nCoV19 efficacy in the UK and Brazil, prior to evolution of 

the B.1.351 and P.1 variants, reported overall vaccine efficacy (VE) of 70.4% (95.8% Confidence 

interval [CI] 54.8; 80.6).8 Recent analysis of ChAdOx1-nCoV19 VE against the B.1.1.7 (N501Y.V1) in 

the UK was 74.6% (95%CI 41.6-88.9).24 

Here, we report on a multi-centred South African phase Ib/II trial evaluating the safety, 

immunogenicity and VE of ChAdOx1-nCoV19 in preventing symptomatic COVID-19. This interim 

analysis is limited to addressing co-primary safety analysis; and primary and key secondary VE 

objectives including efficacy specifically against B.1.351 variant.  Furthermore, we report on 

immunogenicity of ChAdOx1-nCoV19, and post-hoc PSVNA and LVNA investigation of the sensitivity 

of the original D614G virus and the B.1.351 variant to vaccine-elicited antibodies.  

METHODS 

Trial objectives, participants and oversight 

In this randomized, double-blinded, placebo-controlled, multi-site trial conducted in South Africa, we 

assessed the safety and efficacy of two standard doses of ChAdOx1-nCoV19 administered 21-35 days 

apart, compared to saline (0.9% NaCl) placebo. Adults aged 18 to <65 years, with no or well-

controlled chronic medical conditions, were eligible for participation. Key exclusion criteria included 

HIV positivity at screening (for the efficacy cohort), previous or current laboratory-confirmed Covid-

19, history of anaphylaxis in relation to vaccination and morbid obesity (body mass index ≥40kg/m2). 

Detailed inclusion and exclusion criteria are found in Supplementary text 1.1. ChAdOx1-nCoV19 was 

developed at the University of Oxford, who sponsored the trial, with sources of study vaccine supply 

reported in Supplement text 1.2.   

Trial data were available to all authors, who confirm its accuracy and completeness. An independent 

data and safety monitoring committee reviewed efficacy and unblinded safety data. A local trial 
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safety physician reviewed all serious adverse events in real-time. The trial was monitored by an 

external clinical research organization, who ensured adherence to the protocol (appendix 1).   

The trial was reviewed and approved by the South African Health Products Regulatory Authority 

(SAHPRA, ref 20200407), ethics committees of the University of the Witwatersrand (ref 200501), 

Cape Town (ref 350/2020), Stellenbosch (ref M20/06/009_COVID-19) and Oxford (ref 35-20) prior to 

trial initiation and was registered on Clinicaltrials.gov (NCT04444674) and the Pan African Clinical 

Trials registry (PACTR202006922165132). All participants were fully informed about trial procedures 

and possible risks and signed informed consent prior to enrolment.    

Trial procedures 

A cohort of 70 HIV-uninfected individuals were enrolled first (Group-1) for intensive safety and 

immunogenicity monitoring, followed by enrolment of another 1956 HIV-uninfected individuals, all 

(excluding five who were not vaccinated) were included in safety analysis and 1467 for the primary 

efficacy analysis (Fig. 1). Details of study procedures are in the protocol (Appendix 1; pg 68-73). The 

study follow-up is ongoing.   

Trial participants were randomized to receive either 0.33-0.5ml ChAdOx1-nCoV19 (lot dependent) or 

placebo intramuscularly into the deltoid muscle of the non-dominant arm on day of randomization 

and a booster 21-35 days later. Participants were observed for 30 minutes post vaccination for acute 

reactions. Study-injection preparation and vaccination were done by unblinded site staff who were 

not involved in any other study procedures. Trial participants and all other study staff remain 

blinded to treatment group.  

Safety 

The safety analysis evaluated occurrence of solicited local and systemic reactogenicity within 7 days 

following vaccination, unsolicited adverse events for 28 days following vaccination, changes in 

baseline safety laboratory measures (Group-1 only) and serious adverse events. Further details of 
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evaluating for safety and reactogenicity are detailed in Supplementary Text 1.3. Adverse event data 

reported up until January 15th, 2021 are included in this report.  

SARS-CoV-2 testing, whole genome sequencing and genome assembly 

Testing for SARS-CoV-2 infection using a nucleic acid amplification test (NAAT) included sampling at 

routine scheduled visits detailed in the protocol (Appendix 1; pages 68-73); as well as when 

participants presented with any symptoms suggestive of Covid-19. Participants were advised at time 

of randomization as to which clinical symptoms suggestive of Covid-19 should trigger them to 

present to be investigated for SARS-CoV-2 infection (Table S1). Also, short message service was sent 

every two weeks as a reminder to present for investigation if symptomatic. Details of NAAT, whole 

genome sequencing and phylogenetic analysis are described in Supplementary Text 1.4.  

Neutralization assays 

SARS-CoV-2 serostatus at randomization was evaluated using an IgG assay to the nucleoprotein (N) 

as described.8  For antibody neutralization studies, PSVA (methods in Supplementary 1.5) to 

prototype virus was performed on serum samples obtained two weeks after the 2nd dose of vaccine 

in 107 randomly selected ChAdOx1-nCoV19 recipients who were seronegative for IgG N-protein at 

enrolment. In addition, we present post-hoc data on the comparative pseudoneutralization for 

vaccine recipients enrolled in the Brazil (n=226) and UK (n=326) ChAdOx1-nCoV19 studies.  

To assess neutralization activity of vaccine-elicited antibodies against B.1.351, 25 serum samples 

from Group-1 participants who tested seronegative at enrolment but showed varying neutralizing 

antibody titers at 14 days post 2nd dose of injection were assayed using PSVNA and LVNA before 

unblinding of study arm allocation.14,21 The PSVNA tested neutralization activity against the original 

D614G spike, a RBD triple mutant (containing only K417N, E484K, N501Y) and the B.1.351 spike. Live 

virus neutralization assay was performed by a microneutralization focus forming assay in Vero E6 

cells. Details of the PSVA and LVNA has been published and are briefly described online; 

Supplementary Text 1.5.14,21  
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Efficacy objectives 

Covid-19 cases were evaluated by at least two physicians who were independent of the study and 

masked to study-arm assignment, discordant assessments were evaluated by a third adjudicator. 

Grading of severity was based on a pre-specified scoring system; Supplementary Table S1 and S2.  

The primary endpoint was efficacy against NAAT-confirmed symptomatic Covid-19 occurring more 

than 14 days after the 2nd injection in participants who were seronegative at randomization. VE 

against B.1.351 lineage was a pre-specified secondary objective.  

Other secondary efficacy objectives included VE against Covid-19 for the overall population 

(inclusive of seropositive participants at randomization), VE specific to baseline seropositive group, 

and VE against Covid-19 occurring >14 or >21 days after the first dose. Further details of secondary 

VE analyses are included in Appendix 1 (pg: 41-48). Furthermore, a post-hoc analysis was done for 

the overall and seronegative population, to evaluate VE occurring >14 days after the first injection 

with endpoint cases restricted until 31st October 2020 as a proxy for non-B.1.351 variant Covid-19. 

The B.1.351 variant only started to be identified in the areas where the study sites (Johannesburg 

and Tshwane in Gauteng, and Cape Metro in Western Cape Province) were based from mid-

November 2020 onward; Supplementary Figure S1.15    

Statistical analysis 

Participants who received at least one dose of ChAdOx1 nCoV-19or placebo and returned diary cards 

completed until day 7 post first vaccination were included in the safety reactogenicity analysis. The 

occurrence of each solicited local- and systemic reactogenicity sign and symptom for 7 days 

following vaccination, adverse events, and SAEs up to January 15, 2021 are presented stratified by 

arm.   

For the primary efficacy analyses, only per-protocol seronegative participants were included.  VE was 

calculated as 1- the relative risk and 95% CI were calculated using the Clopper-Pearson exact method 
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are reported. A sensitivity analysis was conducted which includes modified intention-to-treat, 

seronegative participants irrespective of whether they received the vaccine or placebo.   

RESULTS 

 

Participants 

We screened 3,022 individuals across seven sites, of whom 2,026 HIV-uninfected individuals were 

enrolled from June 24th through to November 9th, 2020. The initiation of enrolment coincided with 

the peak of the first Covid-19 wave in South Africa; Supplementary Figure S2.  Overall, 1,010 

participants received vaccine and 1,011 received placebo (Fig. 1). There were 1,467 (750 vaccinees 

and 717 placebo) Covid-19- naïve participants eligible for the primary VE analysis, reason for 

exclusion indicated in Figure 1.  

 The median age was Figure 131 years, 56.5% identified as male gender, and the racial distribution 

included 70.5% black-Africans, 12.8% whites and 14.9% identifying as “mixed” race. Nineteen 

percent of enrolees were obese (BMI≥30-40 kg/m2), 42.0% were smokers, 2.8% had underlying 

hypertension and 3.1% had chronic respiratory conditions. The median duration between doses was 

28 days; and the median duration of follow-up from enrolment and from 14 days after the second 

dose of injection were 156 and 121 days, respectively (as of January 15th, 2021).  Demographics of 

the baseline seronegative population was like the overall population; Table 1.    

Safety 

Local and systemic reactogenicity data are presented in Supplementary Figures S3 and S4 and 

summarised in Supplementary Text 1.6.  Adverse event and serious adverse event rates were similar 

amongst vaccine and placebo recipients; Supplementary Table S3 and S4. The only serious adverse 

event attributed to ChAdOx1-nCoV19 was a participant with temperature of >40oC after the 1st dose 

which subsided within 24 hours, and in whom no reactogenicity was observed after the 2nd dose. All 

other events were considered unrelated or unlikely to be related to injection received.  

Immunogenicity 
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Pseudotyped and live virus neutralization assays  

Humoral response to ChAdOx1-nCoV19 induced strong neutralising antibodies at 28 days after the 

first dose, which rose further after a second dose. The responses in ChAdOx1-nCoV19 recipients in 

our study was similar those from the UK and Brazil studies (Fig. 2a). 

On PSVNA testing, 9 (47%) out of the 19 seronegative vaccinees showed no neutralization activity 

against an RBD triple-mutant pseudovirus (containing K417N, E484K and N501Y), and 15/19 (79%) 

had no neutralization activity against B.1.351 pseudovirus (Fig. 2b). Vaccinees with NAAT-confirmed 

illness (prior to emergence of B.1.351) showed similar results to those with no NAAT confirmed 

illness (Fig. 2b). Samples from the SARS-CoV-2 infected placebo recipients showed similar reduction 

in neutralizing activity, with residual titers of <100 (or knockout) against the RBD triple-mutant and 

B.1.351 (Fig. 2b).  

LVNA showed lower neutralization overall relative to PSVNA (Fig. 2c). Of 19 seronegative vaccinees, 

one had undetectable neutralization response to B.1.1 and B.1.351. Of the 18 participants with 

neutralization activity against B.1.1, 10 (56%) had undetectable neutralization activity against the 

B.1.351 variant, and the remaining eight showed a 2.5 to 31.5-fold relative reduction in 

neutralization (Fig. 2c). As with PSVNA, six vaccinees with NAAT-confirmed illness prior to 

emergence of B.1.351 showed similar results to those with no NAAT confirmed illness (Fig. 2c, light 

grey points). Of the 10 vaccinees with complete resistance in the LVNA, all showed complete 

resistance in the PSVNA. Among the six recently SARS-CoV-2 infected placebo-recipients, all 

demonstrated detectable neutralization of the B.1.1 variant, whereas neutralization activity against 

the B.1.351 variant was completely knocked out in two cases, there was 6.0-to-9.5 fold reduction in 

three cases and no change in one case (Fig. 2c).   

Given the potential importance of T cells in protection from severe disease,25 we include 

unpublished data on a subset of 17 ChAdOx1-nCoV-19 recipients from the UK who were evaluated 

using TCRB sequencing for expansion of Spike specific T cells; detailed in Supplementary Text 1.8. 

ChAdOx1-nCoV19 resulted in expansion of both CD4+ and CD8+ specific antigens. Of 87 spike specific 
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antigens identified by T-cell receptor variable beta chain sequencing, 75 remain unaffected by 

B.1.351 mutations.  Of note, the D215G mutation found within B.1.351 is within a region which had 

prevalent T cell antigen responses (Supplementary Figure 7). 

Vaccine efficacy 

All forty-two endpoint cases were graded either as mild (vaccinees=15; placebo-recipients=17) or 

moderate (vaccinees=4; placebo-recipients=6) with no cases of severe disease or hospitalisation in 

either arm. The incidence (per 1000 person-years) of Covid-19 more than 14 days after the 2nd dose 

among seronegative participants, and subsequent NAAT confirmed infection through to 14 days post 

second injection, was 93.6 and 73.1 in placebo and vaccine recipients, respectively; VE: 21.9% 

(95%CI: -49.9; 59.8); Table 2. Similarly, inclusive of participants that were seropositive but had a non-

reactive PCR before or at randomization, the incidence (per 1000 person-years) of Covid-19 >14 days 

post 2nd injection did not differ between placebo (81.9) and vaccine (73.2) recipients; VE: 10.6%; 

95%CI:-66.4 to 52.2); Supplementary Table S5. 

Forty-one (97.6%) of the 42 samples of the primary endpoint cases were successfully sequenced and 

classified, of which 39 (95.1%) were B.1.351 and 4.9% (n=2; all in the placebo arm) were the B.1.1.1 

and B.1.144 lineages; Supplementary Figure S6. Further detail of phylogenetic characterization is 

detailed n Supplementary text 1.7. In a secondary outcome analysis, efficacy against B.1.351 was 

also not evident (VE:10.4%; 95%CI: -76.8 to 54.8); Table 2.  

Detailed analyses of other secondary and exploratory VE estimates are detailed in Supplementary 

Table S5. Overall VE for all severity Covid-19 at >14 days post-primary dose was 33.5%; 95%CI: -13.4 

to 61.7. Also presented in Supplementary Table S5 are VE for any symptomatic or asymptomatic 

illness SARS-CoV-2 infection post-primary and post-booster injections, with VE estimates being non-

significant and similar to corresponding Covid-19 disease endpoint VE.  

In a post-hoc analysis, VE at least 14 days after a single dose of injection with outcomes cases limited 

until 31st October 2020, as a proxy for infection by non-B.1.351 variant (Supplementary Figure S1) 
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15,26, the overall attack rate of mild-moderate (no sever cases) Covid-19 at least 14 days after the first 

injection was 1.3% and 0.3% in placebo and vaccine recipients, respectively; VE 75.4% (95%CI: 8.7; 

95.5); Supplementary Table S6. Similar VE point estimates were observed for other post-hoc VE 

analyses for endpoints occurring until 31st October 2020.  

DISCUSSION 

In this study, we find 2 doses of ChAdOx1-nCoV had no efficacy against non-hospitalized mild to 

moderate Covid-19 mainly due to the B.1.351 variant. The lack of efficacy being specific to the 

B.1.351 variant, is supported by the 75% efficacy (95%CI: 8.7; 95.5) observed in our study for Covid-

19 occurring at least 14 days after even a single dose of ChAdOx1-nCov19 prior to the B.1.351 

variant circulating in South Africa.  

Furthermore, the PSVNA and LVNA experiments provide additional evidence of reduced or 

abrogated vaccine-induced antibody neutralization against the B.1.351 variant. Although the degree 

of attenuation which compromises an effective neutralizing antibody response is unknown, the 

highest degree of neutralization achieved in a vaccinated participant against B.1.351 using the LVNA 

was a 1:20 dilution, and highest remaining titer against B.1.351 was <1:200 on the PSVNA. 

Comparison of the RBD triple mutant (K417N, E484K, N501Y) and B.1.351 in the PSVNA assay 

suggests that much, though not all, of the vaccine-elicited neutralization is directed to RBD.                  

Similar loss of neutralizing activity of antibody induced following natural infection after the first 

wave of the Covid-19 outbreak against the B.1.351 variant have been recently reported.14,17 

The extent that effectiveness of other Covid-19 vaccines may be affected by variants with B.1.351 

(and P.1) like variants, could depend on the magnitude of neutralizing antibody induced by 

vaccination. The immunogenicity evaluation of different Covid-19 vaccines has not used a 

standardized assay or benchmarked against the available WHO International standard. Nevertheless, 

differences in fold-change between antibody concentrations post 1st-dose and subsequent further 

fold-increase following a booster dose does suggest heterogeneity in vaccine immunogenicity.5-7,9 

The mRNA Covid-19 vaccines, although having modest neutralizing antibody after the first dose, 
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have higher fold increase after the second dose than ChAdOx1-nCoV19 and heterologous Sputnik V 

(adenovirus-26 followed by adenovirus-5 vector Covid-19 vaccines)5,6,9.  For the Moderna and Pfizer 

mRNA vaccines relative to activity against the D614G variant, 8.6 and 6.5 fold respective reduction in 

neutralization on PSVNA were observed against the B.1.351 variant, whilst no difference was evident 

against the N510Y.V1 (B.1.1.7)-like mutant.19,27  

Recent interim analysis of the Novavax nano-particle spike protein Covid-19 vaccine also indicate 

that there may be reduced effectiveness of other Covid-19 vaccines against the B.1.351 variant.12 

The Novavax study in South Africa included analyses for a similar spectrum of illness severity as in 

our study. Interim results of the Novavax Covid-19 vaccine in HIV-uninfected individuals in South 

Africa and the general UK population reported VE of 60% (95%CI: 20; 80; in) and 89% (95%CI:75; 95), 

respectively against all-severity Covid-19 (also mainly mild and moderate illness). More than 90% of 

the sequenced samples for primary endpoint cases in South Africa were due to the B.1.351 variant, 

and 57% (32/56) of the UK cases were due to the B.1.1.7 (without the E484 mutation)12; suggesting 

differences in efficacy to B.1.351 and variants without the B.1351 RBD and NTD mutations.  In the 

absence of an established correlates of protection against Covid-19 due to the prototype or B.1.351-

like variants, clinical evidence is warranted on the effectiveness of other Covid-19 vaccines against 

mild-moderate Covid-19 illness.  

Another recent multi-national study inclusive of South Africa, evaluated efficacy of a single dose of 

the Janssen non-replicating adenovirus type 26 vaccine (Ad26-vaccine). Interim results from the 

South African arm reported VE of 54% against moderate-severe and 85% against severe Covid-19 

mainly due to B.1.351 variant.13 The Ad26-vaccine study, however, only submitted NAAT confirmed 

cases that had at least three symptoms for endpoint adjudication28 and consequently the VE 

analyses likely excludes the majority of mild Covid-19 in the study. Notably,  the immunogenicity of 

Ad26-vaccine is similar to that of ChAdOx1-nCoV19 following the first dose and after the second 

dose.13,29  The neutralizing antibody response induced by the Ad26-vaccine against the B.1.351 

variant has not yet been reported on.  
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While there is high correlation between antibody response and VE, suggesting that the neutralizing 

antibody response is important, it has been reported that T cell responses may contribute to 

protection from COVID-19 pathophysiology even in the presence of suboptimal neutralizing antibody 

titers.30 In a post hoc inclusion in this manuscript, we report on T-helper immune responses induced 

by ChAdOx1-nCoV19 among vaccine recipients from the UK. In the Spike-Specific T cells that 

expanded following ChAdOx1-nCoV19 vaccination, the majority of antigens and epitopes remained 

intact to the B.1.351 variant. Hence, we speculate that extrapolating from comparable 

immunogenicity of ChAdOx1-nCoV19 and Ad26-vaccine, the high efficacy (85%) of the Ad26-vaccine 

against mainly B.1.351 variant severe Covid-19 may be due to vaccine induced T-helper lymphocyte 

cell responses that remain largely unaffected by mutations in the B.1.351 variant.   

Although efforts are underway for a second generation of Covid-19 vaccines targeted against 

B.1.351 and P1 like variants, the only Covid-19 vaccines likely to be available for most of 2021 have 

been formulated against the prototype SARS-CoV-2. ChAdOx1- nCoV19 is likely to be one of the most 

accessible of all currently authorized Covid-19 vaccines,31,32 with expected manufacture of ~3 billion 

doses during 2021 and being the least costly.33 Escape from human neutralizing antibody responses 

is expected to be a feature of the pandemic coronavirus in the years ahead as a result of pressure on 

the virus to select for variants that can still transmit despite immunity from natural infection or 

vaccination and cause mild infection. For this reason, the results reported here are expected. 

Nevertheless, considering the similar technology used to produce ChAdOx1 nCoV-19 and Ad26-

vaccine, their comparable immunogenicity, and the high efficacy of Ad26 against severe Covid-19 

mainly by B.1.351 variant in South Africa, speculatively ChAdOx1-nCoV19 may still protect against 

severe Covid-19. Deliberations on the utility of ChAdOx1 nCoV-19 also needs to be considered in the 

context of ongoing global spread and community transmission of the B.1.351 variant,34 and 

evolution of other SARS-CoV-2 lineages that include similar mutations.  
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Table 1: Baseline demographic and other characteristic of overall study population contributing to the 

safety analysis, and population contributing to the primary efficacy endpoint analysis. 

 

Variable       Overall safety study populationa 

Seronegative efficacy study 

populationb 

 Total Placebo Vaccine Total Placebo  Vaccine 

N enrolled 2021 1010 1011 1467 717 750 

Male n (%) 1142 (56.5) 568 (56.2) 574 (56.8) 838 (57.1) 397 (55.4) 441 (58.8) 

Median Age in years 

(IQR) 
30 (24-40) 30 (24-39) 31 (24-40) 31 (24-41) 31 (24-41) 31 (24-41) 

Age in years; n (%)        

  18-<45 1695 (83.9) 852 (84.4) 843 (83.4) 1206 (82.2) 593 (82.7) 613 (81.7) 

  45-<60 283 (14) 133 (13.2) 150 (14.8) 223 (15.2) 102 (14.2) 121 (16.1) 

  >=60   43 (2.1)   25 (2.5) 18 (1.8)    38 (2.6)    22 (3.1)  16 (2.1) 

BMI; n (%)c       

0-<18.5 151 (7.5) 68 (6.7) 83 (8.2) 119 (8.1)  50 (7)  69 (9.2) 

18.5 - <25 1021 (50.6) 521 (51.6) 500 (49.6) 752 (51.4) 371 (51.7) 381 (51.0) 

25 - <30 456 (22.6) 221 (21.9) 235 (23.3) 330 (22.5) 156 (21.8) 174 (23.3) 

>=30 390 (19.3) 200 (19.8) 190 (18.8) 263 (18.0) 140 (19.5) 123 (16.5) 

Smoker; n (%) 849 (42) 415 (41.1) 434 (42.9) 644 (43.9) 304 (42.4) 340 (45.3) 

Alcohol; n (%) 990 (49) 501 (49.6) 489 (48.4) 729 (49.7) 365 (50.9) 364 (48.5) 

Health worker; n (%)  167 (8.3)   88 (8.7) 79 (7.8) 144 (9.8)   80 (11.2)   64 (8.5) 

Race; n (%)       

Black African; n (%) 1421 (70.5) 708 (70.) 713 (70.6) 949 (64.9) 453 (63.4) 496 (66.2) 

Mixed 300 (14.9) 149 (14.8)  151 (15) 251 (17.2) 128 (17.9) 123 (16.4) 

White 259 (12.8) 132 (13.1) 127 (12.6) 231 (15.8) 119 (16.7) 112 (15.0) 

Other   37 (1.8)   18 (1.8)   19 (1.9)   32 (2.2)    14 (2.0)    18 (24) 

Hypertension; n (%)   56 (2.8)   25 (2.5)   31 (3.1)   42 (2.9)    20 (2.8)    22 (2.9) 
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aInclusive of all participants who received at least one dose of vaccine or placebo and irrespective of 

baseline sero-status suggestive of past SARS-CoV-2 infection or NAAT positivity within 96 hours and 

on day of randomization. Excluding five participants whom were randomized to treatment arm and 

never received a placebo or vaccine  

b Population included in vaccine efficacy analysis for the primary objective, who had a non-reactive 

NAAT within 96 hours and on day of randomization, and tested negative for SARS-CoV-2 N-protein 

IgG.  

cBMI= Body Mass Index in kilograms per square meter.  

IQR=Inter-quartile range 

 

 

 

 

Respiratory system; 

n (%) 
 62 (3.1)   26 (2.6)   35 (3.6)    53 (3.6)    22 (3.1)    31 (4.1) 

Diabetes; n (%)   9 (27.3)    5 (23.8)     4 (36.4)      5 (19.2)      3 (17.6)      2 (22.2) 

Median days 

between doses; 

(IQR) 

28 (28-32) 28 (28-32) 28 (28-32) 28 (28-32) 28 (28-32) 28 (28-32) 

Median days of 

follow-up from 

randomization (IQR) 

156  

(140-171) 

156  

(140-171) 

156  

(140-171) 

161  

(143-172) 

160  

(142-172) 

161  

(143-174) 

Median days of 2nd 

injection  (IQR) 

121  

(114-143) 

121  

(114-142) 

121  

(114-143) 

122  

(114-143) 

122  

(114-142) 

128  

(114-143) 

Per person days of 

follow-up from 

randomization 

290394 143962 146432 229129 111471 117658 

Per person days of 

follow-up from 2nd 

injection  

228506 113063 115443 184595 89714 94881 
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Table 2: Vaccine efficacy against symptomatic Covid-19   

  

Baseline  

serologya 

Total 

number 

of 

cases 

Placebo 

n/N (%) 

IRb per 1000 

person-

years 

(person-

days) 

Vaccine 

n/N (%) 

IR per 1000 

person-years 

(person-

days) 

Vaccine efficacy 

(95%Confidence 

Interval) 

 

Primary outcome: All severity COVID-19 illness >14 days post-boost 

Sero-

negative 42c 

23/717 

(3.2) 93.6 (89714) 

19/750 

(2.5) 73.1 (94881) 21.9% (-49.9 to 59.8) 

 

Secondary objective: All severity B1.135 variant COVID-19 illness >14 days post-boost 

Sero-

negative 39 

20/714 

(2.8) 

81.6 

 (89448) 

19/750 

(2.5) 73.1 (94881) 10.4% (-76.8; 54.8) 

 

Secondary objective: All severity COVID-19 clinical disease >14 days post-boost 

 Any 46 

24/865 

(2.8) 

81.9 

(106898) 

22/884 

(2.5) 73.2 (109659) 10.6% (-66.4 to 52.2) 

 

Post hoc: All severity Covid-19 disease (occurring >14 days after one dose until 31 October 2020 (proxy 

for non-B.1351 variant infection  

Overall 

15 

12/938 

(1.3) 

31.1 

(140774) 3/944 (0.3) 7.6 (143140) 75.4% (8.9 to 95.5) 

a Sero-status evaluated using an assay to detect IgG to SARS-CoV-2 Nucleoprotein on serum 

obtained on day of 1st injection.  

bIR= Incidence risk. 

cCase severity distribution was 32 mild (17 in placebo and 15 in vaccinees), 10 moderate (6 in 

placebo and 4 in vaccinees). There were no severe cases within this analysis. 
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Figure 2a: Pseuduoneutralization assay to original SARS-CoV-2 virus in ChAdOx1 nCoV-19 (AZD1222) recipients from the United Kingdom, Brazil and South 

Africa; Fig 2b: Pseduneutralization assay to original, triple recpetor-binding domain and B.1.351 variant; Fig 2c Live virus neutralization virus assay against original 

and B.1351 SARS-CoV-2. 

 

Legend to Fig 2a: Vaccine serum from baseline seronegative 18-64 year old AZD1222  vaccinees receiving two standard doses in the United Kingdom (n=326), 

Brazil (n=226), and South Africa (n=107) were evaluated in a validated pseudoneutralisation assay at baseline, 28 days after first dose and 28 days after second 

dose. Boxes show median (IQR). Note: The AZD1222-recipients included in the analysis were randomly seleceted partcipants from the efficay trial, who 

contributed to the pooled vaccine efficacy results reported from those studies.1 
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Legend Fig 2b: Pseudovirus neutralization assay (PSVNA). Serum samples collected from AZD1222 

vaccinees (n=19, Top panel) with six who had  NAAT confirmed illness colored in light gray; and 

placebo recipients who had natural-infection induced antibody (n=6, bottom panel) assessed using 

PSVNA against the original SARS-CoV-2 D614G lineage (left), an RBD-only chimeric virus containing 

the K417N, E484K, and N501Y substitutions (middle) and the B1.351 lineage virus (right). Colored 

background indicates dilutional titre, where titers greater than 1:400 are colored dark blue, 25-400 in 

light blue, and titers <1:50 are colored red. Pie charts above each line graph summarize the 

proportion of viruses by dilutional titer.  

Legend Fig 2c:  Live virus neutralization assay (LVNA). Neutralization by plasma of vaccinated 

participants (n=19, top panel, including with NAAT confirmed illness (n=6)) and placebo recipients 

who had natural-infection induced antibody (n=6, bottom panel) of B.1.1 and B.1.351 variants. 

Participants were as for the PSVNA assay.  Points are reciprocal 50% inhibitory dilution (1/ID50) per 

participant. Participants with NAAT confirmed illness are shaded in grey and participants with no 

detectable neutralization (defined as 1/ID50<1) shaded in red. 
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Figure 3: Kaplan-Meyer plot of ChAdOx-1 nCoV19 against all-severity symptomatic Covid-19 illness 

following two doses versus placebo.     
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