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Abstract

In this document we present the relevant Supplementary Materials accompanying the
manuscript “A control framework to optimize social distancing measures in the course of
the COVID-19 pandemic” by Pataro, Oliveira et al.
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Data collection

We collected epidemiological data of COVID-19 in Bahia, a state with 14.8 million popula-

tion in the Northeast of Brazil, for the purpose of applying the model developed here. The

data comprise the daily number of registered cases and deaths from COVID-19, as well as

the daily number of clinical hospitalization and ICU requirements, obtained from the Sec-

retary of Health of Bahia from March 6 to September 15, 2020. Social mobility is repre-

sented by the data from “InLoco”, a Brazilian technology start-up, which is available at http:

//mapabrasileirodacovid.inloco.com.br (44). The mobility is measured accord-

ing to the population behavior constructed from anonymous geo-movement information ex-

tracted from 60 million mobile devices throughout the country. The used metric, referred to

in the manuscript as the social mobility reduction index (SMRI), is defined in the interval 0 to

100%. It measures the displacement of devices from its self-defined home location, such that

the bigger the index, the lower is the population mobility.

In addition to the epidemiological and the social mobility data, we collected all the decrees

aiming to mitigate the spread of the disease in the state of Bahia. This dataset resulted from an

update to the effort originally described in work of Jorge at al. (7). Therein, the authors per-

formed an analysis of all state governmental decrees applied in each Brazilian state, deriving an

index to measure the stringency of COVID-19-associated interventions adapted to the Brazilian

context, originally reported in (45). The index evaluate measures related to the Cancellation

of public events (O1), Closure of schools/universities (O2), Home-office for governmental em-

ployees (O3), Isolation of groups or the whole population (O4), Closure of non-essential busi-

nesses and public activities (C1), and Transport lock (C2). As presented by Jorge at al. (7), the

total stringency index is a combination of the evaluation of these measures. The index varies

from 0 to 1 meaning that the lower the index, the lower the level of governmental measures to
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mitigate the spread of the disease in the region.
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Model design

The SEIIHURD model considered here (9) describes the dynamics of a population divided into

compartments as susceptible (S), exposed (E), asymptomatic/non-detected infections (Ia) and

symptomatic (reported) infections (Is). The reported infections may present mild to severe

symptoms, thus a proportion of them may require hospitalizations (clinical beds), (H), or inten-

sive care unity (ICU) admission (U ). After the infectious period, individuals may recover (R)

from the disease. A more severe outcome results in death (D) due to COVID-19, after passing

for a period of hospitalization or ICU. In this model the transmission is not affected by indi-

viduals in H and U compartments. Also, based on the results presented by Oliveira et al. (9),

we also consider a flux of patients between the H and U compartments, modeling the condition

that patients admitted to a clinical ward may worsen their condition and require an ICU bed;

conversely, patients in intensive care may need clinical care prior to discharge and recovery.

We added new definitions to the SEIIHURD model to consider influences on the dynamics

due to human behavior and healthcare improvements, by allowing the variation of some gains

over time. The resulting model SEIIHURD+ψ is described by the systems of equations (1)

below:

6



dS

dt
=
−g1(t)β(1− ψ(t))S(Is + g11(t)δIa)

N
(1a)

dE

dt
=
g1(t)β(1− ψ(t))S(Is + g11(t)δIa)

N
− κE (1b)

dIa
dt

=(1− g7(t)p)κE − γaIa (1c)

dIs
dt

=g7(t)pκE − γsIs (1d)

dH

dt
=g2(t)hg3(t)ξγsIs + (1− g4(t)µU + g8(t)ωUg4(t)µU)g5(t)γUU − g6(t)γHH (1e)

dU

dt
=g2(t)h(1− g3(t)ξ)γsIs + g9(t)ωHg6(t)γHH − g5(t)γUU (1f)

dR

dt
=γaIa + (1− g2(t)hγsIs + (1− g10(t)µH)(1− g9(t)ωH)g6(t)γHH (1g)

dD

dt
=(1− g9(t)ωH)g10(t)µHg6(t)γHH + (1− g8(t)ωU)g4(t)µUg5(t)γUU (1h)

Specifications of the epidemiological parameters are given in table S6. The temporal series

ψ accounting for social mobility patterns is given from the InLoco dataset previously described.

In order to improve the predictions that will dictate control measures, multiplicative gain

factors, gi’s, are introduced into some terms of the original SEIIHURD model. In this con-

text, the factors g1, . . . , g11 are used to account for temporal uncertainties in the parameters

β, h, ξ, γH , γU , µH , µU , ωH , ωU , δ and p according to the epidemic data which are read continu-

ously by the control system. The uncertainties upon these parameters may appear over time due

to different reasons during the course of pandemic, from noises and errors in the reported data

to medical treatments improvements, equipment and medical supplies, and screening and test-

ing measures. As a result, the internal adaptive control model can use these time-varying gains

in order to enhance forecasting on the disease’s spread and, thus, improve control performance

(22,24). In contrast, when the terms gi are set to 1, the transmission rate β is written in terms

of a Heaviside step function as in Oliveira et al. (9), the equations [1a - 1h] reduce to the SEI-

IHURD model with social mobility index influencing the exposure to risks of the susceptible

population, here defined as SEIIHURD+ψ model with unitary gains.
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Parameter estimation

To carry out our analysis, we consider the literature review presented by Oliveira et al. (9) to

evaluate the key epidemiological parameters κ, γa and γs, which are maintained fixed during

the current work. The time-varying terms g1β, g2h, g3ξ, g4µU , g5γU , g6γH , g7p, g8ωU , g9ωH ,

g10µH and g11δ have the epidemiological search interval, shown in Table S3.

The estimation is performed by ordinary least square minimization problem in the identifi-

cation algorithm so that the parameter values adjust the model to the series of cumulative cases

(C), clinical beds occupancy (H), ICU beds occupancy (U ) and deaths (D). The absolute error

variables terms used in the optimization layer are the following:

ErC(t) = |C(t)− Ĉ(t, g1(t), . . . , g11(t))|, (2)

ErH(t) = |H(t)− Ĥ(t, g1(t), . . . , g11(t))|, (3)

ErU(t) = |U(t)− Û(t, g1(t), . . . , g11(t))|, (4)

ErD(t) = |D(t)− D̂(t, g1(t), . . . , g11(t))| (5)

wherein the variables Ĉ, Ĥ, Û , D̂ are obtained according to the SEIIHURD+ψ model equa-

tions [1a - 1h]. The complete optimization problem is formulated as follows:

min
gi,∀i=1,...,11

t=tf∑
t=ti

(w1ErC(t) + w2ErH(t) + w3ErU(t) + w4ErD(t)) (6)

wherein w1 = 1, w2 = 5, and w3 = w4 = 35 are pre-selected positive weighting values (tuning

parameters), used to normalize the order of magnitude of the total cost and minimize the errors

ErC , ErH , ErU and ErD. The values ti and tf define the interval [ti, tf ] where we want to

apply the optimization layer.

When the SEIIHURD+ψ with unitary gains is considered, the time-varying parameter β is

affected by the population mobility explicit in the model by the series of ψ. Thus, the values of
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β are estimated considering the mean value of ψ over the identified interval of variations of β.

Additionally, for the validation of the SEIIHURD+ψ with unitary gains, we do not re-estimate

the remaining parameters and they are kept as presented by Oliveira et al. (9) (table S2).

Model validation and prediction algorithm

In order to improve the performance of our future prediction, we separated our data into sets:

a training set containing the first points, from t1 to t169, of each data series and a testing set

containing the remaining points of the series going from t170 to t194, the last point of the data

we are using. Within the training set, the data is split into consecutive two-week windows,

which are sufficiently large to properly describe typical changes in social behavior. In each of

these windows, we applied the optimization procedure defined in equation (6) to obtain gains

g1β, g2h, g3ξ, g4µU , g5γU , g6γH , g7p, g8ωU , g9ωH , g10µH and g11δ. We used the last estimated

optimal values to forecast the remaining 25 days of available data and demonstrate the validity

of the forecast.
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The control system

In the course of the COVID-19 pandemic, several measures were employed to overcome the so-

cioeconomic impacts and the spread of SARS-CoV-2. The resulting control policies are passed

either as a recommendation or as laws, aiming at reducing mobility, gatherings, and conse-

quently slow the spread of the disease. Jorge et al. (7) evaluated the combination of restriction

measures applied to each Brazilian state at each time t, yielding the stringency index of im-

plemented governmental measures. The index varies from 0 to 1 depending on the level of

restrictions, where 0 means no COVID-19-specific measure applied and 1 corresponds to the

most strengthened restriction, for instance, a full lockdown.

We denote here by u(t) the value of the control signal (stringency index) at time t. The

NMPC is formulated considering a prediction horizon Np of three weeks, i.e. Np = 21 days.

However, the optimal control signal is applied only on the first 7 days, being recalculated in the

next week. We argue that it is not reasonable to change the measures in smaller periods, which

would possibly cause confusion to the population.

Each future control signal u(t) must be piece-wise constant and increase/decrease in ac-

cordance with plausible desired levels of control imposed on social mobility. Accordingly, we

consider discrete values for u, as given in tables S4 and S5. Note that the control signal u(t)

lies in the interval [0.2162 , 0.4921] for the scenario considering the real applied measures. For

an hypothetical more rigorous scenario, the control signal lies in the interval [0.2162 , 0.6269]

(figs. 5 and S6). These values were obtained by matching the guidelines enacted in Bahia up to

date, as provided by Jorge et al. (7). The algorithm to evaluate all possible future governmental

measure is presented in NMPC algorithm section.

Bearing this in mind, we wanted to estimate what are the minimal measures necessary to

guarantee that the number of clinical and ICU beds does not surpass the real capacity available
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in the state, that is, we seek to maintain:

H(t+ j|t) ≤ nclinical (7)

U(t+ j|t) ≤ nICU, (8)

The information about the number of clinical and ICU bed available, denoted by nclinical

and nICU , were obtained from the Secretary of Health of Bahia. The values were expanded

in the course of the epidemic and it is given by nclinical = 466 and nICU = 422 for the period

between March 6 and May 4 (9), and nclinical = 1610 and nICU = 1210 for the following period.

To maintain the desired levels of hospitalizations requirements given in Eqs. 7 and 8, the

proposed NMPC algorithm must act in order to ensure the following control objective (trade-off

objective):

JNMPC = Is(tf ) +Q · u(t), (9)

is obtained, wherein Q is the weight tuning parameter used to ponder how much the control

signal can vary. In other words, if Q is low, u(t) can vary more freely and achieve higher

values, otherwise u(t) achieves lower values. This trade-off adjustment is used to prioritize

the minimization of either the control signal or the number of cases. Moreover, the tuning

parameter Q can also vary in time to adapt to the priorities and the epidemic situation. In

this case, at the beginning, we restrict the control actions, aiming to simulate a more realistic

scenario, in accordance to what was achieved by the initial enacted acts. Later, we start to

relax the control action in order to reduce even more the number of infections. Lastly, when

the number of infections is reducing, we reduce even more the value of Q, aiming to avoid

subsequent waves of infection.

Of note, the control algorithm can be tuned to adjust to each situation, considering the stage

of the pandemic, the level of occupancy of ICU and clinical beds and, mainly, the government’s

priorities, with a focus on increasing the restriction and the measures of social distancing or
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making them more flexible, adopting surveillance policies that work in parallel with the opening

of economic activities and social life.

The control optimization process for the horizon of Np steps is assumed to minimize the

number of symptomatic infection cases and also the stringency index measures, defined as

follows:

min
u(t)

JNMPC(·) = min
ut

(Is(tf ) +Q · u(t)) , (10)

s.t. SEIIHURD+ψ Model ∀ i ∈ N[1 , Np] ,

u ≤ u(t+ i− 1) ≤ u ,

H(t+ i) ≤ nbeds ,

U(t+ i) ≤ nICU .

Given that the NMPC framework offers finitely parametrized social distancing guidelines

for the COVID-19 spread, its implementation resides in simulating the validated SEIIHURD+ψ

along the prediction horizon with an explicit nonlinear solver and testing it according to all

possible control u. Thus, the predicted variable Is at the last sample time tf of the prediction

horizon Np is used to evaluate the cost function JNMPC(·). The stringency index that implies in

the violation of constraints are neglected. Then, the resulting control value is the one that yields

the minimal JNMPC(·), while abiding to the aforementioned constraints. Finally, the stringency

index is applied and the horizon slides forward. This paradigm is explained in the NMPC

Algorithm section. We note that this methodology ensures the optimality of the solution u(k)

regarding the control objective JNMPC, as described by Rathai et. al. (46).

After calculating the optimal control signal, we consider that the population responds with

a certain dynamic to governmental measures, as proposed by Morato et. al. (25). The dynamic

response is defined as follows:
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ψ(t+ 1) = ψ(t) + T2%ψ (Kψ(t)u(t)− ψ(t)) , (11)

wherein %ψ = 0.4 day−1 is a settling time parameter, which is related to the average time

the population takes to respond to the enacted social isolation measures and Kψ is a gain rela-

tionship between ψ and u. T2 represents the sampling period of the NMPC algorithm of one

week.
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Parameter sensitivity analysis

We performed a sensitivity analysis to evaluate the effects of model parameters in the dynamics

of Ia, Is, U , H , R, S, E and D over time. By using an statistical variance-based method,

described by Sobol (2001) (47), the sensitivity analysis of the system described by Eqs. (1a)-

(1h) considers the following parameter vector

θ := (κ, γa, γs, γh, γu, µu, ξ, h, µh, ωh, ωu, δ, p) ∈ R13, (12)

assuming that its elements are uniformly distributed in proper intervals:

κ ∼ U(1/6, 1/3), γa ∼ U(1/3.70, 1/3.24), γs ∼ U(1/5, 1/3),
γh ∼ U(1/12, 1/4), γu ∼ U(1/12, 1/3), µu ∼ U(0.4, 0.5),
ξ ∼ U(0.5, 0.99), h ∼ U(0.05, 0.99), µh ∼ U(0.1, 0.2),
ωh ∼ U(0.1, 0.3), ωu ∼ U(0.1, 0.3), δ ∼ U(0, 1.5),

p ∼ U(0.13, 0.5).

(13)

To apply this method, we first generated sample values for the input factors shown in

Eq. (12) by creating matrices A and B, each with size N × n, where N is the number of

samples and n = 13 is the number of parameters being analyzed, given by

A =


θ
(A1)
1 θ

(A1)
2 . . . θ

(A1)
i . . . θ

(A1)
n

θ
(A2)
1 θ

(A2)
2 . . . θ

(A2)
i . . . θ

(A2)
n

...
... . . .

... . . .
...

θ
(AN)
1 θ

(AN)
2 . . . θ

(AN)
i . . . θ

(AN)
n

 (14)

and

B =


θ
(B1)
1 θ

(B1)
2 . . . θ

(B1)
i . . . θ

(B1)
n

θ
(B2)
1 θ

(B2)
2 . . . θ

(B2)
i . . . θ

(B2)
n

...
... . . .

... . . .
...

θ
(BN)
1 θ

(BN)
2 . . . θ

(BN)
i . . . θ

(BN)
n

 . (15)

We then create nmatricesAiB, where column i comes from matrixB and all other n−1 columns

come from matrix A:

AiB =


θ
(A1)
1 θ

(A1)
2 . . . θ

(B1)
i . . . θ

(A1)
n

θ
(A2)
1 θ

(A2)
2 . . . θ

(B2)
i . . . θ

(A2)
n

...
... . . .

... . . .
...

θ
(AN)
1 θ

(AN)
2 . . . θ

(BN)
i . . . θ

(AN)
n


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In the matrices A, B and AiB, each row represents a set of parameter to be used as an input

for the model. Numerical simulations are performed, and the output of the sample matrices A,

B and AiB are stored as the vectors

YA =


Y
(
A(A1)

)
Y
(
A(A2)

)
...

Y
(
A(AN)

)
 ; YB =


Y
(
B(B1)

)
Y
(
B(B2)

)
...

Y
(
B(BN)

)
 ; YAi

B
. (16)

where YA, YB and YAi
B

are output vectors.

The final step involves the calculation of the sensitivity indices, using the samples generated

during the sampling scheme. We computed the total effect indices, given by

STi = 1− YA · YB − f 2

YA · YA − f 2
(17)

where f is defined as

f :=
1

N

N∑
j=1

Y
(j)
A . (18)

This index indicates the contribution of the parameter to the output of the model. The impor-

tance of each parameter i is proportional to the value of STi , meaning that higher STi leads to a

higher contribution to the model output (48). Parameters with higher ST need a more carefully

calibration, as small error during the calibration can lead to larger errors to the predictions gen-

erated by the model. The total effect takes into account higher-order interactions among model

variables; thus, correlation between variables can also be identified using this method. In ad-

dition, we also evaluated the influence of first-order effects, which do not consider interactions

among variables, to the model output.

The numerical simulations were performed using the SALib library (48). The experiment

was conducted generating N = 15,000 parameter combinations, totaling 225,000 simulations

of the model, and the result shows the evolution of the parameters according to S, E, Ia, Is, U ,

H , R and D compartments.
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The results for the sensitivity analysis of the SEIIHURD+ψ model confirm our previous

findings of the sensitivity of the SEIIHURD model, where we showed that the transmission

rate, β, and δ, the factor that reduces the infectivity of asymptomatic/non-detected individuals,

were among the most influential parameters to every model output during most of the evaluated

periods (9). This result is recapitulated in every compartment throughout the course of the

model dynamics studied herein (Fig. S7). In the initial simulation period (up to day 20), the

parameters that exert the most impact to the compartments related to severe disease (H , U ) and

fatalities (D), after β and δ, was h (the proportion of symptomatic needing hospitalization or

ICU). In U , the parameter ξ also appears to play an important role in the dynamics of critical

cases, which is expected as the parameter 1 − ξ associates to the proportion of hospitalized

symptomatic that proceed to ICU (Fig. S7E,F,H). The parameter p, the proportion of latent (E)

that proceed to symptomatic infective, appears as an important factor governing the dynamics

of individuals in Is, specially at the initial simulation period and at later time points.

In line with our previous findings on the dynamics of the SEIIHURD model system (9),

now expanded to the SEIIHURD+ψ framework, the sensitivity analysis conducted confirmed

the importance of carefully considering the intervals of β, δ, ξ and h, as these parameters

represent important determinants of the dynamics of the model. Indeed, we have previously

conducted an extensive literature mining of these key parameters to inform their ranges (table 2

and Ref. (9)).
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NMPC Algorithm

Finitely Parametrized NMPC for Social Distancing Guidelines

Initialize: N(0), S(0), E(0), Ia(0), Is(0), H(0), U(0), R(0) and D(0).
Require: Q, nI , nbeds, nICU

Loop, every day:

• Step (i): “Measure” the available contagion data (I(k), H(k), U(k), ψ(k) and D(k));

• Step (ii): Loop every week:

– Step (a): For each control sequence j:
∗ Step (1): Build the control vector Uk
∗ Step (2): Explicitly simulate the future sequence of the SEIIHURD variables;
∗ Step (3): Evaluate if constraints are respected. If they are not, end, else, com-

pute the cost function JNMPC(·) value.

– end
– Step (b): Choose the optimal control value Uk that corresponds to the smallest J(·).
– Step (c): Increment k, i.e. k ← k + 1.

• end

• Step (iii): Apply the local control policy u(k).

• Step (iv): Simulate the SEIIHURD+ψ model.

• Step (v): Increment k, i.e. k ← k + 1.

end
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Fig. S 1. A factsheet of Bahia, Brazil, with the main economic and social indicators.
Extracted from the Brazilian Institute of Geography and Statistics (IBGE). The exchange rate
used to convert Brazilian reais (BRL) to US dollars (USD) was 1 BRL = 0.19 USD (as of Dec
29, 2020).
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Fig. S 2. Social mobility reduction index. The dashed lines represent the daily percentage of
social mobility given by InLoco. The full black line is the moving average mean of 8 days.
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Fig. S 3. Real and simulated social mobility and governmental interventions in the state
of Bahia. Levels of stringency (A) and social mobility reduction (B) indexes are shown for the
high and low compliance scenarios, as well as the actual value of these metrics in the state-
level during the period. The observed SMRI values (March 6-September 15) consist of a 8-day
moving average. The dotted line in panel (B) indicates the assumed values of SMRI as described
in Results. This scenario represents a hypothetical situation in which the government would
have applied 21 decrees with stringency index varying between 0.216 to 0.6269, as described in
Table S4.
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Fig. S 4. Real and simulation-controlled COVID-19 epidemic unfolding in Bahia, Brazil.
(A) New cases; (B) deaths; (C) clinical hospitalization and (D) ICU bed requirements at the
state level. The dashed-blue lines represent the dynamics of the validated model presented in
Fig. 2 considering the observed SMRI time series in Fig. 3B. The dashed-dotted lines represent
the clinical and ICU bed limits. Raw data (black dots) from March 6 to September 15, 2020 are
shown in this graph. This scenario represent a hypothetical situation in which the government
would have applied 21 decrees with stringency index varying between 21.62% and 62.69%, as
described in Table S4.
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Fig. S 5. Real and simulated social mobility and governmental interventions in the state
of Bahia. Levels of stringency (A) and social mobility reduction (B) indexes. The blue-solid
line represents the real measured index applied in the state from March 16 to September 15. The
dotted line in panel (B) indicates the assumed values of SMRI. This scenario simulates different
control tuning with the limited variation of the stringency index between 21.62% and 49.21%,
changing the parameter Q to adjust the trade-off between reducing the level of the measures
or minimizing the number of cases. Q was adjusted according to the time windows: i) from
March 6 to May 15 ii) from May 16 to August 23 and iii) from August 24 to October 15. For
the red line Q is 8e4, 3e4, 1e4. For the yellow line Q is 5e6, 1e6, 2e5. For the violet line Q is
1e4, 5e3, 1e3. For the green line Q is 5e3, 1e3, 1e3.

24



Fig. S 6. Real and simulation-controlled COVID-19 epidemic behavior in Bahia, Brazil.
(A) New cases; (B) deaths; (C) clinical hospitalization and (D) ICU bed requirements at the
state level. The dashed-blue lines represent the dynamics of the validated model presented in
Fig. 2 considering the observed SMRI time series in Fig. 3B. The dashed-dotted lines represent
the clinical and ICU bed limits. Raw data (black dots) from March 6 to September 15, 2020 are
shown in this graph. This scenario simulates different control tuning with the limited variation
of the stringency index between 21.62% and 49.21%, changing the parameter Q to adjust the
trade-off between reduce the level of the measures or minimize the number of cases. The Q
was adjusted accordingly to the time windows: i) from March 6 to May 15 ii) from May 16 to
August 23 and iii) from August 24 to October 15. For the red line Q is 8e4, 3e4, 1e4. For the
yellow line Q is 5e6, 1e6, 2e5. For the violet line Q is 1e4, 5e3, 1e3. For the green line Q is
5e3, 1e3, 1e3.
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Fig. S 7. Sensitivity analysis study for S, E, Ia, Is, U , H , R and D compartments over time.
The total effect index STi is shown for each evaluated parameter in each compartment of the
SEIIHURD model.

26



Fig. S 8. (A) Control loop scheme and (B) SEIIHURD compartmental model. The notation
k used in (A) defines the discrete sample time in the control algorithm.
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Supplementary Tables

28



Table S 1. Categories of governmental measures to mitigate the spread of COVID-19 in
Bahia. Details are described in the work of Jorge et al. (7).

Measure ID Guideline Interval
O1 Cancel public events [0,1]
O2 Closure of schools/universities [0,1]
O3 Home-office labor for government employees [0,1]
O4 Social Isolation [0,1]
C1 Closure of non-essential activities (business, cultural activities, etc) [0,1]
C2 Transport lockdown [0,1]
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Table S 2. Key epidemiological parameters used in the SEIIHURD+ψ model without
gains. Estimates and values for the analysis of the SEIIHURD+ψ without gains with their
search interval (when applicable) and respective estimates obtained according to best fit to data
up to September 15, 2020 for Bahia. The parameters search intervals were informed by our
previous literature mining (9).

Parameter Description Interval Fixed
Estimated
(95% CI)

β0 Pre-intervention transmission rate [0, 3] - 2.13 (2.02-2.24)
β1 Post-intervention transmission rate [0, 3] - 1.76 (1.67-1.85)
β2 Post-intervention transmission rate [0, 3] - 1.13 (1.07-1.19)
β3 Post-intervention transmission rate [0, 3] - 1.00 (0.95-1.05)
t1 Time of transmission rate change [March 26th, May 17th] - March 26
t2 Time of transmission rate change [May 18th, August 1st] - May 18
t3 Time of transmission rate change [August 1st, September 15th] - Aug 1

δ
Asymptomatic/non-detected
infectivity factor

[0,0.75] 0.31 -

p
Proportion of latent (E) that
proceed to symptomatic infective

[0.13, 0.5] 0.2 -

κ Mean exposed period [1/6, 1/3] 1/4 -
γa Mean asymptomatic period [1/3.70, 1/3.24] 1/3.5 -
γs Mean symptomatic period [1/5, 1/3] 1/4 -

h
Proportion of symptomatic
needing hospitalization or ICU

[0.05, 0.25] 0.06 -

1− ξ Proportion of symptomatic
that proceed to ICU

[0.01, 0.5] 0.47 -

γH Mean hospitalization (clinical beds) period [1/12, 1/4] 0.18 -
γU Mean ICU period [1/12, 1/3] 0.13 -

µH
Death rate of hospitalized
individuals

[0.1, 0.2] 0.15 -

µU Death rate of ICU individuals [0.4, 0.5] 0.4 -

ωH
Proportion of hospitalized
that goes to ICU

[0.1, 0.3] 0.14 -

ωU
Proportion of ICU that
goes to hospitalization

[0.1, 0.3] 0.29 -
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Table S 3. Parameter specifications for the optimizations procedure.

Parameter Search interval
Initial condition
for the optimization
problem

g1β [0; 3] 1
g2h [0.05; 0.25] 0.06
g3ξ [0.5; 0.99] 0.53
g4µU [0.4; 0.5] 0.4
g5γU [1/12; 1/3] 0.13
g6γH [1/12; 1/4] 0.18
g7p [0.13; 0.5] 0.2
g8ωU [0.1; 0.3] 0.29
g9ωH [0.1; 0.3] 0.14
g10µH [0.1; 0.2] 0.15
g11δ [0.01; 0.75] 0.31
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Table S 4. Control Input evaluation

Control Input Value Social Distancing Measure ID
0% Do nothing

21.62% O1= 0.333, O2= 0.5, O3= 0.25, O4= 0.0, C1= 0.214 and C2 = 0.00
36.71% O1= 0.667, O2= 1.0, O3= 0.25, O4= 0.0, C1= 0.286 and C2 = 0.00
38.10% O1= 0.667, O2= 1.0, O3= 0.25, O4= 0.0, C1= 0.428 and C2 = 0.00
39.00% O1= 0.500, O2= 1.0, O3= 0.25, O4= 0.0, C1= 0.286 and C2 = 0.25
40.87% O1= 0.667, O2= 1.0, O3= 0.25, O4= 0.0, C1= 0.286 and C2 = 0.25
41.50% O1= 0.667, O2= 1.0, O3= 0.39, O4= 0.0, C1= 0.428 and C2 = 0.00
42.23% O1= 0.667, O2= 1.0, O3= 0.39, O4= 0.0, C1= 0.456 and C2 = 0.01
43.25% O1= 0.667, O2= 1.0, O3= 0.25, O4= 0.0, C1= 0.428 and C2 = 0.25
44.84% O1= 0.333, O2= 1.0, O3= 1.00, O4= 0.0, C1= 0.357 and C2 = 0.00
45.90% O1= 0.667, O2= 1.0, O3= 0.39, O4= 0.0, C1= 0.442 and C2 = 0.25
47.05% O1= 0.667, O2= 1.0, O3= 0.39, O4= 0.0, C1= 0.511 and C2 = 0.25
49.21% O1= 0.667, O2= 1.0, O3= 0.25, O4= 0.5, C1= 0.286 and C2 = 0.25
49.80% O1= 0.333, O2= 1.0, O3= 1.00, O4= 0.0, C1= 0.571 and C2 = 0.08
51.59% O1= 0.667, O2= 1.0, O3= 0.25, O4= 0.5, C1= 0.428 and C2 = 0.25
54.56% O1= 0.333, O2= 1.0, O3= 1.00, O4= 0.0, C1= 0.857 and C2 = 0.08
54.69% O1= 0.667, O2= 1.0, O3= 0.39, O4= 0.5, C1= 0.469 and C2 = 0.25
55.61% O1= 0.667, O2= 1.0, O3= 0.39, O4= 0.5, C1= 0.525 and C2 = 0.25
57.94% O1= 0.667, O2= 1.0, O3= 1.00, O4= 0.0, C1= 0.642 and C2 = 0.16
60.12% O1= 0.667, O2= 1.0, O3= 1.00, O4= 0.0, C1= 0.857 and C2 = 0.08
62.69% O1= 0.667, O2= 1.0, O3= 1.00, O4= 0.0, C1= 0.928 and C2 = 0.16
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Table S 6. Key epidemiological parameters used in the SEIIHURD model.

Parameter Description
β Transmission rate
ti Time of transmission rate change implicit on the Heaviside step function of β
δ Asymptomatic/non-detected infectivity factor
p Proportion of latent (E) that proceed to symptomatic infective
κ Mean exposed period (days−1)
γa Mean asymptomatic period (days−1)
γs Mean symptomatic period (days−1)
h Proportion of symptomatic needing hospitalization (clinical beds) or ICU
1− ξ Proportion of symptomatic that proceed to ICU
γH Mean hospitalization (clinical beds) period (days−1)
γU Mean ICU period (days−1)
µH Death rate of hospitalized individuals
µU Death rate of ICU individuals
ωH Proportion of hospitalized that goes to ICU
ωU Proportion of ICU that goes to hospitalization
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