Pre-print (not peer-reviewed)

The effect of including the Nordic Hamstring exercise on sprint and jump performance in athletes: protocol of a systematic review and meta-analyses

THE PREPRINT SERVER FOR HEALTH SCIENCES

© The Author(s) 2020 Not the version of record. The version of record is available at doi.org/10.1101/2020.04.01.20048686 https://www.medrxiv.org/

PROSPERO ID: CRD42020177468 Version 3.0, 05-FEB-2021 First submitted: 01-APR-2020

For correspondence: kasper.krommes@regionh.dk

Kasper Krommes¹, Mathias F. Nielsen¹, Laura Krohn¹,
Birk M. Grønfeldt², Kristian Thorborg^{1,3}, Per
Hölmich¹, Lasse Ishøi¹

2 Abstract

Т

7

Ш

13 The Nordic Hamstring exercise reduces hamstring strain injuries in football and other sports, but the exercise is not well 14 adopted in practice. Barriers from practitioners include fear of performance decrements, due to lack of specificity of the 15 exercise with high speed running. However, in theory, increased eccentric hamstring strength could transfer to faster 16 sprinting due to higher horizontal force production. Studies on the effect of the Nordic Hamstring exercise on 17 performance have been conflicting and no synthesis of the evidence exists. We therefore pose the following question: 18 does including the Nordic Hamstring exercise hamper sprint or jump performance in athletes? We will answer this question by performing a systematic review of the literature, critically appraise relevant studies, and GRADE the evidence 19 20 across key outcomes and perform meta-analyses, meta-regression and subgroup analyses. In this protocol we outline the 21 planned methods and procedures.

23 Keywords

Nordic Hamstring Exercise, Eccentric Training, Hamstring Strain Injuries, Performance, Sprint, Jump, Agility, Change of
 Direction, Soreness, Systematic Review, Meta-analyses,

Progress report: Besides this protocol, our data extraction form and the process of data extraction has been piloted
on 3 relevant studies, along with familiarization with the Risk of Bias 2.0 tool. We have also comprised a preliminary
search strategy for PubMed.

30

32

33

22

26

3 Supplementary files

- Data Extraction Form (.pdf)
- Populated PRISMA-P checklist (.pdf)
- 34 35

- ² Clinical Research Centre, Copenhagen University Hospital, Amager-Hvidovre, Denmark
- ³ Physical Medicine and Rehabilitation Research Copenhagen (PMR-C), Department of Physiotherapy, Copenhagen University Hospital, Amager-Hvidovre

Corresponding Author: Kasper Krommes, Sports Orthopedic Research Center – Copenhagen, Orthopedic Department, Amager-Hvidovre, Copenhagen University Hospital, Denmark, Kettegaard Alle 30, DK-2650. Email: <u>kasper.krommes@regionh.dk</u> Twitter: 💓 @krommes

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

¹ Sports Orthopedic Research Center – Copenhagen, Orthopedic Department, Copenhagen University Hospital, Amager-Hvidovre, Denmark

2

36 I.0 BACKGROUND

37

38 I.I Introduction

39 Exercise and sports participation benefits health,¹⁻³ all-cause mortality⁴⁻⁶ and disease prevention.⁷⁻¹⁰ Football and its various codes are the most popular sports worldwide,¹¹ but do carry risk of injuries,¹² of which the most common 40 41 and burdensome are hamstring strain injuries.¹³⁻¹⁵ These injuries are preventable by implementation of the Nordic 42 Hamstring exercise in various doses,¹⁶ even in other sports besides football.¹⁷⁻¹⁹ However, even at the elite football 43 level the exercise is not implemented,²⁰ and hamstring strain injuries continue to top the injury-statistics.²¹ 44 Narratives and surveys from the Sports Medicine community suggests that fear of performance-decrements and soreness from doing the exercise are barriers to implementation.^{22–25} Recently, randomized controlled trials from 45 46 elite and amateur football and handball players have shown improvements in sprint performance after Nordic 47 hamstring exercise-interventions,²⁶⁻²⁸ although the mechanism responsible has not yet been established.²⁹ The most 48 relevant performance measure in football and other sports is sprint ability,^{30,31} however, potential sprint 49 performance effects of doing the Nordic Hamstring exercise has not yet been synthesized across studies. Such a 50 synthesis address some of the concerns and barriers for implementation of the Nordic Hamstring exercise and 51 supply new data-based arguments regarding impacts on performance, and in consequence likely increase adoption. 52

53 **I.2 Objective and research questions**

54 In order to provide a data-based estimate on the effect of including the Nordic Hamstring exercise in the team
55 warm-up or in conditioning regiment on performance measures, we aim to answer the following questions:

57 Primary question:

56

59

64 65

67

58 What is the effect of including the Nordic Hamstring exercise on sprint performance in athletes?

60 Secondary question:

61 What is the effect of including the Nordic Hamstring exercise on other performance measures (such as: change of
62 direction/agility, jumping, repeated sprint performance); and does it carry a risk of adverse events (soreness,
63 injuries, and any other reported adverse events)?

66 **2.0 METHODS**

68 The protocol for this review will adhere to the PRISMA-P (Preferred Reporting Items for Systematic reviews and 69 Meta-analyses - Protocol) statement³² and the proposed search-extension (PRISMA-S)³³ to increase transparency and reproducibility,³⁴ and we aim to fulfil items on AMSTAR-2 (A MeaSurement Tool to Assess systematic Reviews)³⁵ to 70 71 increase study quality, and ROBIS (Risk Of Bias In Systematic reviews)³⁶ to minimize risk of bias. Additionally, the 72 final report will adhere to the PRISMA statement and the extension for abstracts.^{37,38}Along with this pre-printed 73 protocol, we have registered the study in the PROSPERO (international PROSPEctive Register Of systematic 74 reviews) repository before commencement of data collection to adhere to a priori decisions (submitted 31-MAR-75 2020, identifier pending).^{36,39} After a duration of public peer-review as pre-print, a possible updated version of the 76 protocol will be uploaded before we commence data collection and perform literature searches, along with an 77 update to the PROSPERO registration. After publication, all data (populated data extraction forms, search files, 78 supplementary analyses, statistical code, bias- and GRADE (Grading of Recommendations Assessment,

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

79 Development and Evaluation) assessments, populated PRISMA checklist) will be shared as supplementary files with
 80 no restrictions, either on our institutional website, per journal repository or other open access repository (e.g.

80 no restrictions, either on our institutional website, per journal repository or other open ac81 figshare.com).

82

83 2.1 Outcomes

84 Modern football and other field-based sports is characterized by large amounts of sprint acceleration efforts,³⁰ and 85 consequently exercise interventions to improve this are considered a high priority.^{40,41} A decrease of 0.05 s in a 10 meter sprint time by an average player/athlete, may likely result in a 25–30 cm lead during a maximal 10 m sprint.⁴² 86 87 In e.g. football, such a difference is considered clinically important, and may be crucial to reach a ball before the 88 opponent player, block a shot, or score a goal.⁴² Most sprints in football are under 20 meters, ⁴³ and while sprinting, team-sport athletes plateau in velocity after approximately 20 meters⁴⁴ and thus acceleration will be classified as 89 90 sprinting distances <20 meters and maximal velocity as sprinting distances ≥ 20 meters. To obtain low measurement 91 error, we will only consider sprint times measured by sensor-based systems, such as high-speed video, laser-sensors, 92 radar-gun, or force-plates.

- 93 94 Primary outcome
 - Change in sprint performance (seconds) during the phase of primarily acceleration (<20 meters)
- 96

98

95

97 Secondary outcomes (in prioritized order)

- Change in sprint performance (seconds) during combined acceleration/maximal velocity phase (≥20 meters)
- 99 Changes in maximal velocity, measured as either velocity (m/s or km/h) or split times during maximal velocity running (between 20 to 40 meter)
- Change in repeated sprint ability
- Change in agility (such as: 'change of direction' test)
- Changes in jump performance (such as countermovement-jump, drop-jump, squat-jump etc.)
- Soreness or other adverse effects related to performing the Nordic Hamstring exercise

3

4

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

105

106 Table 1. Split sprint distances and their outcome-designation

		Sprint distance to								
		5 m	10 m	15 m	20 m	25 m	30 m	35 m	40 m	
	0 m	А	А	А	A + MV					
Ę	5 m		А	А	A + MV					
e fro	10 m			А	A + MV					
Sprint distance	15 m				A + MV					
	20 m					MV	MV	MV	MV	
	25 m						MV	MV	MV	
	30 m							MV	MV	
	35 m								MV	

A = acceleration phase (primary outcome); MV = Maximal velocity phase

107

108 109 2.2 Criteria for eligibility of studies

110

111 **Table 2.** Short-form overview of key inclusion and exclusion criteria for eligible studies.

PICO domain	Inclusion criteria	Exclusion criteria			
Population	Participants aged 10-40 years (10-17: adolescents, 18-40: adults)	Less than recreationally active participants			
Intervention Prescribed intervention of >3 weeks with minimum dose of 1x3 reps per week		Assisted Nordic Hamstring exercise at below bodyweight-loading			
Comparator	Any				
Outcome	Sprinting time, maximal velocity, repeated sprint ability, agility, jumping, soreness or other adverse effects	Measures of sprint performance not based on sensor/gauge/video systems.			
Endpoint		Follow-up measures collected >4 weeks after intervention			
Design	Between- and within group/subject longitudinal study designs	Cross-sectional studies			

- 112
- 113

115

116

117 118

119

120

114 2.2.1 Outcomes of eligible studies

- Change in sprint time during acceleration phase (split times on 0 <20 meters) •
- Change in sprint time during acceleration and maximal velocity phase (split times on $0 \ge 20$ meters) .
- Change in maximal velocity (velocity or split times on $\geq 20 40$ meters)
- Change in repeated sprint ability .
- Change in agility •
- Change in jump performance .
- Soreness or other adverse effects related to performing the Nordic Hamstring Exercise •
- 121 122
- 2.2.2 Interventions of eligible studies 123

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

- 124 Studies prescribing the Nordic Hamstring exercise in any dose exceeding a minimum of 1 set of 3 repetitions
- (minimum session-dose in the fifa11+ injury prevention $\operatorname{programmes}^{45}$) per week in volume for a minimum of 3
- 126 weeks will be considered. The Nordic hamstring exercise should be performed either as originally described by
- 127 Mjølsnes *et al*⁴⁶ or with arms positioned in front of- or behind the body, or on devices substituting the partner, such as the 'Nordbord', 'Hamstring Solo' or other equipment. Additional loading during the exercise to maintain the
- supramaximal loading of the exercise is allowed, but not assisted variations that decrease the load to below
- 130 bodyweight. Such variations will however be allowed if the programme also includes the conventional Nordic
- Hamstring exercise. The Nordic hamstring exercise can be performed in isolation as the only intervention, or as add-
- 132 on to other types of exercise or conditioning. The Nordic Hamstring exercise and original protocol utilized in the
- **133** literature is described in figure 1.⁴⁶
- 134

135 Figure 1. Description of the Nordic Hamstring Exercise and Protocol.

Description of performing the Nordic Hamstring Exercise:

"The Nordic Hamstring exercise is a partner exercise where the player attempts to resist a forward-falling motion using his hamstrings to maximize loading in the eccentric phase. The player is asked to keep their hips fixed in a slightly flexed position throughout the whole range of motion, and to brake the forward fall for as long as possible using their hamstrings, and to try keeping tension in their hamstrings even after they have to "let go". They are asked to use their arms and hands to buffer the fall, let the chest touch the surface, and immediately get back to the starting position by forcefully pushing with their hands to minimize loading in the concentric phase."⁴⁶

Nordic Hamstring Protocol					
Week	Session per week	Sets and reps			
	1	2 x 5			
2	2	2 x 6			
3	3	3 x 6-8			
4	3	3 x 8-10			
5-10	3	3 x 12, 10 ,8			
10+	I	3 x 12, 10 ,8			

Reps = repetitions of the exercise. Illustration is copyrighted by the authors©

136

137 2.2.3 Duration of follow-up in eligible studies

Studies doing follow-up testing 0 days to 4 weeks after termination of the intervention will be considered. For the acute effect of the Nordic Hamstring exercise, studies testing the same after doing the Nordic Hamstring Exercise will also be considered.

140 [.] 141

142 2.2.4 Study design of eligible studies

All longitudinal studies implementing the Nordic Hamstring exercise will be considered, including single-group

designs looking at within-group changes only, however, we will perform subgroup analyses for only RCTs and also

145 for only low risk of bias RCTs.⁴⁷ For the acute effect of the Nordic Hamstring exercise on sprint changes, cross-

146 sectional studies with pre-post testing on the same day (effectively within-day longitudinal studies) will also be

147 considered. Optimally, we would include only RCTs employing a non-inferiority framework, but given our

- **148** knowledge of the field, such an evidence-pool is not available.
- 149

2.2.5 Comparators of eligible studies

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

6

We will consider any comparators, such as usual training, no training, resistance training, specific sprint training or
 conditioning specifically for sprint performance enhancement. If studies have more than two groups we will use the
 Cochrane recommendations for deciding how to include data.⁴⁸ For the primary analysis we will prioritize including
 usual care or similar comparators.

155

2.2.6 Populations in eligible studies

157 Studies enrolling adult and adolescent participants (10-40 years) will be considered, whereas studies with children
158 (<10 years) and older adults (>40 years) and the elderly will be excluded. Participants should at least be
159 recreationally active, up to and including elite and professional athletes. We will perform subgroup analyses for
160 adults or adolescents only (18-40 years, and 10-17 years), and for elite/professional athletes only.

161

162 2.3 Search strategy

163 We have consulted an expert football strength and conditioning coach at the elite level, and a research librarian for assistance in choosing terms and refining search strategy for the final search in PubMed, in addition to using the 164 Word Frequency Analyser tool to suggest possible search terms from relevant literature (Systematic Review 165 Accelerator, Institute for Evidence-Based Healthcare, Australia).⁴⁹ We aim for a search strategy with high sensitivity 166 167 and low precision. We have tested all terms individually, and some terms might be added or removed when applying 168 the same strategy in other databases or platforms. Cochrane Central, Embase, PubMed and SPORTDiscus, will be sourced for relevant published studies.⁵⁰ and the Polyglot Search Translator tool used to translated search strategies 169 170 across databases (Systematic Review Accelerator, Institute for Evidence-Based Healthcare, Australia).⁵¹ In addition, 171 any grey literature or unpublished data we can find through general search-engines (google.com, Google Scholar), 172 forwards and backwards snowballing, trial-registries (ISRCTN, ICTRP, EU Register, OSF, ANZCTR), or by other means, will be sourced by hand search.⁵² The preliminary search matrix for PubMed is presented below (table 3), 173 and will be adapted to all utilized databases to fit their respective search hierarchy, thesauruses, and operators. To 174 our current knowledge of the field, titles and abstract does not always specify population or design fully thus we will 175 not utilize search terms for these items, in order to not omit relevant studies. No filters or restrictions on dates, study 176 177 design, population or language will be applied.⁵³ If relevant articles with English abstracts but full-text language in 178 other than Danish, Norwegian, Swedish or English languages are available, translation services will be sought. A 179 copy of the search-results will be provided as supplementary files. The search process is planned for June 8th – June 16th 2020. For incomplete literature such as conference abstracts or theses, or insufficient reporting, we will contact 180 181 corresponding authors to supply either the full report or information regarding risk of bias and GRADE assessment items, and to verify values for data extraction. 182

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

183 **Table 3**. Search matrix and terms for PubMed.

	AND >					
	Population	Intervention	Comparator	Outcome	Time	Design
OR	Any (not utilized)	nordic hamstring	Any (not utilized)	sprint*	Any (not utilized)	Any (not utilized)
Ý		nordic hamstrings		"high speed running"		
		nordic lowers		((maximal OR maximum) AND (velocit* OR speed)) AND running		
		nordic curls russian curl				
		"hamstring lowers"		Athletic		
		(biceps femoris OR		Performance[MeSH]		
		semitendinosus OR		"performance"		
		OR hamstring* OR Hamstring Muscles[MeSH]) AND eccentric*		"hop test"		
				"hop testing"		
				hopping		
				"jump"		
				"jumping"		
				"change of direction"		
				"performance"		
				"change of direction"		
				sore*		
				DOMS*		

MeSH = medical subject headings. * = truncation, OR and AND are applied as Boolean operators between terms and columns.

- 185
- 186

Two reviewers (KK & LI) will independently agree on selection of eligible studies to include using Endnote 187 188 (Clarivate Analytics) to remove duplicates and screen records. If a consensus cannot be achieved a third reviewer (BG) will be involved. A improved PRISMA-style flowchart⁵⁴ will be presented, and we will provide a list of studies 189 excluded on abstract or full-text level as a supplementary. Entries from some registries will also be immediately 190 191 screened in full to assess possible eligibility as importation to reference manager is not possible (OSF, ISRCTN, 192 SportRxiv, MedRxiv). The level of inter-rater agreement at the abstract-level between reviewers before consensus 193 will be reported as percentage of agreement and unweighted kappa values. Along with the publication of this protocol as pre-print, we are contacting field experts through social media and email for suggestion or additional 194

195 possible relevant studies for inclusion. Citations will be managed in Endnote.

196

97 2.4 Data extraction

- Duplicate data extraction will be performed by three independent reviewers, with two reviewers per study (MF, LK, BG),⁵⁵ using a piloted data extraction form based on Cochrane templates⁵⁶ and Center for Evidence-Based Medicine guidelines.⁵⁷ we have provided the un-populated form as a supplementary (Data Extraction Form.pdf). Data only
 presented as visualization will be extracted using a web-based tool (WebPlotDigitizer 4.2, 2019,
- <u>https://automeris.io/WebPlotDigitizer</u>). For extracting adverse events we will use a hybrid confirmatory-exploratory
 approach, in that we focus on soreness specifically and hereby pre-specified, and will also include any potential
 unrecognized or unspecified adverse events.⁵⁸ For multiplicity of effect estimates, we will use an reductionist
- approach by including one estimate per analysis, per study-group, based on the follow criteria: 1) most recent
- (earliest follow-up measure) estimate, 2) intention-to-treat estimates, and 3) for sprint split times, the split closest to
- 20 meters.⁵⁹ In cases of either missing data, or data extraction from visual reporting, we will contact corresponding
- authors by email and ask to either provide, or verify/correct data extraction values. For this, authors will be asked to

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

8

supply data and study information through an electronic survey with the core data extraction items. After the initial
 email request, a reminder after 1 week, and contact by telephone (if telephone number is available and in service),⁶⁰
 none or the un-verified data extraction will be utilized. As a supplementary, we will list all studies included for
 which corresponding outputs a could not couple data or working outputs included for

which corresponding authors could not supply data or verify our visual extractions.

213

214 2.5 Critical appraisal

215 We will use Cochrane Risk of Bias Tool 2.0⁴¹ to evaluate risk of bias in randomized trials.⁶¹ The ROBINS-I tool will be used for non-randomized trials.⁶² Risk of Bias evaluation will be done once per study based on outcomes as 216 prioritized in the outcome-section. For sprint-outcomes where several eligible sprint-distances are available, only 217 218 the ones closest to the 20 m cut-off will be used as to not double-count participant-data. No study will be excluded 219 based on the results of the critical appraisal, but this information will be used for the quality of cumulative evidence assessment using the Cochrane Collaborations GRADE criteria⁶³ and for subgroup analysis of 'low risk of bias' 220 studies.^{30,64} Rating the quality of individual studies rather than assessing risk of bias is inappropriate and will not be 221 performed.^{65,66} Reviewers will perform duplicate independent bias assessment with the assistance of a machine 222 223 learning system^{67,68} (MF, LK, & BG), and duplicate GRADE evaluation (KK & LI) and will achieve consensus in case 224 of conflicting assessments by involving an additional reviewer (KK & BG). The level of inter-tester agreement 225 between appraisers before consensus will be reported as percentage of agreement and unweighted kappa values. In 226 sports- and exercise trials, blinding participants and personnel delivering exercise-based interventions are not 227 feasible and we will therefore not consider domains pertaining to these blinding situations when assigning studies to "low risk of bias" subgroup analysis. Details from included studies pertaining to reporting of funding, conflict of 228 229 interests, transparency, intention-to-treat analyses and pre-registration will be reported alongside general study 230 characteristics.

231

232 2.6 Analyses

233 Our meta-analyses of individual study results will be performed with a random effects model using the Restricted 234 Maximum Likelihood (REML) method to estimate a pooled mean of the overall effect with 95% confidence intervals. 235 and the between study variance of effect sizes (Tau-Squared, T²). We will report estimated effect size and interpreted 236 it as a standardized mean difference (SMD) calculated as Cohens' d. However, we will use a Hedges' g correction to account for small sized studies. Heterogeneity in the meta-analyses will be tested with Cochranes' Q-test (a chi2-237 test).⁶⁶ The percentage of variability in the effect estimates which is due to heterogeneity between the studies rather 238 239 than chance will be calculated and interpreted using the I² statistic.⁶⁶ Causes for heterogeneity will be explored 240 through subgroup analyses and meta-regression analyses of clinical and/or methodological covariates. Categorical 241 covariates (e.g. age categories, playing-level, comparator, duration or volume of the Nordic Hamstring exercise) will be investigated with stratified meta-analysis and continuous covariates (e.g. intervention dose) will be investigated 242 243 with meta-regression. A covariate is considered relevant and to explain heterogeneity in the overall analyses if 244 inclusion of the covariate reduces the overall Tau-Squared. If a substantial clinical heterogeneity or high risk of bias 245 is found, combining data in meta-analysis might be inappropriate, hence analysis will only be presented without total effect estimates, as firm conclusions on these will be inappropriate. Instead, we will present a brief narrative 246 analysis, and the possible causes for heterogeneity will be debated in the discussion-section. No other qualitative 247 248 syntheses are planned. Differences in estimated effects between relevant categorical subgroups will be analysed using meta-regression. For evaluating the risk of publication- and small study bias, a contour-enhanced funnel plot⁶⁹ 249 will be provided in addition to the Eggers test for Funnel-asymmetry and small study bias⁷⁰ and Beggs test for 250 publication bias.⁷¹ If relevant, reasons for funnel-asymmetry will be debated in the discussion-section. Results of the 25 I

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

two primary outcomes will be presented in forest plots to allow for visual comparisons between studies. To allow for a more clinically relevant interpretation of the meta-analyses estimates, we will convert the pooled estimate from SMD to log (Odds Ratio), so we can estimate the odds ratio for becoming faster or slower and calculate the number needed to treat for 1 athlete to e.g. get faster. Furthermore, we will also convert the pooled estimate from SMD to an original scale (e.g. seconds), to enhance clinical interpretation of the results. All analyses will be performed in Stata 16 IC (StataCorp LLC, USA). All planned analyses are provided in table 4. Results will be emphasized based on effect size and confidence intervals, rather than statistical significance.

259

260 **Table 4.** Overview of planned meta-analyses.

Primary analyses	Secondary analyses	Sensitivity and/or meta-regression analyses			
<20 meter sprint time (seconds)	≥20 meter sprint time (seconds)	Only studies enrolling sub-elite or elite athletes			
	Maximum velocity (velocity and 20-40 m split times)	Only low risk of bias studies			
	Repeated sprint ability time	Only RCT studies			
	Agility test time pooled	Only adolescents (10-17 years)			
	All types of jumps pooled	Only adults (18-40 years)			
	Soreness	Only studies examining the Nordic Hamstring exercise without additive interventions			
	Acute effect on any sprint distance pooled	Only studies with other types of strength training as comparator			
		Only studies with specific sprint training as comparator			
		Only Nordic volume corresponding to FIFA11+ dose or less weekly			
		Only Nordic volume corresponding to more than FIFA 11+ weekly			
		Only Nordic intervention of >4 weeks			
		Only Nordic intervention of ≤4 weeks			

FIFA 11+ = a standardized warm-up program for football, including a progressive dose of the Nordic Hamstring exercise (2x5 reps, 3/week); RCT = Randomized controlled trial.
 262

263 **Potential conflicts of interest**

We have no financial interests to declare. Some of the authors (KK, KT, PH, LI) have previously published two trials
within the scope of this review, in which the effect in both trials favours the experimental intervention and is thus
subjected to confirmation bias and self-citation incentives.

267

268 Funding and support

269 No specific funding were given for this study. No funding- or institutional body will have any control or involvement in270 data collection, analyses, interpretation, writing the report or decision to publish.

271

273

274

275 276

277

272 Changelog from version 1.0 to 2.0 (04-JUNE-2021: before commencement of search)

- Added DOI
- Added soreness to search matrix
- Added specific trials registries
- Due to bugs and installation issues, SRA-helper and de-duplikator tools will not be utilized, and have been removed from the methods section
- Due to pandemical issues, the planned dates for carrying out the search has been postponed to June 8-16, 2020
- 278 279

280 Changelog from version 2.0 to 3.0 (05-FEB-2021: screening started, next step is full-text assessments)

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

- Added PROSPERO registration ID.
- Added a sensitivity analysis: "Only studies with other types of strength training as comparator", as this was mistakenly left out in previous drafts.
- Removed a sensitivity analysis from table 4: "Only studies with usual training or no intervention as comparator", as this was in fact our primary analysis and was duplicated in table 4 mistakenly.
- Post hoc change: Added further details on the data extraction of grey literature from authors, as we have
 started this process earlier than anticipated. We are currently doing it before full-text assessments, rather
 than after data-extraction as anticipated.
- Post hoc change: Added details on screening of registry entries that was not possible to import into reference
 manager and was thus screen in full directly in the registry.
- 291 292

293 Acknowledgement

294 The authors would like to thank Strength and Conditioning Coach Michael Myhre and Research Librarian Torben295 Jørgensen with help in choosing search terms and refining the search strategy.

296

297 **Author contributions**

All authors contributed to the protocol. Contributions are visualized according to the CRediT framework (the
 Contributor Roles Taxonomy)⁷² in the following table.

300

	KK	MF	LK	BG	KT	PH	LI
Conceptualization							
Draft of protocol							
Methods: Study design							
Methods: Analyses plan							
Methods: Literature search							
Methods: Critical appraisal and GRADE							
Methods: Data extraction							
Revision and approval of final protocol							

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

REFERENCES

- Garber, C. E. *et al.* American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. *Med. Sci. Sports Exerc.* 43, 1334–1359 (2011).
- García-Hermoso, A., Ramírez-Campillo, R. & Izquierdo, M. Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. *Sports Med.* 49, 1079–1094 (2019).
- Oja, P. *et al.* Infographic: Health benefits of specific types of sports. *Br. J. Sports Med.* 51, 824–824 (2017).
- Mandsager, K. *et al.* Association of Cardiorespiratory Fitness With Long-term Mortality Among Adults Undergoing Exercise Treadmill Testing. *JAMA Netw. Open* 1, e183605–e183605 (2018).

- Saint-Maurice, P. F. *et al.* Association of Leisure-Time Physical Activity Across the Adult Life Course With All-Cause and Cause-Specific Mortality. *JAMA Netw. Open* 2, e190355–e190355 (2019).
- Clausen, J. S. R., Marott, J. L., Holtermann, A., Gyntelberg, F. & Jensen, M. T. Midlife Cardiorespiratory Fitness and the Long-Term Risk of Mortality: 46 Years of Follow-Up. *J. Am. Coll. Cardiol.* 72, 987–995 (2018).
- Shibata, S. *et al.* The effect of lifelong exercise frequency on arterial stiffness. *J. Physiol.* 596, 2783–2795 (2018).
- Friedenreich, C. M., Neilson, H. K., Farris, M.
 S. & Courneya, K. S. Physical Activity and Cancer Outcomes: A Precision Medicine Approach. *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* 22, 4766–4775 (2016).
- Larson, E. B. *et al.* Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. *Ann. Intern. Med.* 144, 73–81 (2006).
- 10. Paley, C. A. & Johnson, M. I. Physical Activity to Reduce Systemic Inflammation Associated

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

With Chronic Pain and Obesity: A Narrative Review. *Clin. J. Pain* **32**, 365–370 (2016).

- FIFA.com. FIFA Big Count 2006: 270 million people active in football. *FIFA.com* http://www.fifa.com/media/news/y=2007/m=5/ news=fifa-big-count-2006-270-million-peopleactive-football-529882.html (2007).
- Ekstrand, J., Hägglund, M. & Waldén, M. Injury incidence and injury patterns in professional football: the UEFA injury study. *Br. J. Sports Med.* 45, 553–558 (2011).
- Ekstrand, J., Hägglund, M. & Waldén, M.
 Epidemiology of muscle injuries in professional football (soccer). *Am. J. Sports Med.* **39**, 1226– 1232 (2011).
- 14. Brooks, J. H. M., Fuller, C. W., Kemp, S. P. T. & Reddin, D. B. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. *Am. J. Sports Med.* 34, 1297–1306 (2006).
- 15. Petersen, J., Thorborg, K., Nielsen, M. B. &Hölmich, P. Acute hamstring injuries in Danish elite football: a 12-month prospective

registration study among 374 players. *Scand. J. Med. Sci. Sports* **20**, 588–592 (2010).

- 16. Ishøi, L., Krommes, K., Husted, R. S., Juhl, C.
 B. & Thorborg, K. Diagnosis, prevention and treatment of common lower extremity muscle injuries in sport grading the evidence: a statement paper commissioned by the Danish Society of Sports Physical Therapy (DSSF). *Br. J. Sports Med.* (2020) doi:10.1136/bjsports-2019-101228.
- Longo, U. G. *et al.* The FIFA 11+ program is effective in preventing injuries in elite male basketball players: a cluster randomized controlled trial. *Am. J. Sports Med.* 40, 996– 1005 (2012).
- Sugiura, Y., Sakuma, K., Sakuraba, K. & Sato,
 Y. Prevention of Hamstring Injuries in
 Collegiate Sprinters. *Orthop. J. Sports Med.* 5, (2017).
- Seagrave, R. A. *et al.* Preventive Effects of Eccentric Training on Acute Hamstring Muscle Injury in Professional Baseball. *Orthop. J. Sports Med.* 2, 2325967114535351 (2014).

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

- Bahr, R., Thorborg, K. & Ekstrand, J. Evidencebased hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: the Nordic Hamstring survey. *Br. J. Sports Med.* 49, 1466–1471 (2015).
- Ekstrand, J., Waldén, M. & Hägglund, M. Hamstring injuries have increased by 4% annually in men's professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. *Br. J. Sports Med.* 50, 731–737 (2016).
- McCall, A. *et al.* Risk factors, testing and preventative strategies for non-contact injuries in professional football: current perceptions and practices of 44 teams from various premier leagues. *Br. J. Sports Med.* 48, 1352–1357 (2014).
- Guex, K. & Millet, G. P. Conceptual framework for strengthening exercises to prevent hamstring strains. *Sports Med. Auckl. NZ* 43, 1207–1215 (2013).
- 24. Gambetta, V. More on Prevention as the Cause. Functional Path Training:

http://www.functionalpathtrainingblog.com/201 1/05/more-on-prevention-as-the-cause-.html http://www.functionalpathtrainingblog.com/201 1/05/more-on-prevention-as-the-cause-.html (2016).

- 25. Oakley, A. J., Jennings, J. & Bishop, C. J.
 Holistic hamstring health: not just the Nordic hamstring exercise. *Br. J. Sports Med.* 52, 816–817 (2018).
- 26. Ishøi, L. *et al.* Effects of the Nordic Hamstring exercise on sprint capacity in male football players: a randomized controlled trial. *J. Sports Sci.* 1–10 (2017)

doi:10.1080/02640414.2017.1409609.

- 27. Krommes, K. *et al.* Sprint and jump performance in elite male soccer players following a 10-week Nordic Hamstring exercise Protocol: a randomised pilot study. *BMC Res. Notes* 10, 669 (2017).
- 28. Chaabene, H. *et al.* Effects of an Eccentric Hamstrings Training on Components of Physical Performance in Young Female Handball Players. *Int. J. Sports Physiol.*

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

Perform. 1–22 (2019) doi:10.1123/ijspp.2019-0005.

- Suarez-Arrones, L. *et al.* Dissociation between changes in sprinting performance and Nordic hamstring strength in professional male football players. *PloS One* 14, e0213375 (2019).
- Barnes, C., Archer, D. T., Hogg, B., Bush, M. & Bradley, P. S. The evolution of physical and technical performance parameters in the English Premier League. *Int. J. Sports Med.* 35, 1095– 1100 (2014).
- Jeras, N. M. J., Bovend'Eerdt, T. J. H. & McCrum, C. Biomechanical mechanisms of jumping performance in youth elite female soccer players. *J. Sports Sci.* 0, 1–7 (2019).
- Shamseer, L. *et al.* Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ* 350, g7647 (2015).
- 33. Rethlefsen, M., Ayala, A. P., Kirtley, S., Koffel,
 J. & Waffenschmidt, S. PRISMA-S Draft.
 (2019) doi:10.17605/OSF.IO/7NCYS.
- 34. Lakens, D. et al. Examining the Reproducibility of Meta-Analyses in Psychology: A Preliminary

Report. https://osf.io/xfbjf (2017) doi:10.31222/osf.io/xfbjf.

- 35. Shea, B. J. *et al.* AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ* 358, j4008 (2017).
- 36. Whiting, P. *et al.* ROBIS: A new tool to assess risk of bias in systematic reviews was developed. *J. Clin. Epidemiol.* 69, 225–234 (2016).
- 37. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.
 G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *J. Clin. Epidemiol.* 62, 1006–1012 (2009).
- Beller, E. M. *et al.* PRISMA for Abstracts: Reporting Systematic Reviews in Journal and Conference Abstracts. *PLOS Med.* 10, e1001419 (2013).
- Palpacuer, C. *et al.* Vibration of effects from diverse inclusion/exclusion criteria and analytical choices: 9216 different ways to

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

perform an indirect comparison meta-analysis. *BMC Med.* **17**, 174 (2019).

- 40. Haugen, T. Sprint conditioning of elite soccer players: Worth the effort or lets just buy faster players? 3 (2017).
- 41. Haugen, T. The role and development of sprinting speed in soccer. (University of Agder, Faculty of Health and Sport Science, 2014).
- 42. Haugen, T. & Buchheit, M. Sprint Running Performance Monitoring: Methodological and Practical Considerations. *Sports Med. Auckl. NZ*46, 641–656 (2016).
- 43. Andrzejewski, M., Chmura, J., Pluta, B.,
 Strzelczyk, R. & Kasprzak, A. Analysis of
 Sprinting Activities of Professional Soccer
 Players: J. Strength Cond. Res. 27, 2134–2140
 (2013).
- 44. Clark, K. P., Rieger, R. H., Bruno, R. F. & Stearne, D. J. The National Football League Combine 40-yd Dash: How Important is Maximum Velocity? *J. Strength Cond. Res.* 33, 1542–1550 (2019).
- 45. Thorborg, K. *et al.* Effect of specific exercisebased football injury prevention programmes on

the overall injury rate in football: a systematic review and meta-analysis of the FIFA 11 and 11+ programmes. *Br. J. Sports Med.* **51**, 562– 571 (2017).

- 46. Mjølsnes, R., Arnason, A., Østhagen, T.,
 Raastad, T. & Bahr, R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. *Scand. J. Med. Sci. Sports* 14, 311–317 (2004).
- 47. Tan, A. C. *et al.* Prevalence of trial registration varies by study characteristics and risk of bias. *J. Clin. Epidemiol.* **113**, 64–74 (2019).
- 48. 16.5.4 How to include multiple groups from one study. https://handbook-51.cochrane.org/chapter_16/16_5_4_how_to_inc
 lude_multiple_groups_from_one_study.htm.
- 49. Clark, J. *et al.* A full systematic review was completed in 2 weeks using automation tools: a case study. *J. Clin. Epidemiol.* 121, 81–90 (2020).
- 50. Aagaard, T., Lund, H. & Juhl, C. Optimizing literature search in systematic reviews – are MEDLINE, EMBASE and CENTRAL enough

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

for identifying effect studies within the area of musculoskeletal disorders? *BMC Med. Res. Methodol.* **16**, (2016).

51. Improving the translation of search strategies using the Polyglot Search Translator: a randomised controlled trial. *Bond University Research Portal*

https://research.bond.edu.au/en/datasets/improvi ng-the-translation-of-search-strategies-usingthe-polyglot.

- 52. Greenhalgh, T. & Peacock, R. Effectiveness and efficiency of search methods in systematic reviews of complex evidence: audit of primary sources. *BMJ* 331, 1064–1065 (2005).
- Beynon, R. *et al.* Search strategies to identify diagnostic accuracy studies in MEDLINE and EMBASE. *Cochrane Database Syst. Rev.* MR000022 (2013)

doi:10.1002/14651858.MR000022.pub3.

- Vu-Ngoc, H. *et al.* Quality of flow diagram in systematic review and/or meta-analysis. *PLOS ONE* 13, e0195955 (2018).
- 55. Jian-Yu, E. *et al.* Adjudication rather than experience of data abstraction matters more in

reducing errors in abstracting data in systematic reviews. *Res. Synth. Methods* **n/a**,.

- 56. Data extraction forms. /data-extraction-forms.
- 57. Data Extraction in Meta-analysis. CEBM https://www.cebm.net/2014/06/data-extractionin-meta-analysis/ (2014).
- 58. Junqueira, D. 2019 Cochrane Methods
 Symposium Part 7: Special issues for addressing adverse effects. *Cochrane Training* https://training.cochrane.org/resource/part-7special-issues-addressing-adverse-effects.
- López-López, J. A., Page, M. J., Lipsey, M. W. & Higgins, J. P. T. Dealing with effect size multiplicity in systematic reviews and metaanalyses. *Res. Synth. Methods* 9, 336–351 (2018).
- Danko, K. J., Dahabreh, I. J., Ivers, N. M., Moher, D. & Grimshaw, J. M. Contacting authors by telephone increased response proportions compared with emailing: results of a randomized study. *J. Clin. Epidemiol.* 115, 150–159 (2019).

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

- Sterne, J. & et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ Press*.
- Sterne, J. A. *et al.* ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ* 355, i4919 (2016).
- 63. Santesso, N. *et al.* GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. *J. Clin. Epidemiol.* (2019)

doi:10.1016/j.jclinepi.2019.10.014.

- 64. Schünemann, H. J., Fretheim, A. & Oxman, A.
 D. Improving the use of research evidence in guideline development: 9. Grading evidence and recommendations. *Health Res. Policy Syst.*4, 21 (2006).
- Boutron, I. & Ravaud, P. Classification systems to improve assessment of risk of bias. *J. Clin. Epidemiol.* 65, 236–238 (2012).
- 66. Higgins, J. & Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version
 5.1.0 [updated March 2011]. *Cochrane Collab.*2011,.

- 67. Marshall, I. J., Kuiper, J. & Wallace, B. C.
 RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials. *J. Am. Med. Inform. Assoc. JAMIA* 23, 193–201 (2016).
- 68. Viswanathan, M. *et al.* Assessing the Risk of Bias in Systematic Reviews of Health Care Interventions. in *Methods Guide for Effectiveness and Comparative Effectiveness Reviews* (Agency for Healthcare Research and Quality (US), 2008).
- 69. Sterne, J. A. C. *et al.* Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ* **343**, d4002 (2011).
- Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 315, 629–634 (1997).
- Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. *Biometrics* 50, 1088–1101 (1994).

Krommes et al. Pre-print on medRxiv. 01-APR-2020 v. 1.0

72. Holcombe, A. Farewell authors, hello

contributors. Nature 571, 147-147 (2019).