1	TITLE PAGE	
2		
3	Full-length title:	
4	Implementation of an in-house real-time reverse transcription-PCR assay for the rapid	
5	detection of the SARS-CoV-2 Marseille-4 variant	
6		
7	hort title (for the running head): qPCR for the SARS-CoV-2 Marseille-4 variant	
8		
9	Author list: Marielle BEDOTTO ¹ , Pierre-Edouard FOURNIER ^{1,2} , Linda HOUHAMDI ¹ ,	
10	Anthony LEVASSEUR ^{1,2} , Jeremy DELERCE ¹ , Lucile PINAULT ¹ , Abdou PADANE ³ ,	
11	Amanda CHAMIEH ^{2,4} , Hervé TISSOT-DUPONT ¹ , Philippe BROUQUI ^{1,2} , Cheikh	
12	SOKHNA ^{5,6} , Eid AZAR ⁴ , Rachid SAILE ⁷ , Souleymane MBOUP ³ , Idir BITAM ⁸ ,	
13	Philippe COLSON ^{1,2} , Didier RAOULT ^{1,2} *	
14	Affiliations: ¹ IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille,	
15	France; ² Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD),	
16	Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and	
17	Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; ³ Institut de	
18	Recherche en Santé, de Surveillance Épidémiologique et de Formations (IRESSEF),	
19	arrondissement 4 rue 2D1, pôle urbain de Diamniadio, Dakar, Sénegal; ⁴ Saint George	
20	Hospital University Medical Center, University of Balamand, Beirut, Lebanon; ⁵ Vecteurs -	
21	Infections Tropicales et Méditerranéennes (VITROME), Campus International IRD-UCAD de	
22	l'IRD, Dakar, Senegal; ⁶ Aix-Marseille Univ., Institut de Recherche pour le Développement	
23	(IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Vecteurs - Infections	
24	Tropicales et Méditerranéennes (VITROME), 27 boulevard Jean Moulin, 13005 Marseille,	
25	France; ⁷ Hassan II University of Casablanca, Morocco; ⁸ Ecole supérieure en sciences de	

- 26 l'aliment et des industries agro-alimentaires, Alger, Algeria.
- 27 * Corresponding author: Didier RAOULT, IHU Méditerranée Infection, 19-21 boulevard
- 28 Jean Moulin, 13005 Marseille, France. Tel.: +33 413 732 401, Fax: +33 413 732 402; email:
- 29 didier.raoult@gmail.com
- 30
- 31 Keywords (5): SARS-CoV-2; Covid-19; variant; Marseille-4; qPCR; diagnosis; molecular
- 32 epidemiology
- 33 Word counts: abstract: 243; text: 1,000
- 34 **Figures:** 2; **Table:** 1; **References:** 11.
- 35
- 36

37	ABSTRACT
38	
39	Introduction. The SARS-CoV-2 pandemic has been associated with the occurrence since
40	summer 2020 of several viral variants that overlapped or succeeded each other in time. Those
41	of current concern harbor mutations within the spike receptor binding domain (RBD) that may
42	be associated with viral escape to immune responses. In our geographical area a viral variant
43	we named Marseille-4 harbors a S477N substitution in this RBD.
44	Materials and methods. We aimed to implement an in-house one-step real-time reverse
45	transcription-PCR (qPCR) assay with a hydrolysis probe that specifically detects the SARS-
46	CoV-2 Marseille-4 variant.
47	Results. All 6 cDNA samples from Marseille-4 variant strains identified in our institute by
48	genome next-generation sequencing (NGS) tested positive using our Marseille-4 specific
49	qPCR, whereas all 32 cDNA samples from other variants tested negative. In addition, 39/42
50	(93%) respiratory samples identified by NGS as containing a Marseille-4 variant strain and
51	0/26 samples identified as containing non-Marseille-4 variant strains were positive. Finally,
52	1,585/2,889 patients SARS-CoV-2-diagnosed in our institute, 10/277 (3.6%) respiratory
53	samples collected in Algeria, and none of 207 respiratory samples collected in Senegal,
54	Morocco, or Lebanon tested positive using our Marseille-4 specific qPCR.
55	Discussion. Our in-house qPCR system was found reliable to detect specifically the
56	Marseille-4 variant and allowed estimating it is involved in more than half of our SARS-CoV-
57	2 diagnoses since December 2020. Such approach allows the real-time surveillance of SARS-
58	CoV-2 variants, which is warranted to monitor and assess their epidemiological and clinical
59	characterics based on comprehensive sets of data.
60	

61	TEXT
62	
63	1. Introduction
64	Since the onset of the SARS-CoV-2 pandemic in December 2019 in China, almost 100
65	million cases have been reported worldwide as on January 28th, 2021
66	(https://www.ecdc.europa.eu/en/covid-19-pandemic). This has been associated with the
67	occurrence since summer 2020 of several viral variants that overlapped or succeeded each
68	other in time [1-3]. Those of current concern harbor mutations within the spike glycoprotein,
69	particularly within the spike receptor binding domain (RBD) that leads to viral entry into host
70	cells by binding to the ACE2 receptor (Figure 1) [4]. Such SARS-CoV-2 variants include the
71	20I/501Y.V1 [3], 20H/501Y.V2 [5], and 20J/501Y.V3 [6] strains that harbor a N501Y
72	substitution in the spike RBD and were reported in the UK and in South Africa, as highly
73	transmissible, and in Brazil, respectively. In our geographical area we detected 10 viral
74	variants since June 2020 [1]. One of them, we named Marseille-4, harbors a S477N
75	substitution in the spike RBD that has been associated with an improved binding affinity to
76	ACE2 [6] and a broad resistance to monoclonal neutralizing antibodies [7]. It predominates in
77	Marseille since August 2020, has been reported to spread in Europe since early summer and
78	was classified as the Nextstrain 20A.EU2 lineage [1, 2]. The continuous emergence of new
79	SARS-CoV-2 variants, including some of substantial concern regarding their transmissibility
80	and their possible ability to evade immune responses [8-10], warrants to set up strategies for
81	their detection and surveillance. SARS-CoV-2 incidence is currently substantial in several
82	countries including France, and in our institute we for instance diagnose >100 new cases
83	daily. Therefore, alternative strategies to sequencing are useful for variant screening. We
84	aimed to implement an in-house one-step real-time reverse transcription-PCR (qPCR) assay
85	that specifically detects the SARS-CoV-2 Marseille-4 variant.

86 2. Material and methods

87	SARS-CoV-2 genomes from our institute sequence database and from the GISAID
88	database (https://www.gisaid.org/) were used to design a primer pair and a hydrolysis probe.
89	These sequences target a fragment of the nsp4 gene that contains nucleotide position 9,526 of
90	the viral genome [in reference to genome GenBank Accession no. NC_045512.2 (Wuhan-Hu-
91	1 isolate)] where is located a hallmark mutation G>U of the SARS-CoV-2 Marseille-4
92	variant. The sequences of the qPCR primers and probe are shown in Table 1. The qPCR was
93	performed by adding 5 μ L of extracted viral RNA to 15 μ L of reaction mixture containing 5
94	μ L of 4X TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher Scientific, Grand Island,
95	NY, USA), 0.5 μ L of forward primer (10 pmol/ μ L), 0.5 μ L of reverse primer (10 pmol/ μ L),
96	0.4 μL of probe (10 pmol/ μL), and 8.6 μL of water. PCR conditions were as follows: reverse
97	transcription at 50°C for 10 min, then a hold at 95°C for 20 sec followed by 40 cycles
98	comprising a denaturation step at 95°C for 15 sec and a hybridization-elongation step at 60°C
99	for 60 sec. This qPCR was run on a LC480 thermocycler (Roche Diagnostics, Mannheim,
100	Germany).
101	
102	3. Results
103	Firstly, we tested a panel of 38 cDNA samples from each of the 10 variants named
104	Marsaille 1 to Marsaille 10 that we identified by genome next generation sequencing (NGS)

104 Marseille-1 to Marseille-10 that we identified by genome next-generation sequencing (NGS)

and circulated since summer 2020 in our geographical area (6 from Marseille-4 strains, 5 from

106 Marseille-5 strains, 5 from Marseille-3 strains, 4 from Marseille-1 strains, and 3 from strains

107 classified in each of the variants Marseille-2, Marseille-6, Marseille-7, Marseille-8, Marseille-

- 108 9, and Marseille-10) [1]. All 6 Marseille-4 samples tested positive whereas all 32 samples
- 109 from other variants tested negative. Secondly, we tested 42 samples identified in our institute
- 110 by genome NGS [1] as being from patients infected with a SARS-CoV-2 Marseille-4 variant:

111	39 of them (93%) were positive using our Marseille-4 specific qPCR. Thirdly, we tested 26
112	samples identified by next-generation genome sequencing as containing SARS-CoV-2 strains
113	that were not Marseille-4 variants (including 17 N501Y variants, 5 Marseille-2 variants, 3
114	clade 20A strains and 1 clade 20C strain): none of them were positive using our Marseille-4
115	specific qPCR. Positive and negative predictive values of Marseille-4 detection by our qPCR
116	were 100% and 90%, respectively. Finally, we tested with our Marseille-4 specific qPCR the
117	respiratory samples from 2,889 patients SARS-CoV-2-diagnosed in our institute. None of 22
118	patients' samples collected in June, 20 (5.6%) of 357 patients' samples collected in July, and
119	1,565 (53%) of 2,954 patients' samples collected in December and January tested positive
120	(Figure 2). These results are congruent with those obtained based on genome NGS that
121	showed that the Marseille-4 variant emerged in our geographical area in July and has been
122	predominant since August 2020 [1]. In addition, we found that 10 (3.6%) of 277 respiratory
123	samples collected in Algeria in September-October tested positive using our Marseille-4
124	specific qPCR, while none of 94 respiratory samples collected in Senegal in September-
125	October, of 94 samples collected in Morocco in November 2020, and of 19 samples collected
126	in Lebanon in October 2020, tested positive.

127

128 **4. Discussion**

Our in-house qPCR system was found reliable to detect specifically the Marseille-4 variant and allowed estimating it is involved in more than half of our SARS-CoV-2 diagnoses since December 2020. This assay is currently routinely used in our clinical microbiology and virology laboratory to screen systematically all samples found SARS-CoV-2-positive using the first-line qPCR diagnosis assay, which allows the real-time classification of viral strains in more than half of the diagnoses (Figure 2). In case of negativity of this Marseille-4 specific qPCR, samples are tested using alternative qPCR assays that are specific to other variants that

|--|

- 137 generation sequencing in case of cycle threshold value (Ct) <18 with the SARS-CoV-2 qPCR
- 138 diagnosis test [1, 11]. Such approach based on qPCR assays targeting specifically SARS-
- 139 CoV-2 variants allows their real-time surveillance, which is warranted to monitor and assess
- 140 their epidemiological and clinical characterics based on comprehensive sets of data. In
- 141 addition, in-house qPCR assays can be implemented rapidly, easily and at low cost on various
- 142 open qPCR microplate platforms, which may allow adapting continuously the diagnosis
- strategies to the emergence and dynamics of SARS-CoV-2 variants.
- 144
- 145

146 **Credit authorship contribution statement**

- 147 Conceived and designed the experiments: DR, PC. Contributed materials/analysis tools: MB,
- 148 PEF, LH, AL, JD, LP, AP, AC, HTD, PB, CS, EA, RS, SM, IB, PC. Analyzed the data: MB,
- 149 PC, PEF, DR. Wrote the paper: PC, MB, DR.
- 150

151 Funding

- 152 This work was supported by the French Government under the "Investments for the Future"
- 153 program managed by the National Agency for Research (ANR), Méditerranée-Infection 10-
- 154 IAHU-03 and was also supported by Région Provence Alpes Côte d'Azur and European
- 155 funding FEDER PRIMMI (Fonds Européen de Développement Régional-Plateformes de
- 156 Recherche et d'Innovation Mutualisées Méditerranée Infection), FEDER PA 0000320

157 PRIMMI.

158

Declaration of Competing Interest

160 The authors have no conflicts of interest to declare. Funding sources had no role in the design

- 161 and conduct of the study; collection, management, analysis, and interpretation of the data; and
- 162 preparation, review, or approval of the manuscript.
- 163
- 164 Ethics
- 165 This study has been approved by the ethics committee of the University Hospital Institute
- 166 Méditerranée Infection, Marseille, France, with the registration number 2020-029.

167

168 Acknowledgments

- 169 This manuscript text has been edited by a native English speaker.
- 170

171 References

- P.E. Fournier, P. Colson, A. Levasseur, et al. Emergence and outcome of the SARSCoV-2 "Marseille-4" variant. IHU Pre-prints (2021) doi: https://doi.org/10.35081/xcrm6t77.
- E.B. Hodcroft, M. Zuber, S. Nadeau, et al. Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020, medRxiv (2020) doi: https://doi.org/10.1101/2020.10.25.20219063.
- [3] K. Leung, M.H. Shum, G.M. Leung, T.T. Lam, J.T. Wu. Early transmissibility
 assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom,
 October to November 2020, Euro. Surveill. 26 (2021) 2002106.
- [4] A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler. Structure,
 Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell 181 (2020)
 281-92.
- H. Tegally, E. Wilkinson, M. Giovanetti, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv (2020) 12.21.20248640; doi: https://doi.org/10.1101/2020.12.21.20248640
- 188 [6] M. Mejdani, K. Haddadi, C. Pham, R. Mahadevan. SARS-CoV-2 receptor binding mutations and antibody-mediated immunity. bioRxiv (2021) doi: https://doi.org/10.1101/2021.01.25.427846.
- [7] Z. Liu, L.A. VanBlargan, L.M. Bloyet, et al. Landscape analysis of escape variants
 identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody
 neutralization. bioRxiv (2020) doi: https://doi.org/10.1101/2020.11.06.372037.

- 194 [8] D. Harrington, B. Kele, S. Pereira, et al. Confirmed Reinfection with SARS-CoV-2
 195 Variant VOC-202012/01. Clin. Infect Dis (2021) ciab014. doi: 10.1093/cid/ciab014.
 196 Online ahead of print.
- P. Colson, M. Finaud, N. Levy, J.C. Lagier, D. Raoult. Evidence of SARS-CoV-2 reinfection with a different genotype, J Infect (2020) S0163-4453(20)30706-4. doi:
 10.1016/j.jinf.2020.11.011. Online ahead of print.
- [10] J.I. Cohen, P.D. Burbelo. Reinfection with SARS-CoV-2: Implications for Vaccines,
 Clin. Infect. Dis. (2020) ciaa1866. doi: 10.1093/cid/ciaa1866. Online ahead of print.
- [11] G. Haddad, S. Bellali, A. Fontanini, et al. Rapid Scanning Electron Microscopy
 Detection and Sequencing of Severe Acute Respiratory Syndrome Coronavirus 2 and
 Other Respiratory Viruses. Front. Microbiol. 11 (2020) 596180.

205

206

TABLE

208

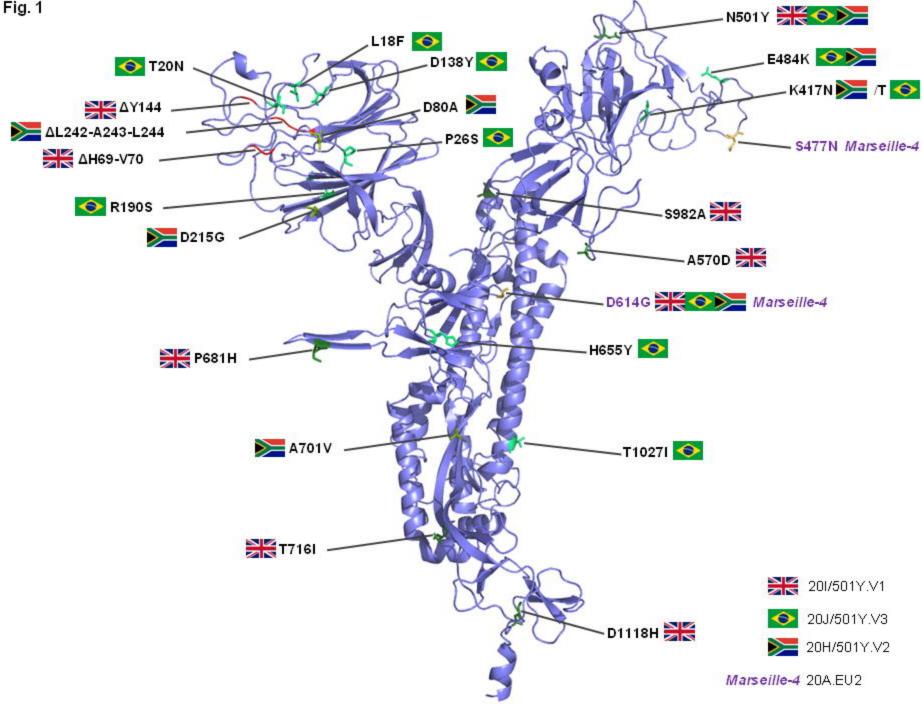
209

210 Table 1. Primers and probe of the Marseille-4 variant-specific qPCR

211

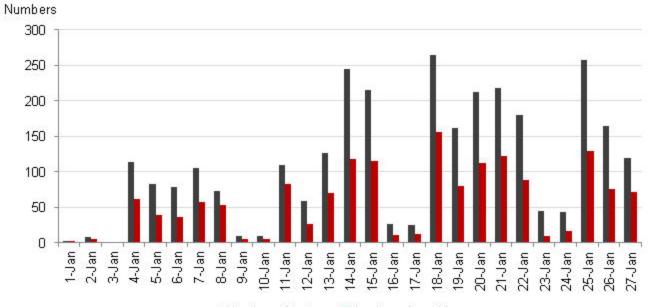
Name	Sequence (5'-3')	Positions *
Primers:		
Pri_IHU_ C4_5_MBF	GAGGTTTAGAAGAGCTTTTGGTGA	9,460-9,483
Pri_IHU_ C4_5_MBR	CCAGGTAAGAATGAGTAAACTGGTG	9,549-9,573
Probe (6FAM-labelled):		
Pro_IHU_C4_5_MBP	CCTTAT <u>T</u> TCATTCACTGTACTCTG	9,520-9,543

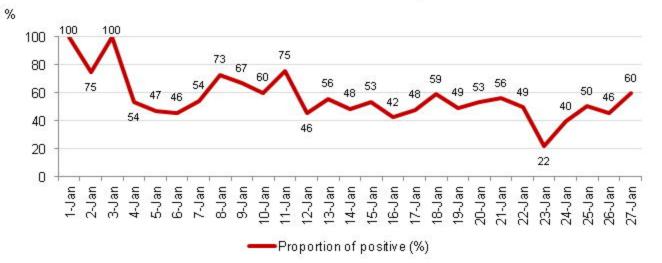
212


* in reference to SARS-CoV-2 genome GenBank Accession no. NC_045512.2 (Wuhan-Hu-1

214 isolate). The nucleotide carrying the mutation specific to the Marseille-4 variant is covered

215 by the probe and underlined.


216



a.

■Number of tests ■Number of positive

b.